ON THE COMPARATIVE ANATOMY OF TRANSFORMATIONS!

By Joun W. Tukey

Princeton University

1. Summary. The attention of statisticians has usually been focussed on single
transformations, rather than on families of transformations. With a growing
appreciation of the advantages of examining the behavior of data or approx-
imations over whole families of transformations (Moore and Tukey [2], Ans-
combe and Tukey [1]), there arises a need for rationally planned charts for
representing families of transformations.

The contributions which (i) the topology of the family and (ii) a definition of
the strength of a transformation can make to charting are studied in general and
applied to the charting of the simple family of transformations. This family is
defined to include all transformations of the form '

y is replaced by z = (y + ¢)°
and all their limits. It thus includes z = log (y + c), 2 = ¢™ and the special case

O: Y = Ymin,
2z = )
1, otherwise,

where ymia is the least value of y either (i) present in the data or (ii) possible, as
well as all linear transformations of these transformations.

Experience having shown that transformations with p =< 1 are much more
frequently useful than any others, the charts developed, presented, and ex-
emplified here are restricted to the part of the simple family—its central region—
for which p = 1. Separate charts are presented for two cases which should cover
most cases which arise in practice:

(1) Where, as with counted data and small counts, the least reasonable value

for y + ¢ = 0, and this value is likely to occur;

(2) Where y + cis always safely > 0, and the range of y is through not many

powers of 10.

2. Introduction. In the statistics of today, transformations seem to have two
sorts of uses:

(1) providing approximations for theoretical purposes or general convenience;

(2) aiding in the analysis of data by bending the data nearer the Procrustean

bed of the assumptions underlying conventional analyses.

Both are interesting and important. In both the quality of the work of the
transformation is often judged by the numerical value of some suitable criterion,
and transformations which make the value of this criterion sufficiently near some
ideal value are acceptable. (Examples follow below.) If we are to consider any
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member of a family of transformations as a potentially useful candidate, we
should like to understand how one or more criteria vary over the whole family.
If we could write a sufficiently simple expression for each criterion in terms of the
parameters of the family, we could perhaps reach this understanding alge-
braically. But this is almost always impossible. We usually have to evaluate
each criterion numerically for each of a number of transformations, and then
synthesize these few numerical values into an understanding as best we can. If
we can find a suitable chart, we can undoubtedly make much more effective use
of these few numerical values. Hence the desire for a satisfactory chart.

As one example, note that intermediate statistical texts often prove that, as
the number of degrees of freedom — o, the distribution of x° tends to normality.
None, to my knowledge, goes on to remark that the same is true of any fixed
rational function of x*, and hence, in particular, of the results of applying any of
the transforms of the simple family. But, knowing this, we are not surprised to
find Fisher using the 1/2th power, or Wilson and Hilferty using the 1/3rd power
of x* in seeking for a good normal approximation. Nor does the approximate
normality of log x* surprise us very much. If, for a given number of degrees of
freedom, we wish to select one transformation of x° to approximate normality,
our choice would be greatly eased by charts showing, for example, the deviations
of selected percentage points of the approximations from the values appropriate
to normality.

Notice how disorganized and unrelated is our information on such approxima-
tions. The approximate normalization by transformation of a Poisson distribu-
tion of average value A can be quite well accomplished by two apparently un-
related transformations: z = 4/y and z = log (y 4+ \). No connection between
these two successful approximations seems to have been recognized, altkough our
definition of the strength of a transformation now suggests a reasonably close
connection.

In analyzing data which does not match the assumptions of the conventional
methods of analysis, we have two choices [1]. We may bend the data to fit the
assumptions by making a transformation. Or we may develop new methods of
analysis with assumptions which fit the data in its ‘“original” form somewhat
better. If we can find a satisfactory transformation, it will almost always be
easier and simpler to use it rather than to develop new methods of analysis. To
judge of its satisfactoriness, we need a criterion. The precise nature of the
criterion will depend on the situation—and on what ills we are trying to remove
by transformation: nonadditivity of effect, nonconstancy of variance, non-
normality of distribution, or what have you.

If we seek to remove nonadditivity of effect, for example, we may take as our
criterion the ¢-value for removable nonadditivity. An example has already been
discussed by Moore and Tukey [2]. With a few additional values, this example is
used below to illustrate one of the suggested chart forms. In treating other ills,
other criteria would of course be involved.
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3. Strength and local structure of transformations. The strength of trans-
formations is investigated in general in Sections 5 to 7 and applied to the simple
family in Sections 8 to 10. The definition of strength to which we are led is much
that the strength of

2=y

is naturally taken as 1 — p, so that the sequence of transformations

=Y,

2 =17,
z = log y,
2=y
e=y,

is an equally spaced sequence of strength 0, 1/2, 1, 3/2, 2, - - - .
If we compare an arbitrary transformation with these unmodified power
transformations, we are led to define its power strength as

dz dz
log @ , — log @ ’
1 2

log (y2/y1)

For z = y” this definition yields 1 — p independent of y; and y, . In general the
result will depend on both y; and y., and may be thought of as the strength of
the unmodified power transformation which resembles the given transformation
aty = yrand y = ye.

The philosophy underlying our exploration and heavy use of the local proper-
ties of a family of transformations is discussed in Sections 11 and 12. The topolo-
gies and differential structures involved are discussed in Sections 13 and 14. The
resulting techniques are applied to the body of the simple family in Sections 15
to 20, and to the corners (near the identity and near z = sgn™y) in Sections 21
to 24. (The detailed conclusions are summarized in Sections 20, 24, and 25.)

The results of these analyses are then applied in Sections 25 to 27 to the design
of the charts.

4. The charts. As noticed in the Summary, the charts are confined to only part
of the simple family, i.e., toz = (y + ¢)” with p £ 1 and 0 £ y + ¢ and their
limits. The restriction to positive ¥y + ¢ is easily understood. It ensures mono-
tone-increasing, well-defined, real-valued functions. The restriction to p < 1
has no such mathematical reason.

Its origin is entirely empirical and is basically rooted in the psychology of
data-gatherers. Experience seems to show quite uniformly that when transforma-
tion helps empirical data, it is almost always for p < 1. Thisis clearly a statement
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Fia. 1. Basic chart when y is a small count.
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about how data-gatherers choose to record (and initially try to analyze) data. For
if z is the successfully transformed variable, and if the data-gatherer had chosen to
record w = 4/z, then we would have found z = w’ to be successful. The data-
gatherer could have done this, but for some reason he does it infrequently. Hence,
the restriction to » = 1 in the interests of convenience (particularly through the
resulting larger scale).

The particular coordinate systems used in these charts are developed in
Sections 25 to 27 to meet the requirements developed by studying the topology
and strength of the simple family. The choices are by no means uniqueand do not
deserve summarization here. They are believed, however, to be good enough
choices to make the charts very useful. (Perhaps even better forms will evolve
from practical experience with the presently suggested forms.)

The first chart is intended to apply to counted data with small counts, and to
other situations where there is a least value which is not infrequently observed.
The chart assumes that the original data has been “coded” (rescaled) so that the
least value is zero and that values between 1 and 10 are quite common. The basic
chart is shown as Fig. 1. This chart (and other basic charts) can be conveniently
used for repeated plotting by a simple device. If a sheet of tracing paper is placed
over the chart, and enough of the chart traced to identify locations (for this chart
the bounding arcs will suffice), the criterion values can be entered at appropriate
points. The tracing paper can then be removed and roughly contoured. (This
technique of economizing on special grids was learned from Churchill Eisenhart.)
The result of such a tracing for the nonadditivity ¢ in the chinch-bug example
discussed by Moore and Tukey [2] is shown as Fig. 2. The numerical entries are
values of 10¢ on 20 degrees of freedom, so that the contours correspond roughly
to 1%, 5%, and 20 % levels.

If a transformation of the simple family renders the effect of treatment and
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Fia. 2. Use of Fig. 1 to obtain confidence areas. (Entries 10, where ¢ measures removable
nonadditivity.)
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L0:2/b

Fi1c. 3. Basic chart where y is never very large or very small. (Transformation taken as

(y + eyo *0.)
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replication additive (or at least makes zero the population average of the con-
trast chosen to indicate removable nonadditivity), then the regions above and to
the right of the various contours are confidence regions for this additivity-
producing transformation. The confidence coefficients are, of course, 99 %,
95 %, and 80 %. Clearly this single experiment has not narrowed things down too
much.

The second chart is intended for use with data ranging through a few powers of
10 and safely away from 0. In using this chart, we think of the simple family in
the form

2= (y + cyo) ™™,

where y, and e, are constants selected for the particular example. The basic chart
is shown as Fig. 3. Again the tracing technique is applicable. In Fig. 4 we show an
application to the nonnormality of transformations of ;»_f on 6 degrees of freedom.
The values shown are

residual sum of squares

—101
0loguo mean square for slope

for the regression of 6 percentage points of x* on the corresponding points for a
unit normal. The plot is for ¢, = 0.5, yo = 0.6. The percentage points used were
the lower and upper 0.05%, 0.5%, and 5% points. Large entries mean close
approximation to normality.

The quality of the approximation can be judged from the case 1 — ge, = 0.3,
¢ = 0, for which

Fi1a. 4. Use of Fig. 3 to illustrate g,ppl'oximate normality of simple transforms of xi.
(Large entries indicate good approximations. Scaled by yo = 0.6, ¢ = 0.5.)
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% point normality 3.4300(x2)03 — 5.6490
lower 0.05%, —-3.291 —3.260
lower 0.05% —2.576 —2.500
lower 5%, —1.645 —1.674
(50%) (0.000) (0.023)
upper 5% 1.645 1.685
upper 0.6% 2.576 2.588
upper 0.05% 3.291 3.261

This quality is perhaps worth noting, since the first attempt to provide an
example failed in the following way: The attempt was to examine the normality
of simple transforms of w;, the range in normal samples of 10, between the
upper and lower 0.01 % points.

The result was that

4.56446(wo) "’ — 7.824436

agrees with a unit normal to within =0.01 %, which is the apparent accuracy of
the available cumulative distribution. The simple family often does quite well in
transforming to normality!

I. THE STRENGTH OF TRANSFORMATIONS

5. The purposes of transformations. The analysis of data usually proceeds
more easily if

(1) effects are additive;

(2) the error variability is constant;

(3) the error distribution is symmetrical and possibly nearly normal.

The conventional purposes of transformation are to increase the degrees of
approximation to which these desirable properties hold. We may think of these
as three purposes, but it is often true that a transformation suitable for improv-
ing one degree of approximation is also suitable for improving one or both of the
others.

The failure of any one of these properties can be recognized by the failure of a
difference ys — y4 to equal another difference yp» — yc, as we shall see shortly.
Since yz — Y4 = Yp — Ycis equivalent to y¢ — Yy« = Yo — Ys, We may always
assume, and shall assume, that y. < ys £ ye¢ < yp . Since the change of scale
from y to ay is usually (and wisely) accepted as having no effect on the degree of
approximation to any of these three properties, it is better to take the ratio
(ys — y4)/ (Yo — yc) (or some function of this ratio) as a measure of the failure of
this property rather than to take the difference of the differences, (yz — ya) —
(Yo — Yc), since the latter is not invariant under such changes in scale.

We now observe in what way the differences between yz — y4 on the one hand
and yp — Y¢ on the other can exhibit the failure of any one of the three desirable
properties.

Nonadditivity of effect occurs when

y(ur, v2) — y(ur, v1) #* y(us, v2) — y(uz, v1),
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where y is a function of the two variables w and ». Usually y(u, v) represents a
typical value (population mean, population median, etc.) of the distribution of
values obtained for fixed v and v.

Nonconstancy of variability is exhibited when

p(u) — q(u) #* plus) — glua),

where p(u;) is the p % point of the distribution of observed values when u =
and ¢(u,) is the corresponding q % point.
Finally, asymmetry of distribution is exhibited when

q(u) — y(u) # y(u) — p(w),

where p(u) and g(u) are upper and lower percentage points cutting off the same
tail areas and y(u) is the median, all of the distribution of values observable for a
fixed value of u.

In each case, failure is exhibited by a non-zero quartet. From a theoretical
point of view our argument is successfully completed. From an empirical one,
there remains a gap. Can we use quartets of individual observed values to study
observed data as an indication of failures in the population? If we can, then
defining strengths in terms of quartets makes very good empirical as well as
theoretical sense.

Clearly if we use observed order statistics to estimate percentage points and
medians, we can do this for asymmetry and nonconstancy and, if we are willing
to deal with population medians, for nonadditivity as well. Since a transform of a
sample mean will not be precisely the mean of the transformed values, we cannot
expect exact correspondence for nonadditivity defined for population means. If,
however, variability for « and v fixed is not large compared with the changes due
to alterations in u and v, this disturbance will be rather unimportant and we can
regard the means under specified conditions as pseudo-individual values. Since
nonadditivity is most important when such additional variability is not too large,
it is almost correct, from a practical point of view, to say that the behavior of
quartets of individual or pseudo-individual values describes, empirically and
adequately, the apparent failures of additivity, constancy of variance, and
symmetry of distribution.

We shall, for reasons which will tend to appear as we proceed, take the lo-
garithm of the ratio of differences

log Yo _ Ve log (yz — y4) — log (yo — o)
Yo — Yo
as the measure of the degree of failure of a quartet to correspond to equal dif-
ferences—whether nonadditivity of effect, nonconstancy of variance, or asym-
metry of distribution is involved. There will usually be many such expressions
(many quartets y4 < ys = ye¢ < yp) which may be worthy of consideration in a
particular problem, and transformations will usually be chosen to make these ex-
pressions smaller as @ whole, balancing a gain on one against a loss on another.
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6. The strengths of transformations. How shall we assess the strength of a
transformation from y to z? Clearly by the extent to which it alters our measures
of dissatisfaction. Given a quartet y4 < yz < yc < yp, which is transformed
into a quartet 2, < 2z < 2¢ < 2p, we have altered

log 42— Y4 into  log 22 %4
gyo—yc gZD-—zc’

and for the initial quartet it is reasonable to measure the strength of the trans-
formation by the change

—zA_IOgys—yA

. — 2
k(yA yYs; Yc, yD) IOg 2p — Zc Yo — Ye

(zs - zA)(yD - yc)

= lo
& (20 — 20)(ys — yA)
2Zp — R4 : 2p — &¢
=log=—* —lo .
gyB—yA gyp-yc

The last form of this expression shows that there are natural definitions not only
for the results of letting a pair of arguments coalesce

d. _
k(y1; ye, yn) = k1, y1;Ye, yn) = [log 3%] — log ,
Y1

- d
k(yA »yYB; Z/z) = k(ya yYs; Y2, yz) = log s P4 _ l:log _z]
Ys — Ya

but also for the confluent strength arising from the coalescence of both parts

k(yi;y2) = k(ys, ya; 42, y2) = [log Z—Z] - [log Z—Z] )
Y1 Y2

all of which involve replacing the difference quotients by their limits, the de-
rivatives of z with respect to y. Clearly we might go one step further, and con-
sider

A0 A

~(&)/ ()

as a local measure of the strength of the transformation; however, there are
complications which we shall uncover shortly.

With the exception of this last possibility, which we disapprove of, with reasons
to be explained, all our measures of the strength of transformations involve at
least two arguments (up to as many as four) and the arguments fall into two
groups, whose separation (on the y-scale, say) is important. This means that if
we face a practical situation, and wish to use a transformation of given strength,

= ]imlk(y;y + 4)
a0 A
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we must begin by selecting one or more quartets typical of the data, and then
examine the strength of the proposed transformations for that [those] typical
quartets.

7. The composition of transformations. Let us consider successive trans-
formations from y to z and from z to w, together with the composed trans-
formation from y to w. The respective measures of strength are, in an obvious
notation:

% T %4 2p — Z¢
Fue ; = lo — log ==
vy U yC’yD) g?/B" Ya gyb—yc;
kzw(zA, Zp;Rc,y zD) = log Wp — Wa — log Wp — wc’
% — 24 2p — %¢
kyw : = log WB T Wi _ o0 Wo = Wo
e o3 ve, yo) = log Ys — Ua Yo — ye

It is clear that
kyw(Ya, Y55 Yc, Yp) = ky:(ya, Y5 ; Yo, Yo) + k(24 , 25 ; 2¢, 2p)

but that, since in general
kaw(Ya, Y5 Yo, Yp) # ka(za, 25; 2¢c, 2p),
we will have inequality in

kyo(a , Ys 5 Yc, Yn) # ky(Ya, Ys 5 Yc, Yp) + kaw(ya , Y5 ; Y, Yo).

Thus strengths correctly calculated are additive, but strengths naively calculated
are not. In particular, if w is the same function of z that z is of y, the strengths
of the two transformations (applied successively to the same quartet) will not be
the same, and moreover, the strength of the composite will not be twice the
strength of either.

Thus we see that the concept of strength is a little more subtle than might be
supposed.

In particular, an attempt to use k(y) directly fails because by going to the
limit after division by A (which we must do to obtain a finite limit) we have lost
the distinction between the original and the transformed quartet. In more
detail, and working in terms of confluent strengths and in terms of z = f(y),

kpo(y; y + 8) = kp(y; y 4 A) + kalz; 2 + ),
where z + & = f(y + A), so that, on division by A and passage to the limit,

@) = bule) + L 1)

_ dz
- yz(y) + (’zz—/ kzw(z):
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and both the shift in argment and the multiplication by dz/dy must be taken
into account.

As an example, consider z = /y and w = /2, so that k,.(y) = 1/2y k.,(2) =
1/2z, and dz/dy = 1/2+/y. We obtain, from the formula above,

b L (L) he L (L)

T2y oy N2/ 2y 2y \2vy/ W
which is exactly what we would have obtained by direct calculation. Note that
we combined 1/2y with 1/2z to obtain 3/4y, which is far from the naive answer.

II. STRENGTHS IN THE SIMPLE FAMILY

8. Confluent strengths of powers. We now return to the simple family, and
begin with the confluent strengths of the pure powers, where

¥ p#0,
z =
Here we have

dz] I: dz:l
kyisye) = |log = | — |log=| |,
(15 92) [og An g 2

dz _|logp+ (p— Dlogy, p#0,
—log v, p=0,

where

Sy
so that

k(yr; 12) = (p — 1) log (yi/y2)  for all p.

Thus the strength is proportional to p — 1 for any pair of confluent arguments
y1and ys .
If w= 2% and z = 3*, we have

ky(y1592) = (p — 1) log (y1/72),
(21 5 20) (¢ — 1) log (z1/22) = (¢ — 1) p log (y1/v2),
kyo(ys 5 92) = (pg — 1) log (y1/2)

I

where we have used

log (21/22) = p log (y1/¥s).

We note that the additive decomposition of strengths is, in terms of the numerical
coefficients,

pg—1=@—-1)+p(—1;
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so that if p = 3, for example, we again get
o it B}

showing how the second square-rooting had only half the strength of the first.
The special case ¢ = 0 (logarithm for the second transformation) offers no
difficulty, the decomposition being

—1l=@-1+ (- p);

but an attempt to put p = 0 (logarithm for the first transformation) fails, since
in this case

log (21/22) # p log (y1/y2)

and the power strengths are quite dependent on the particular values of 4; and ¥,
involved. The resulting transformations, such as v/log y, are not power trans-
formations and seem to have been relatively little used.

In particular, the sequence of transforms '

5 Y \/377 1Og Y, 1/\/-?}_7 l/yy

are seen to be equally spaced in strength, where a more naive approach might
have led to y, ¥, 4™, 4", - - - as an equally spaced sequence—a possibility not
in accordance with either a careful analysis or empirical experience.

In general, we shall refer to the ratio of k,.(y:, y2) to —log (y1/¥:) as the
power strength of a transformation. With this definition, the power strength of
y”is 1 — p and the power strengths of the sequence v/y, log y, 1/ V/y, - - - are
1/2, 1, 3/2, 2, 5/2, --- . (For a transformation which is not a pure power, the

power strength will depend on the exact arguments y; and y,.)

9. Confluent strengths in the simple family. We can now go on to consider the
confluent strengths of the modified power transformations

ap(y + C)py p ?é 07
2 =
log(y +¢), p=0,

where we are likely to choose the constant a, for each p so that sgn a, = sgn
p. We have

log% = (p — 1) log (y + ¢) + constant

and hence

. - _ Y1+ ¢
k(yr;92) = (p — 1) log nEe

The power strength will be given by

Mo g ) los (G + /(e + o))
—log (y1/y2) log (/) '
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Ifweput y1 = y — 4, y2 = y + 9§, and expand all logarithms in terms of §, we

obtain
Y 8 c(2y + ¢ :|
1 — _osey Y L.
( p)[y+c 3y(y+0)3+ ’

where the first term will usually be controlling, and where, by Rolle’s theorem,
we may slightly redefine y, keeping it well between y; and y, so that the first
term is exact.

We are now able to give some explanation of the fact, mentioned earlier, that
vy and log (y + A) are both fairly good normalizing transformations for a
Poisson variate of average value X. Their respective power strengths at y = A
are exactly

and approximately

)\ — 1
1-0 SEnT®
so that their rough equivalence is assured.

A further appeal to Rollé’s theorem shows that nonconfluent strengths are
always equal to confluent strengths for points near the center of each pair, and
it is easy to convince ourselves that, if ratios of not much more than 10 to 1 are
involved for ys/ys and yp/yc, the confluent strengths give us an adequate
picture of the behavior of the modified power transformations. This disposes of
most practical situations except one. When y is a count, and zero values actually
occur, we obtain infinite ratios for ys/y4 . A brief inquiry into strengths in this
cases does not provide any results of much practical use, which is somewhat
unfortunate.

10. Extreme strengths. We have expressed our strengths on a logarithmic
basis; this is quite reasonable for weak and moderate transformations, but can
easily be misleading for extremely strong transformations in practical applica-
tions. For example, suppose that only three different values are ever observed,
0, 1, and 2, and that they have been transformed into 0.0000, 1.0000, and 1.0001.

By our definitions, the transformation carrying them into 0.0000 0000,
1.0000 0000, and 1.0000 0001 would be twice as strong. From most practical
points of view this is quite wrong, since both transformations are so very close
to the one carrying 0, 1, 2 into 0, 1, 1 (which by our definitions has infinite
strength). In practice, infinite strength is not infinitely far away.

This means that, in charting, we should pay very considerable attention to the
behavior of strengths on our scale where they are small or moderate, much less
attention to their behavior where they are large, and should avoid moving
infinite strengths to infinity.
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II1. LocAL STRUCTURES OF FAMILIE OF TRANSFORMATIONS

11. Introduction. It is natural to question the intrusion of topology and
differential structure into the present paper. For in choosing transformations for
empirical purposes—whether for data analysis or theoretical manipulation—
only a limited degree of detail about a transformation is relevant. If our interest
is coarse-grained, while the attention of topology is directed to the indefinitely
fine grain of arbitrarily small neighborhoods, how can topology help us? There
are at least two answers to this question, and both are quite relevant.

First, there is a heuristic principle that the study of behavior in the small
often, but not always, leads to results which are helpful at a larger scale. In the
present circumstances we may reasonably expect this principle to apply without
exception.

Second, we are trying to chart the family of transformations in such a way
that, when we plot values of some interesting quantlty on the chart, we can use
these values as advantageously as possible in:

(1) understanding the relation of the transformation to the quantity;

(2) picking a single useful transformation; or

(3) indicating a region of acceptable transformations.

For any and all of these ends, we should like to have the quantities of interest
vary smoothly over the chart.

The finest-grained aspect of smooth variation is continuity. Thus we should at
least like to have our quantities continuous functions over the chart. To do this
we must respect the topology of the family of transformations in choosing the
topology of the chart. This respect need only be one-sided, however, for if

(1) position in the family is a continuous function of position in the chart, and

(2) the quantity is a continuous function of position in the family,
then the quantity will be a continuous function of position on the chart. In a
phrase, we must not bring together in the chart things which are apart in the
family, although we may, if we wish, keep apart in the chart things which come
together in the family.

For all that the second answer leaves us free to pull things apart in the chart
wherever and as much as we wish, the first answer suggests that we should re-
strain such tendencies as much as may be reasonable.

12. Intersection and tangency. Whether one curve intersects (we shall always
mean ‘“‘intersects at a non-zero angle” when we say ‘“‘intersects”), or is instead
tangent to, another curve in the family is a relatively easy question to settle,
and one that can usefully be asked near almost any point of the family. The
analog of the rule just stated above may be put as follows: If the curves intersect
in the family, we cannot allow them to be tangent on the chart; if they are
tangent in the family, then we can, if we wish, let them intersect on the chart.

Such considerations may arise in the interior of a family, but are more likely
to be important on its boundary. If a family is two-dimensional (as the special
family is), the boundary will consist of curves and corners. It is at these corners,
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which are often singularities in some other sense, that intersection and tangency
will be most critical.

At such a corner we should avoid, at all costs, the introduction of new tan-
gencies, and should try to preserve the tangencies of the family whenever this
can be done without contravening more important considerations.

We shall have to deal with a least one corner where there are several alternate
differential structures. This is likely to force us to eliminate tangencies. For if we
have two curves which are tangent in all of these structures, they may not be
tangent in the same way (‘“‘corresponding” pairs of points, one on each curve, in
one structure may not ‘“correspond” in another). In this case, no one sort of
tangency in the chart can possibly be satisfactory. We must destroy the tan-
gency and chart the curves as intersecting at a finite angle.

13. Nature of the topology. The discussion above has assumed a topology
without describing it. We need to say something more. If we have a family of
transformations depending on parameters «, 8, v, -,

z=z(y;a,l3,7,~~'),

and if @« = a(t), 8 = B@), v = v({), - - - defines a curve of transformations

2. = 2(y; a(t), B@), y(@®), -+ - ),

when do we say that z; converges to 2 as t — 0? With a mild reservation, we say
that 2, — 2 if there exist 4, and B, so that

A + Bzdy) — 2(y)

for every relevant y. Notice two things here: First, we have to introduce the
variable linear transformation defined by (4;, B:), since we regard the class of
all C + Dz, for C and D fixed, as equivalent and our topology really refers to
equivalence classes of transformations. Second, the convergence is for all rele-
vant y, so that a change in the set of y’s considered relevant may change the
topology. In our present case—the simple family—such changes only occur (i)
near the far corner, or (ii) for degenerate cases where at most two values of y are
relevant, and all non-degenerate transformations are equivalent. (A transforma-
tion is degenerate if all its values for relevant y’s are the same. The mild restric-
tion mentioned above is that z, should not be degenerate.)

14. Nature of the differential structure. We have also talked of ““intersection”
and “tangency” without specific basis. We have available a differential structure
in which these terms are well defined, but it is rather different from those struc-
tures which appear in, say, Riemannian geometry. It does not start with some-
thing like a differential form which gives local meaning to ratios of distances
and from which local differentiation, tangency, etc., follow. It cannot, since we
shall not have local distances. Instead, it starts with the notion of a direction from
one transformation to another and proceeds to the definition of a tangent.

Given two transformations, z; and 2, , their difference, z; — 2., is also a trans-
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formation and is, of course, equivalent to any multiple of itself. If we replace 2
and 2z, by equivalent transformations, say 4 + Bz, and C + Dz, , the difference
becomes

A+ Bz —C —Dzp=A4 —C + Bz, — 25) + (B — D)z,
=A—C+(B—D)21+D(21—22),

namely, any member of a one-parameter family of equivalence classes where
21 — 2 is additively combined with various amounts of 2 or z; . The resulting
direction is defined, but not too precisely.

If, however, 2, = 2, and 2, = 2, where 2, converges to 2, as ¢ — 0, then we
can focus our attention on a particular 4, 4+ Bz whose values converge to those
of 2 . If the convergence of the values is sufficiently differentiable for each y, then
we have

A+ Ba(y) = a0+ ' (y) + O(F),

where O(#) means terms of order # or smaller as ¢ — 0. We may regard 2’ con-
sidered as a transformation, as the derivative of z; at the point (at the trans-
formation) z .

It is well to note that 2’ is also not uniquely defined. For if we replace B; by
B, + tC, as we may without disturbing the convergence, then

A+ (B + t0)2:(y) = 20 + tl2'(y) + Czo(y)] + O(F),

and we see that 2/ + Cz is also a “derivative.” Except for the inevitable linear
transformations this is the most general form, and we may say that the direc-
tions at 2o correspond to the families of transformations of the form

A + B2 + Cz,
where 4, B, and C are arbitrary constants with B = O.
Two curves
z = 20 + 2/ + O
and

2o = 20 + 82 + O(5)
will have the same direction at 2 if
A4+ Bi+ Coo= 2

for the relevant values of ¥ and suitable constants A, B, and C.

Notice the appearance again of the relevant values of y. It will again usually
be true that, so long as y takes at least three different values, it will not matter
which three. But in exceptional circumstances it will matter, and it is in this way
that a corner may receive various differential structures.

The same sort of construction can be extended to higher derivatives. We shall
need it in only one special case, and no general discussion seems necessary.
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With these general principles and techniques in mind, then, we can proceed
to study the simple family.

IV. Tue Bopy oF THE SiMpPLE FaMILY

156. Definitions and limiting forms. As previously stated, the stmple family of
transformations consists of all transformations, which can be obtained by
compounding linear transformations with one (integral or fractional) power
transformation, and of all limiting forms of such transformations.

The effect of an additional linear transformation from z to 4 4+ Bz with B £ 0
applied last is always regarded as trivial. Transformations which can be trivially
converted into each other are equivalent. Thus z = 3y* — 17 and z = 0.001 +
0.037y° are regarded as equivalent to each other and to z = 3. This is not the
case for an nitial linear transformation. Thus z = log y and 2 = log
(y + 10 000 000) are quite different transformations.. When we are dealing with a
curve of transformations, such as, for example, the curve of pure power trans-
formations with powers between 1 and 0, namely

{y, 1> p > 0},

we shall not distinguish equality from equivalence, and shall freely write such
“equations” as

8y, 1>p>0} ={y",1>p >0} ={14—-24"1>p > 0}.

We are only concerned with real values, and prefer monotone functions, so
that we could take as our definition of power

y* =sgn (y) | y|”

where the signum function, sgn (y), is defined by

+1, y>0,
sgn (y) =4 0, y=0,
-1, y<O0.
With this definition,
@) =y

but

» .
% = py"(sgny) = py" (sgny®) = py" (sgny” = ply|”.
(Differences from other definitions of powers only occur for negative y, and since
negative y’s occur infrequently in practice, this possible definition should be re-
garded as precautionary rather than important. We shall not use it explicitly
here, merely remarking that its use would make only trivial alterations in our
results.)

The limiting forms’are associated with the exceptional values of the power,
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— o, 0, and 4 «, and with the extreme values, — « and 4 c«, of the constant.
For p — 0, we have

@+ o) = " x 1 + plog (y + o),

which, after a suitably varying linear transformation, converges to log (y + ¢).
For p — =+« and ¢ tending to a finite limit, the convergence is to less familiar
objects. The transformations involved depend on the particular set of values
transformed through the extreme values, ¥max and Ymin , actually present in the
data. If we define a function ¢, by

0, u # 0,
¢o(u) =

1, u =0,
we then have for p — 4 « and a suitable choice of 4, and B, ,
Ay + By(y + ¢ = =0 = Ymin) = —1 + 5g07 Y — Ymin),
where the last equality is valid for actually occurring ¥’s, since ¥ < Ymin is im-
possible.
As in the sequel, a “+”’ on a function indicates that negative values are to be
replaced by zero. Hence, in particular,

0, y=0,
sgnty = { ’

1, y > 0.

There remains the case where p — ==« but p/c tends to a finite limit. (Hence
¢ — ==, also.) Here

(y+c)? =c° (1 + -cy—> p=2c [(1 + %)c:lplc;

and since the expression in [ ] tends to €%, the whole expression, after a suitably
varying linear transformation, tends to

my

4 2
where m = lim p/c.
Thus the simple family contains:
2= (y +c),
z = log (§ + ¢),
z=e",

and all linear transforms of these transformations.

16. Normalization. Because (i) they are apparently of the greatest practical
importance, and (ii) they determine the remaining cases by symmetry, we shall
confine our detailed analysis to transformations with p < 1 (and their limits).
Consequently, we shall be concerned with least values but not with greatest
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ones. It will therefore be convenient, for the remainder of this part, for us to fix
initial scale of the y’s so that the three smallest values of y are 0, 1, and y. , where
y2 > 1. This can be done by a linear transformation, and undone again by
another, so that our conclusions are to be changed by at most a linear trans-
formation when we are through.

We shall also assume that the reasonable values of ¢ are such that y + ¢ is
non-negative. We shall treat the general case, specializing later to the case
where ¢ is positive and bounded away from zero.

17. Tangency and intersection for ¢ small. We now investigate the situation
along and near the curve {z = y”} in more detail. We begin by considering
(y + ¢)” as ¢ — 0, where the value of p is important. If p < 0, and temporarily
we shall write p = —Fk, then

¢ =c"—>w, y =0,
(y+co)f = % o -
and
O, y=0}
1=+ = 1_< c )’“ >0
y+c/’

= sgn’(y) — ¥ sgnt(®)) + 0.

As ¢ — 0 for k fixed, the transformation tends to sgn™(y) and appears like an
additive mixture of this and y *sgn’(y). This additive piece is different for
different values of k, so that we learn that the curves of transformations

{4+ ) e—0} ={1—-C@y+c)c—0, p<O,

tend to sgn” (y), but no two have a common tangent.
For p = 0, we must deal with log (y + ¢), where

og w0 _ | v=5
c
1—._____.= 1 -+
—logc _log"y + o) >
& 1 —loge ’ vzl
logt(y + ¢
=sgn+y_;g__<_zlfo_g_~c_z
_ o+ logy ( c >
= weny —-logc+0 —logc/’

and hence the curve

_ )y log(y+ ¢ __)}
{108(y+0)a0—’0}—{1 ———ET’C 0

also tends to sgn'y, but with a different tangent.
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There is also another simply described curve with ¢ small (in fact with ¢ = 0)
which tends to sgn*y. This is the curve

{v", p— 0},
where we have
{O, y =0,
y° = e y >0,
= sgn'y + plog'y + 0("), y 20
We see now that the curves
{y", p — 0} and {log(y + ¢), ¢ — 0}

are tangent to each other at the transformation (¢ = sgn*y), with p correspond-
ing to 1/(—log ¢).
For p > 0, we have
¢’ y=0
» c\’
Yy (1 + 5) y  ¥>0,

= eo(y)c” + y* + cpy™™ + 0(c),

(y + o =

so that the curve
{(y + ©)F, ¢ — 0}

tends to the transformation y”.
Near y” we are also interested in

Yy =yt = 4P + P(log y) + 00,
which is easily seen to have a different tangent than the previous curves at y”.
18. Tangency and intersection for large c. If ¢ is large,
p
(y+o?=¢c <1 + ?C—/) = ¢’ exp [p log (1 + y/c)]
exp [(py/c) + py’/2¢" + 0(1/¢))]
p
= Pl Py i
e (1 +50 + 0(03».

Thus,if ¢ = 1/¢ and p = m/e (note that m < 0if p is always < 0), we have

c(y+co)? ="+ f2—my2e’”” + 0(&e™),

and the curve
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{y+ o p=me,c— o} = {c"(y + o) p=mec— o}

tends to e™.
We also wish to consider {¢™¥ 5 —s 0} for which

oY gy ’"”(1 + 8y + 0(8%)
™ 4 sye™ + 0(5%™).
Thus the curves
(y+o"p=meec— o} and (™50}

tend to the same limit, but with different tangents.
We also have to consider ¢ — « and p fixed, for which

(y+c)”=c”<1+‘c—{> <1+py+p(p Dy +0<>3)

and

C» »_
p° (y + ¢ 5

%=y+p———1y2+0<l),

so that the curves
(@ e ol = {54 07 = 8o}

all tend to y with a common tangent, a natural parameter along this tangent
being (p — 1)/2c.
Since ¢™ has been included, we must also consider the case m — 0 where

Y

e’ —1

=y+ y* + O(m?),

so that
{e™, m — 0}

has the same tangent as the curves just considered, with m corresponding to

(» — De.

19. Tangency and intersection for ¢ moderate. If p — 1 with ¢ constant, we
learn from

( + )™ = (y + )" = (y + ¢)(1 + slog(y + ¢) + 0(s*)
that

W+ )" —c=y+ 8y +clogy+c) + 0@
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and hence that the curves
{y+'p 1}

tend to y, each with its own tangent.

At the other extreme, where p = —Fk tends to — «, we have
0, y =0,
1 —k
l_ck(y+c)11= 1—<1+E>; y=11

_ N\"(c+ 1)"
ll (1+E> <c+y’ y>1
—k k
=sgn'y — (1 + %) eoly — 1) + 0((2 i ;) );
hence the curves A

{4+ o p >—o} ={l—-c@y+0ofp—>—}

tend to sgny with a common tangent and a natural parameter which is a mul-
tiple of [1 + (1/c)]™ = [1 + (1/c)]".
We also have, asm — — 0,

0, y =0,

1—e™=<1-¢" y=1,
1 — "™, y>1,
= sgn’(y) — ¢"(eoly — 1) + 0",
and we see that the curve
fe™,m > —} ={1—¢e" m——w}

has the same limit and tangent, with ¢™ playing the role of [1 + (1/¢)”.
Everything is well behaved as p — 0 when (y + ¢)” tends to log (y + ¢).

20. The resulting picture. If we put together all the individual results of the
last three sections, we are forced to the qualitative relation of the curves

{e™, m < 0},

{v,”1>p >0},
{y+c),pfixed(1>p>0),0<c< o},
{log (y +¢),0 <¢ < =},

{(y + o), plixed (p >),0 < ¢ < =},
{(y+¢)’ cfixed, 1 > p > —o}
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F1c. 5. The topology of the simple family.

shown in Fig. 5. These relations of limit, tangency, and intersection substantially
limit the diagrams on which we may reasonably plot the transformations
(y + ¢)® (with their limits) for1 = p > —© and 0 £ ¢ < .

V. Tue CORNERS OF THE SIMPLE FAMILY
21. The neighborhood of the near corner. We can try to learn more about the
situation near the corners at y and sgn*y by carrying the expansion out to
further terms. We begin with the neighborhood of y, where

"c"’(y+c)”=y+”2"cly2+(”‘léﬁf“z)y“+0(§>,

my—1
el/

m

y+2y+ y+0( %),

Y+ —c=y+ 8y +c) logly+ o + (y + ¢)(log (y + ¢))* + 0(5%),

and where, in particular, we may put ¢ = 0 in the last expansion.
If, taking account of the signs of p — 1 and m in the region we are interested

in, we set

h=1-2
C

= —m,

)rrGen)()+o ()

m(e"'”—l)=y+h< g)+h<0+h)<g~) %)

the first two expansions give

;—)C””(y+c)” Y+ h<

Nl@
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which are clearly consistent, since ¢ = « and 1/c = 0 are the limiting values
which lead to the exponentials.

We know that the situation near y (i.e., near ¢ = anything, p = 1) should be
represented by an angle of some size, with the curves {(y + c)?, ¢ fixed, p — 1}
coming in with separate tangents and the curves {(y + c¢)?, p fixed, ¢ — } all
coming in with a common tangent. It is not unnatural to try to map this into
the first quadrant of a (u, v)-plane, with the v-axis playing the role of the com-
mon tangent. The natural identification near (0, 0) is, then,

v = h,
u=ﬁ—|—h2.
c

However, experimentation leads to complexities, and reflection shows us that we
may reasonably alter the h’ term, since it is a higher-order function of the A
term.

Omitting the A* term,

Whe]lce
_ U
Cc = —,

and the radius of curvature at (0, 0) of the curves p = constant may be found
from the parametric form for a circle through (0, 0) tangent to the »-axis, namely,

v = Rsiny ~ Ry,
u = R(1 — cos ¢) ~ LRy,
whence

Ry V'_ K _he_1-—p
R =N —, = — = o = e .

2(Ry*/2) 2u  2h/c 2 2
We thus reproduce the situation around y to this accuracy if we make the follow-
ing identifications

{curve of constant ¢} = {ray through origin of slope c},
{curve of constant p} = {circle with (0, 0) and (1 — p, 0) as diameter}.

We then have a map of the simple family which is sound for transformations
near the identity.

It is this map which was used by Moore and Tukey [2] and is shown as Fig. 6.
In polar coordinates, tan 8 = cand r = (1 — p)//1 + &
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C=00 c=2

Fia. 6. The neighborhood of the near corner.

22. The neighborhood of the far corner. Now we go to the neighborhood of
sgnty, and again carry more terms to find

—k
1 -y + ¢)® = sgnty — (1 + %) ey — 1)

—k

—<1+yf> oy —y) + - (p=—k—> — =),

1 — €™ =sgnty — "oy — 1) — ™oy — o) + -+ (m — ),
—k

1—c’°(y+c)”=sgn+y_<cy—:> sgn'y + - (p=—-k<0,c—0),
+

g _loglyto) o4, logTy (¢ —0),
— log ¢ log ¢

y* =sgn'y + plogy + - (p —0).

We again concentrate on the curves which come to a common tangent. (At
this corner these are the family ¢ = constant rather than the family p = con-
stant.) This directs our attention to the first of the five formulas and to the

quantities .
1 —k Yo —k
S = ]. + E a-nd t = ]. + 'E‘ )

so that we would have
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The situation is both complex and dependent on the particular values of ¥, .
If we are going to obtain results of wide usefulness, we should have to fix, more or
less arbitrarily, a single value for y, .

In any event,

—k
1 +3’—21 "
= [ lc = [%] — 5" (as ¢ — 0).
LH aJ

RS

Thus, as p ranges from 0 toward — o« , the limiting value of /s ranges from 1 to 0
and we see that we have filled up only one octant.

Moreover, if we calculate coordinates for 4” in what seems to be the same way,
namely,

s=1— (valueat1l) =1— 1" =0,

t=1— (valueaty,) = 1 — y7 =~ — plog ¥2,

we find that

= — o,
s
Either we must accept a slit of some sort between {(y + c¢)”, ¢ — 0}
and {y”, p — 0} or we must recognize some difficulty with our procedure.
Actually, closer examination shows us that the coordinate system we are
using does not work at all well for y”. It is set up to work for 1 — c*(y + c)?,
which is 0 for y = 0, and approaches 1 from below for all y > 0, most slowly for
the smallest y. On the other hand, y” is 0 for ¥y = 0 and approaches 1 from above
for all y = 1, most slowly for the largest value of y. These are not compatible.
Essentially the only renormalization we can try is to expand y*(1 — Cp),
which leads to

C — log ys
—Cc
which can never be made to vanish for more than one value of y, .

We clearly should give up any attempt to get second-order accuracy in our
representation around the far corner. Indeed, when we reflect on the effects of
varying values of y., we see that we are in the situation discussed in Section 6.
Not only second-order accuracy, but also first-order accuracy should be given
up. We should arrange to have these curves intersect on the chart, even though
they are tangent in the family. The far corner is really a singularity!

¢
s

23. The far corner if y + c is always positive. In view of the essential way in
which the far singularity depended on y -+ ¢ either being actually zero or ap-
proaching zero, and in view of the fact that we may often have situations where
y -+ ¢ will not approach zero, it is probably worth while to reconsider our nor-
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malization and to look separately at the case where y + c¢ is always positive. It
will be convenient to normalize so that ¥y = 1, ¢ = 0, as we may clearly do.
The only singularity is now in the vicinity of p = — o, where we have

_ k P oA +(, _ 1+Ck +
1— Q4+ y+c)’~sgn(y — 1) (y—l—c) sgn*(y — 1) (c=0)

my

1 - %7—'; ~sgnt(y — 1) — ¥ P sgn’(y — 1) (m < 0)

and where, therefore, if we adopt as coordinates s and ¢ the deviations of the
values from sgn*(y — 1) at the next lowest values y, and ys of y, we find

s = <1 —+ C)k - em(uz—l)’
Y2 + ¢

¢ = (1 -+ C)k - 6m(ya-—l)
ys+ ¢ ’

and we see that the limiting value of #/s is always zero. Hence all the curves for
p — — o (and the curve for m — «) are tangent. Moreover the final approach
to sgnT(y — 1) is exponential in speed.

For practical charting, we may either bring all the curves to a common tangent
or leave them separate, so long as we pay some attention to the curves s = con-
stant. If we let the curves intersect at finite angles, quantities which depend
continuously on the transformation will be continuous on the chart—they will
merely tend to be all more and more closely constant on the curves s = s as
So — 0.

The exact nature of the curves s = s, as well as the exact nature of the
tangency depends on the value of y. . If we adopted a chart with tangency, we
would have to have a separate one for each value of y. to avoid introducing dis-
continuities. If we adopt a chart without tangency, we may hope that the
curves s = 8, will not be too badly distorted over a range of values for ¥, . Thus
it again seems better to use a non-tangent chart.

If y, is arbitrarily close to 1, say y. = 1 + ¢, we find

k k
s = (1 —:_cc> = 1 ~ exp [—k(e/1 + ¢)],
Ye 1+ €

1+c¢
so that —k/(1 + ¢) = p/1 + c¢ is a natural parameter (which is constant on the

curve which is the limits of the curves s = sy as y» — 1). We find that m is equiva-
lent to p/1 + ¢. Thus it may be well to keep the curves

4
1+c¢

= constant

relatively short as p — — .
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24. Conclusions. We thus conclude that we need two forms of chart, depending
on whether y + ¢ = 0 is to be considered reasonable or not. Except near sgn™y,
both charts are to follow the topology of Fig. 5. Near the identity transformation,
both charts should conform to Fig. 6.

Near sgn™y, both charts should distort the topology of the family by opening
-out the angle and making the previously tangent curves meet at finite angles.
The details of these openings out are not clearly prescribed. In the case where y
=+ cis safely > 0 we will probably wish to keep the curves p/(1 + ¢) = constant
fairly short. The most obvious difference in the two cases will be that if y + ¢
can vanish, then (y =+ ¢)” approaches sgn™(y + ¢) as p — 0; while if y + ¢ can
not vanish, it approaches sgn*(y — ymin), but only as p — — .

VI. CHARTING THE SIMPLE FAMILY

25. The general case (where y + ¢ can vanish). If we are to be fully prepared
for the case where y + ¢ can even be zero, then we will want our chart to have
the following characteristics:
(A) In the vicinity of y itself, the topology and differential properties should
be those suggested by the analysis of Section 21:
(1) the points with 0 < ¢ < o, p < 1 fill up the vertex of a quadrant; and
(2) polar ¢oordinates are, roughly, given by tan § = ¢, r = (1 — p)/
V1 + ¢

(B) Along the arc ¢ = 0, 1 > p > 0 the spacing of the values should be,
roughly, uniform in p as suggested by Section 8.

(C) In the vicinity of sgn™y the topology should either be as suggested by
Fig. 5 (and Section 20) or the tangency of the curves with ¢ = constant,
p — — o should be replaced by intersection. (See Section 23.)

(D) Along the arcc = 0,1 > p > 0, the curves p = constant should intersect
the arc and not be tangent to it. (See Section 17.)

We have, then, to find a chart form with these properties.

To begin with, we have a figure composed of the vertex of a quadrant, and two
curves running out the sides of the quadrant which eventually meet again (at
sgnty). The simplest figure which we know with these properties is a quarter
sphere, stretching from pole to pole. In the vicinity of each pole we have a
quadrant, and the meridians which bound this quadrant meet at the opposite
pole. Thus, as a first step, we agree to try taking y as one pole and sgn™y as the
other. The arc{y”} becomes a meridian,, the arc{e™} becomes a meridian 90°
removed from this, and the central region fills in the quarter sphere between the
two.

Let 6 be an angle describing the meridians, so chosen that § = 0° for the
arc {y”} which hasc¢ = 0, and § = 90° for the arc {¢™} which corresponds to ¢ =
o, Let ¢ be an angle describing the parallels of latitude, withy = 0° for the
pole representing y, ¥ = 90° at the equator, and ¢ = 180° at the pole repre-
senting sgn™y. Our problem is to find analytic representations for § and ¢ in
‘terms of p and ¢ which will give us the desired properties. These we find by
successive approximations.
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Near the y pole, we want

l1—p
tan 0 ~ ¢ l// N ————
] \/1 T+ 02:
and when we observe that 1 — p ranges up to infinity, it is natural to try
¥ 1—p

tan 6 = ¢ tan - = ————
’ 2 V14 ¢
But when we realize that while 1 — p ranges up to + « for ¢ % 0, it only ranges
up to 1 for ¢ = 0, it is natural to try, perhaps,
1 Cc + 1 + TP

tan 6 = ¢, Ctn§=i———1) 1_l_ctan 5

where we have (i) replaced /1 + ¢ by ¢ in order to have the first term ineffec-
tive for ¢ = 0; (ii) introduced the new term with a factor 1/(1 + ¢) to make it
ineffective for ¢ = o, where the first term ~ — ¢/p, which is appropriate; (iii)
gone to the cotangent instead of the tangent in order 4o make the combination
of the two terms easy; and (iv) introduced tan*rp/2 as a function spreading the
values of p from 0 to 1 out uniformly along the arc ¢ = 0.

This choice of functions gives a rather reasonable chart, but it still fails to meet
our requirements in that (i) the curves {(y + ¢)?, ¢ — 0} are tangent to {y"}, and
(ii) near sgn™y we have not begun to obtain the proper local structure, since the
curves ¢ = constant intersect, while the curves p = constant are mutually tan-
gent. We can try to get at both difficulties at once by changing to

tan 6 = ¢ + (1 — p)V/c, Ctng=l—(ip+l-ll-ctan+1r2-p'
This change pushes the curves ¢ = constant upward, more strongly for lower
¢ and larger 1 — p, and thus tends to meet both needs. However, the curves p =
constant are still mutually tangent to the boundary curve ¢ = 0 at sgn*y. In
order to correct this in a simple way, we need only add a (—p)™ term, which will
vanish for p = 0. The result is

- _ s+ (=)t v__¢ 1 + TP
tan 6 = ¢+ (1 — p)ve + (—p)7, c’on2 l_p-l-l_l_ctan 5

26. Plotting. We now have represented the central part of the simple family on
a quarter-sphere. For practical purposes we require a plot on the plane. The
solution adopted here was influenced substantially by the existence of some
special equal-area graph paper which the writer obtained from Mount Wilson
Observatory during World War II in connection with problems of mutual inter-
est. This graph paper represents a half-sphere area-true on a rectangle and pro-
vides two families of spherico-polar coordinates, one with poles at the top and
bottom of the rectangle and the other with poles at the centers of the right and
left sides. If u, r are rectangular coordinates with0 S u < 7, -1 <r < + 1
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defining the rectangle, then ¢ and 6 are related by
cosy = \/1——700su,
cos = /1 — 2 cse ¥,
sgn 6 = sgn r.

The combination of this representation of the half-sphere on the plane with the
map on the quarter-sphere gives the plot already presented in Fig. 1.

27. The case of moderate y + c. In case y + ¢ cannot vanish, we want a plot
with a different and simpler topology. The choice

tan 6 = ¢,
14 q
tan -~ = ——~—
2 V1i+e

where the transformation is written in the form
(y + cyo)' ™™,

scaled as to size by yo and as to change in exponent by e, , is the natural trans-
formation near ¢ = 0, and meets our requirements everywhere else.
When combined with the same graph paper, the result is as in Fig. 3.
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