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ABSTRACTS OF PAPERS

(Additional abtsracts of papers presented at the Atlantic City Meeting of the Institute,
September 10-13, 1957)

1. Tests for Significance in Bivariate Harmonic Analysis, HaroLp HoTELLING,
University of North Carolina, aNp DonaLp F. Morrison, National
Institute of Mental Health.

Detection of a common period in two or more observed variates, such as the radial veloc-
ity and brightness of a star or a pair of economic variates, may be undertaken by means of
any of several generalizations of univariate periodogram analysis. Three such generaliza-
tions are considered in this paper. Two are forms of the multivariate analysis of variance;
of these one uses the Wilks determinantal statistic, the other the Hotelling 7 . The third
statistic, originated by the junior author, has a distribution whose large-sample approxi-
mation is relatively easy to handle. (Received June 10, 1957.)

2. Conditions that a Stochastic Process be Ergodic, EMANUEL PArzEN, Stan-
ford University.

In his thesis on statistical inference on stochastic processes, Grenander has pointed out
that ‘‘the concept of metric transitivity seems to be important in the problem of estima-
tion of a stationary stochastic process.” In this note, we give necessary and sufficient
conditions in terms of characteristic functions that a strictly stationary (discrete or con-
tinuous parameter) stochastic process X ({) be metrically transitive or ergodic. More
importantly, we state a mean ergodic theorem (or weak law of large numbers) for sto-
chastic processes which are strictly stationary of order k, by which is meant that for every
choice of k points ¢, , - - - tx , the random variables X (&t + k), --+ , X(¢x + h) have a joint
probability distribution which does not depend on k. With the aid of these theorems, one
can readily establish the following theorems: If X (t) is a normal stationary process, a neces-
sary and sufficient condition for it to be ergodic is that its spectrum be continuous. If X (¢)
is a linear stationary process, then it is ergodic. (Received June 13, 1957.)

3. Testing Homogeneity of Means in the Presence of Heterogeneity of Vari-
ance, JoHN GURLAND AND LLoYD ROSENBERG.

A finite series representation for the distribution of statistics with a structure similar
to that of the ¢-statistic is utilized in obtaining under simple restrictions the exact size of a
test when variance heterogeneity is present. Further modification of the technique was
utilized to obtain the exact power of the tests. Exact probabilities have also been compared
with approximations based on an approximate numerator and/or an approximate denomi-
nator in the ratios under consideration. The possibility of extending the techniques to the
case of more than two samples is also considered. (Received June 21, 1957.)

. 4. Generalization of Steinhaus’ Results on Fair Division, PETER NEWMAN,
University College of the West Indies.

In Econometrica, 1948, H. Steinhaus posed the problem of fair division. A non-homogene-
ous object X is to be divided among n people, each of whom has a valuation function v; ,
assumed to be an increasing, bounded, countably additive, non-atomic, positive measure,
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defined on some Boolean o-algebra S of subsets of X. Steinhaus asserted that there exists a
partition U;Zl" E; such that, for each 7, v;(£;) = v:(X)/n. This was proved by K. Urbanik
(Fund. Math., 1954) who further showed that (i) provided that, for at least one pair ¢, j
andone E ¢ S,v:(E)/vi(X) = v;(E)/v;(X), then there is at least one k such that vi(Er) >
vi(X)/n; (ii) provided further that the measures are equivalent, there exists a partition
UiZ! F; such that, for all ¢, v:(F;) > »:(X)/n. (“good division”’). It is shown by an elemen-
tary and constructive proof that the condition that the »; be countably additive measures
can be replaced, for all three results, by the condition that they be sub-additive set func-
tions. If they are further assumed to be strictly sub-additive, assumption (i) above can also
be dropped. (Received May 27, 1957; revised June 26, 1957.)

5. Graphic Methods based upon Properties of Advancing Centroids, S. I.
Askovirz, University of Pennsylvania.

The centroid is defined in elementary physics as the center of gravity or balance point of
a composite mass. Centroids of sets of isolated points have found a number of applications
in statistics. The fact that centroids can often be located quite readily by graphic methods
has made them fairly useful. The simplest application is to the graphic determination of
mean values. This can generally be carried out in a matter of a few seconds directly on the
original graph, with a pencil and straightedge alone. An entire set of moving averages
can likewise be drawn by the use of a single polygonal line, without any calculation. By
considering combinations of unequally weighted points, methods have been developed for
drawing the line of best fit according to the least squares criterion, again without computa-
tion. The change in the least squares lines when new points are added can be worked out
easily. The mean value and standard deviation of frequency distributions can also be de-
termined entirely graphically. Other applications, for example, to rank correlation proce-
dures, are being completed. (Received June 28, 1957.)

6. On the Decomposition of Certain x*> Variables, RoBerTr V. Hoce AND
ALLEN T. Craig, University of Iowa, (By Title).

Let Q = Qi+ -+ + Qi1 + Qr, k = 2, where @1, -+, Qr—1 , Qi are real symmetric
quadratic forms in central or noncentral, stochastically independent or dependent, normal
variables. Let Q, @i, -+ , Q-1 have central or non-central chi-square distributions with
parameters r, 8 and 75, 6; ,7 = 1, --- , k — 1, respectively where r and r; are the degrees
of freedom and @ and ; are the non-centrality parameters. It is proved that if @ is a non-
negative quadratic form, then @, , - -+ , Qi1 , Qi are mutually stochastically independent.
It follows immediately from the mutual stochastic independence that @i has a chi-square
distribution with parameters 7 = r — Ef‘ln, 0 = — ¥ 9; . (Received June 28, 1957.)

7. The Limiting Distribution of a Likelihood Ratio Test for the Serial Corre-
lation Coefficient, Joun S. WaiTE, Minneapolis-Honeywell Regulator

Company.

" Let z. be a discrete Gaussian process satisfying the auto-regressive equation ; — az:1 =
us (t = 1,2,3, --+), where the u’s are NID (0, ¢?), |«| < 1 is an unknown parameter and
Zois a constant. It is shown that if A is the likelihood ratio for testing the hypothesis H:a =
ao against the alternative hypothesis H':a 5 ao then —2 log A has a chi-squared distribu-
tion with 1 df. This result also holds in the so-called explosive case; i.e., |a|] >1. (Received

June 28, 1957.)
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8. On the (Nonrandomized) Optimality of Symmetrical Designs, J. C. KIEFER,
Cornell University, (By Title).

Many commonly employed symmetrical designs such as Balanced Incomplete Block
Designs, Youden Squares (in particular, Latin Squares), etc., are shown to be optimum
among the class of non-randomized designs in situations where they are employed to test
(H,) absence of treatment effects. Letting V4 = covariance matrix of best linear estimators
of treatment effects when design d is used, the optimality criteria considered are: (1) mini-
mization of det ¥, ; (2) minimization of the largest eigenvalue of ¥, ; (3) maximization of
the minimum power (over all tests and designs) on a fixed contour; (4) the accomplishment
of (3) locally (i.e., to first order terms near Ho). Of these, (1) and (2) were demonstrated by
Wald and Ehrenfeld, respectively, for the Latin Square. The optimal nature of (2) involves
the tacit assumption that the F-test should be used, and since it is not generally true that
that test achieves (3) or (4) for a fixed design, criterion (2) has less intrinsic meaning. (3) is
generally difficult to verify because of the question of which test to use for each d. In
many settings where there is an appropriately symmetric design, (1) implies (2) and (4);
these last three criteria are verified in the cited examples. (Received July 2, 1957.)

9. On the Non-optimality of Symmetrical Designs among Randomized De-
signs, J. C. KierFgr, Cornell University, (By Title).

The following is the simplest example of a general phenomenon. Suppose X;; independent
and normal with unit. variance and mean ;(¢, j = 1, 2). Consider the problem of selecting
(before observation) exactly two of the X;; and using them to test Hoius = p2 = 0 with
size a. The ‘“‘symmetrical’’ design d selects (X1, X21) and uses the usual x? test with 2
degrees of freedom. Let d’ select (X1 , X;2) with probability 1/2 for each ¢ and use the x?
test with 1 degree of freedom, whichever 7 is chosen. It is shown that the power function of
d’ is uniformly greater than that of d in a neighborhood of H, . This is the simplest example
of a general phenomenon which persists for any number of populations and observations,
whether or not the variance is known. In cases like those where Balanced Incomplete Block
Designs, Youden Squares, etc., are usually employed to test that all contrasts (of treatment
effects) are 0, the same phenomenon persists as « — 0. The results are also true for other
distributions. (Received July 7, 1957.)

10. On an Optimal Property of Variance-components Estimates, WERNER
GaurscHi, Indiana University.

Recently Graybill and Wortham (J. Amer. Stat. Assoc., Vol. 51 (1956), pp. 266-268) have
stated the following result for balanced designs: Among all unbiased estimates for a vari-
ance-component, the standard estimate, as given by the method of analysis of variance, has
uniformly smallest variance. The authors have sketched a proof which, however, is not quite
complete in various aspects. This paper presents a general method of proving results of the
above type with applications to various particular designs. The method consists in three
steps:

(i) In order to find a sufficient and complete statistic T for the variance-components,
an orthogonal transformationis applied which reduces the observation vector y to a “‘canon-
ical”’vector z with independent components. This involves finding the eigenvalues and
eigenvectors of the covariance matrix X, .

(ii) To avoid laborious transformations of quadratic forms, a lemma is given by means
of which among all forms @ = z’Bz which are unbiased estimates for a variance-component,
the form Q* with smallest variance is easily found.

(iii) Q* depends only through 7' and thus according to Lehmann and Scheffé (Sankhya,
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Vol. 10 (1950), pp. 305-340 and Vol. 15 (1955), pp. 219-236) has uniformly smallest variance
among all unbiased estimates. No transformation backwards is needed, since @* is seen
to have the same distribution as the standard estimate in y. (Received July 8, 1957.)

11. Quantization for Least Mean Squares Error, StuarT P. Lroyp, Bell Tele-
phone Laboratories.

A quantizing scheme for a real random variable X consists of a partition {Q:, @2, --- ,
@} of the range of X together with a set {q1, ¢z, -+ , ¢} of representative values. An ob-
servation falling in Q. is reported as ¢u, « = 1, 2, --- , ». With the number » of quanta
preassigned, and the ¢.d.f. F of X given, one secks the {Q.} and {¢.} which minimize the
mean squared quantization error X f @ (Z — ¢a)? dF (x). Necessary conditions obtained
are (1) g. is the center of mass [dF] of @, @ = 1,2, --- , » and (2) modulo sets of measure
zero [dF], the {Q.} are intervals whose endpoints bisect the segments between adjacent
{g«}. Two trial-and-error methods for finding such {Q.} and {¢.} are described. The non-
sufficiency of conditions (1) and (2) is demonstrated. For suitably restricted F, asymptotic
properties for large » are given. (Received July 8, 1957.)

12. Tests of Multiple Independence and the Associated Confidence Bounds,
S. N. Roy anp R. E. BaAreMANN, University of North Carolina,.

In this paper a test based on the union-intersection principle is proposed for over-all
independence between p variates or p sets of variates with a multivariate normal distribu-
tion. Methods used in earlier papers have been applied to invert these tests for each situa-
tion and to obtain, with a joint confidence coefficient greater than or equal to a preassigned
value, simultaneous confidence bounds on certain parametric functions measuring depar-
tures from independence of variate 1 or the set (1) with variates 2, 3, --- , p or the sets
2), 3), -+, (p); variate 2 of the set (2) with variates 3, 4, - -+ , p or the sets (3), (4), --- ,
(p); and 80 on. One of the objects of these confidence bounds is the detection of the ‘“‘culprit
variates’’ in the case of rejection of the ‘‘complex” hypothesis of multiple independence;
for the “‘complex’ hypothesis is, in this case, the intersection of several more ‘‘elementary’’
hypotheses of two-by-two independence. (Received July 8, 1957.)

13. Confidence Bounds on the “Ratio of Means” and “Ratio of Variances”
for Correlated Variates, S. N. Roy anp R. F, Porruorr, University of
North Carolina.

In this paper confidence bounds are obtained (i) on the ratio of variances of a (possibly)
correlated bivariate normal distribution, and then, by generalization, (ii) on a set of para-
metric functions of a (possibly) correlated p + p variate normal distribution, which plays
the same role for a 2p-variate distribution as the ratio of variances does for the bivariate
case, (iii) on the ratio of means of the distribution indicated in (i) and, by generalization,
(iv) on a set of parametric functions of the distribution indicated in (ii), which plays the
same role for this problem as the ratio of means does for the bivariate case. For (i) and
(iii) the confidence coefficient is any preassigned 1 — «, and the distribution involved is the
central t-distribution, while for (ii) and (iv) the confidence statement is a simultaneous one
with a joint confidence coefficient greater than or equal to a pre-assigned 1 — a. For (ii)
the distribution involved is that of the central largest canonical correlation coeflicient
(squared), and for (iv) the distribution involved is that of the central Hotelling’s 7. (Re-
ceived July 8, 1957.)
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14. On Aggregation and Consolidation in Finite Substochastic Systems, I.,
Davip RosENBLATT, American University, (By Title).

We call a system z(I — A) = w a finite substochastic system if the n X n matrix A is
substochastic (row sums <1) and w is nonnegative; if w > 6, the null vector, without loss
of generality we take w to be a stochastic vector. A solution z of a substochastic system is
called admissible if z is finite, nonnegative, but not null. An aggregation matriz Cisann X r
stochastic matrix with exactly one positive entry in each row, 1 < r < n. A weight matriz
Eis an n X n diagonal matrix containing nonnegative entries on the diagonal. A consolida-
tion of a substochastic matrix is an r X r matrix B(C; E; A) = (C’EC)"'C'EAC, where
C'EC is regular, 1 < r < n. A consolidation B(C; E; A) is said to be representative for a
given system (I — A) = w in respect to an admissible solution £ if and only if

&I — A)C = £C(I — B(C; E; A)).

A consolidation is said to be canonical for a given system z(I — A) = w if and only if it is
representative in respect to all admissible solutions of the system.

TurEorREM 1: Consider two finite-dimensional stationary Markov chains characterized by
{Zo; Trpn=d |k =0, 1,---}, {yo; vemn =B |k =0, 1,---} and an aggregation
matriz C such that yo = z,C. A necessary and sufficient condition that y. = yiC for all k and
any , is that AC = CB. B is necessarily a canonical consolidation of (I — A) = 0, in-
variant for all weight matrices T consistent with (C'EC) regular. (Received July 8, 1957.)

15. On Aggregation and Consolidation in Finite Substochastic Systems, II.,
Davip RosenBLATT, American University, (By Title).

Let C be an aggregation matrix. For any column of C containing more than one positive
entry, the index set of the rows containing the positive entries will be called an aggregation
set of C. For any finite stochastic matrix, we distinguish (exhaustively) between transient
and ergodic indices and call any closed set of indices an ergodic set of indices. For con-
venience, call all (transient or ergodic) indices connected (in the directed graph of the sto-
chastic matrix) to indices of a given ergodic set, the associated indices of that set. THEOREM
2: Let (I — A) = 0 be a stochastic system involving two or more ergodic sets of indices. Let a
canonical consolidation B(C; E; A) exist for the system, E regular. The following then obtains:
If there exists an aggregation set of C containing one or more associated indices of each of the
ergodic sets in a collection {Hy, -+, Hy ; p = 2} and containing ot least one index of an
ergodic set H; , then z;C = z,C (j, h = 1, ---, p) holds in the stationary stochastic vectors
Jor these sets. Consequently, each index of every ergodic set in the collection {Hy, --- , Hp}
must be contained in some aggregalion set of C. Moreover, all ergodic sets in the collection
exhibit one or more indices in any given aggregation set, or none do. (Received July 8, 1957.)

16. On Aggregation and Consolidation in Finite Substochastic Systems, III.,
Davip RosENBLATT, American University, (By Title).

THEOREM 3: Let (I — A) = 6 be a stochastic system. Let a canonical consolidation exist
for the system for E regular and given C. Let the associated points of each ergodic set be repre-
sented in at most one aggregation set of C. Then C determines an invariant canonical con-

- solidation of the system if and only if each aggregation set contains at least one ergodic indezx.
Let V4 denote the dth aggregation set of an arbitrary aggregation matrix C; Vg, contain-
ing mgy indices, d = 1, .-+ , g. Let u = 2f.1 ma.Let (I — A)( denote the distinguished
u X n submatrix of (I — A) with row indices belonging to aggregation sets of the n X
(9 + n — u) aggregation matrix C. Let f; denote the diagonal elements of a weight matrix
E,j=1,---,n. For convenience, we extend the preceding definitions to consideration of
finite non-negative systems, z(ael — A) = w, A and w nonnegative and « a positive scalar.
THEOREM 4: Let z(al — A) = w be a nonnegalive system with one or more admissible solu-
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tions. A consolidation B(C; E; A) is a representative consolidation of the system in respect to
an admissible solution & of the system if and only if the following holds: i Diey,
(& — fi Zwevy&x / Drev,Ju) djg =0 for all ¢ = 1, -+, (g + n — u), where dj;is the typ-
ical element of (eI — A)¢C. This result permits treatment of aggregation and consolidation
in a significant specialization of the von Neumann model of economic equilibrium.
(Received July 8, 1957.)

17. On Aggregation and Consolidation in Finite Substochastic Systems, IV.,
Davip RosENBLATT, American University, (By Title).

THEOREM 5: Let A be a substochashc matriz of order n = 3. Let a system (I — A) = w
have admissible solutions not all of which are positive only in a single fized component. Any
consolidation B(C; E; A) is canonical for the system if and only if A has the form

A = ol 48U,

where U is stochastic with all rows identical, and « + 8 =< 1. The present inquiry is partly
motivated by phenomenological models of substochastic variety in mathematical eco-
nomics and econometrics, e.g., certain interindustrial (input-output) models, intersec-
toral trade or exchange models, models of macroeconomic sfability. The underlying
abstract conception of these models goes back to the stationary process of the T'ableau Eco-
nomique of Frangois Quesnay (published 1758). In many of these models, the coefficients a;;
of A are macrostatistical observables representing empirical economic “flows.’”” We are led
to the following proposal in certain applied input-output contexts, in place of matrix inver-
sion, consolidation, or both. Given z,(I — A) = w, , A substochastic and (I — A) regular,
where x, , A, and w, are empirically given. Required to find z for x(I — A) = w for given
w. Assume w > pwo , u scalar. Let Auo , A, denote the matrices for the corresponding sto-
chastic systems. Compute the stationary stochastic vector Z(w) by use of the iterative
scheme: Zi4.1(w) = 5AM (6 =0,1,2, ---); x is computable from z(w). A" is always
convergent in practice. The present inquiry employs a graphtheoretic approach to prob-
lems of aggregation and consolidation in linear systems. (Received July 8, 1957.)

18. Bayes Acceptance Sampling Procedures for Large Lots, DoNALD GUTHRIE,
Jr. AND M. V. Jonns, Jg., Stanford University.

A lot of N items is accepted or rejected on the basis of a sample of fixed size n. The con-
sequences of acceptance or rejection are appraised in terms of economic costs consisting of
a cost of inspection, and a cost due to accepting or rejecting the lot. If the lot is accepted
then the cost due to passing each uninspected item is proportional to a random variable
associated with that item. This random variable is assumed to have a distribution which is a
member of an exponential family over which an a priori probability distribution is defined.
If the lot is rejected, the cost is proportional to the number of items in the uninspected
remainder of the lot. Explicit asymptotic expressions are given characterizing the Bayes
rejection procedures and sample sizes for large values of the lot size N. (Received July 10,
1957.) v

19. On the Equality of the Variances of Several Univariate Normal Popula-
tions and some Multivariate Extensions, R. GNANADESIKAN, University
of North Carolina.

Suppose we have 1ndependent random samples of sizes no, m1, +++ , N s respectively,
from N (u, %), N(u1, o), -++ , and N(us , o) where the means and the variances are un-
known. Using the heuristic union-intersection principle, a test is derived for the null hy-
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pothesis Hoiof = --- = of, = ¢?, and some power properties of the test are studied. The
associated simultaneous confidence bounds, with a joint confidence coefficient (1 — a),
onoi/e?, --- and oi/c? are then obtained. Next, for the corresponding multivariate problem
of testing the null hypothesis of equality of dispersion matrices, i.e., Ho:Zi(p X p) =

= Zi(p X p) = =(p X p), a test is proposed and the associated simultaneous con-
fidence bounds, with a joint confidence coefficient = (1 — «), on the characteristic roots
c(Z,271, -+, e(Zx2™1) are obtained. (Received July 11, 1957.)

20. Further Contributions to Confidence Bounds on Multivariate Variance
Components, S. N. Roy anp R. GNANADEsIKAN, University of North
Carolina.

Under the general multivariate linear hypotheses model or Model I, for a restricted k-
way classification (including the multivariate analogues of the usual complete and incom-
plete block connected designs), k matrices, St , -+ , Sk, due to the hypotheses of equality
of the row vectors of & (m; X p) (fori = 1,2, --- , k) and a matrix, So , due to error are
obtained. Next, for the multivariate variance components model, the k sets £:(m: X p)’s
(fori = 1,2, --- , k) are treated as random components from & independent p-variate nor-
mal populations Nlu;, 2] (i = 1, 2, --- , k) while the error component is from N[0, Z]
with 2 = ¢72. Under this model, when the matrices So, 81, ---, Sk, obtained under
Model I, satisfy the conditions for being distributed mutually independently in central
pseudo-Wishart forms with appropriate degrees of freedom, then a set of s1multaneous
confidence bounds, with a joint confidence coefficient = (1 — a), are obtained on ot e,
o and all the characteristic roots, ¢(Z), of the matrix =. Next, even when the matrices
81, -++ , Sy are not mutually independent, if they are independent of Sy, and if they all
have central pseudo-Wishart distributions with appropriate degrees of freedom, then an
alternate set of separate confidence bounds for the individual s (i =1,2, -+, k) are ob-
tained with exact confidence coefficients. (Received July 11, 1957.)

21. A Table of the Expected Value of the Quasi-range, H. LEoN HARTER,
Wright Air Development Center.

The rth quasi-range, w, , of a sample of n is defined as the range of (n — 2r) sample
values, omitting the 7 largest and the 7 smallest. Symbolically, w, = %_r — Zr41, Where
Z1,T2, - , &n are the ordered sample values. The expected value of the rth quasi-range
for samples of n from the standard normal distribution N (0, 1) is given by the relation

By =26+ 1, 1) fZaslh = 0@ + 0@)P0() ds, where

®(x) = (14/2n)e-="12

and ®(zx) = f 0®(2) dz. Tables of E(w;), accurate to within one in the sixth decimal place,
are given for n = 2(1)100, » = 0(1)8. These tables were computed by numerical mtegratlon
(trapezoidal rule), using the Burroughs E101 computer. The use of sample quasi-ranges in
estimating the population standard deviation is discussed. (Received July 12, 1957.)

22. A Generalization of the Discriminant Function Analysis (Preliminary
Report), M. M. Rao, University of Minnesota, (By Title). Introduced by
R. C. Bose.

Let x. , X, be row vectors of p components each of the rth and sth individuals of two
random samples drawn from p-variate normal populations specified by N(F(x), £) where
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E(ze) = £a1 + asilsr + -+ + ariter and E(xj) = £ + Brjlie + o+ + Baitee(G, J = 1, 2,
ceep,r=1,2,--- ,m:8=1,2, .-+ ny) so that all components have regressions of the
same, kth, order. The t’s are fixed variates; e.g., in biological data, such as growth, the re-
gression is age trend. We shall also consider q samples instead of two. The problem is to
derive a statistic to test the differences between the samples. In this paper tests for two and
q sample cases are derived which on setting «’s and 8’s zero, reduce to Fisher’s test of dis-
criminant function (1938) and Wilks’ A criterion (see C. R. Rao’s book, 1952, p. 262), respec-
tively. Also a set of discriminant functions for ¢ samples is obtained simultaneously. We
note, however, that the possible ¢C: = ¢: say, discriminant functions eannot always be ob-
tained (if ¢ > 2). Only s of them will come out, where s = rank C, the hypothesis matrix;
i.e., Ct¢ = 0, C(q1 X 7) and £(r X p) where r = g(k + 1) is the matrix of the parameters;
for example, if ¢ = 3,k = 2, then s = 2. An illustration is also considered. (Received July
12, 1957.)

23. Distribution of a Serial Correlation Coefficient Near the Ends of the Range,
M. M. Sippiqui, University of North Carolina, (By Title).

If 1, -+ , 2, are observations on a stationary time series at equal intervals of time and
it is known that Ex, = 0 for ¢t = 1, --- , n, we may define a serial correlation coefficient
with lag unity by r* = (20" @) /[0 23) (20 27 11)]. Assuming the observations to
be distributed independently as N (0, 1) variates a geometrical approach suggested by Hot-
elling (American Journal of Mathematics, 1939) is utilized to obtain the order of contact
of the distribution curve at r* = +1. It is shown that if for a number 7o in [0, 1] and close
to 1, P(r* = ro) is expanded in a series of powers of (1 — 7o) the first non-zero coefficient,
I, , is that of the power (n — 2)/2. Bounds on the value of I, are obtained to be 0.435 and

0.638. (Received July 15, 1957.)

24. Jacobi Polynomials and Distributions of Some Serial Correlation Coeffi-
cients, M. M. Sipbiqui, University of North Carolina, (By Title).

If y is a variate with range [c1 , ¢2], where —1 = ¢; < ¢z £ 1, and the moment generating
function of ¥, xy(t), can be written in the form

) == attF@ +k+1,a+ 8+ 2k +1,20),

where o, 8 > —1 and F(a, b, z) is a confluent hypergeometric function, then, under certain
conditions, the pdf of y is given by p(¥) = f(¥; a, B)[Zg biPE"" (y)]; here f(y; @, B) =
C-1(1 — y)=(1 + y)8, C = 22¥6+1B(a + 1, B + 1), P;(:'”(y) is the kth degree Jacobi
polynomial associated with f(y; &, B) and b is determined by a; . Slight modifications in
the form of x4(t) and p(y) are necessary if the range of y is between0and 1. Let x1, +-- , za
be independent N (0, o) variates. Defining serial correlation coefficients by

Te = (E;h. xi$i+l)/(zlﬂ x?)y

s =1,2, .-+, the moments of r, are used to express its moment generating function in the
required form and hence an approximation to its distribution is obtained as a product of a
beta distribution and a series of Jacobi polynomials. It is proved that the series is asymp-
totic. By an easy generalization of this method, an approximation to the bivariate dis-
tribution of 71 and r; is also obtained. (Received July 15, 1957.)

25. Age-dependent Branching Stochastic Processes in Cascade Theory—II.
Case of Transformation Probabilities a Function of Absorber Depth,
W. Max Woobs, Stanford University aANp A. T. BuarucHA-REID, Uni-
versity of Oregon, (By Title).
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In this paper we consider a simple model for an electron-photon cascade in which the
transformation probabilities are functions of the absorber depth. This model is developed
within the framework of the Waugh generalisation of the Bellman-Harris process. In par-
ticular, we assume go(t) = 1 — B exp (—at), ¢2(t) = v exp (—at), qi(t) = 1 — (qo(t) + ¢2(2)),
a>0,0=8=<1,0=vy = 1, where ¢:(¢) is the probability that 7 electrons will be formed
when transformation takes place at thickness ¢. The first and second moments of the prob-
ability distribution of the number of electrons in the cascade are obtained and their proper-
ties discussed. An expression which gives the probability that the cascade will terminate is
also obtained. (Received July 15, 1957.)

26. An Extension df the Theory of Cumulative Frequence Functions, BERNARD
J. DErworT, North American Aircraft Corporation anp WaLpo A.
VEzEAU, St. Louis University, (By Title).

This work provides an extension in three areas: (1) some of the known theory for func-
tions of one variable is extended to functions of two variables, (2) new theory for functions
of one variable is developed, namely, a moment-generating function and cumulative semi-
invariants, (3) nine classes of new cumulative functions of one variable are developed.
(Received July 16, 1957.)

27. Some Renewal Processes Related to Types I and II Counter Models,
RonawLp PykE, Stanford University.

The Type I and Type II counter problems (cf. W. Feller, ‘‘On probability problems in
the theory of counters’’, Courant Anniversary Volume (1948), pp. 105-115) with arbitrary
input and deadtime are studied. Let {X;}, {Y;} be independent sequences of independent
indentically distributed non-negative random variables (i.e., independent renewal proc-
esses). Let So = 0, 8¢ = X1 + X2 + --- 4+ Xi(k = 1) and define recursively ng = mo = 0,
n; = min {k > n;_1:8r > Y1 + Sa, .} and

”"l
mi; =min {k > mj_1:8e > Si + Yi, i =mj_1, -,k — 1}.

The probability distributions of the n- and m-processes thus defined are obtained. Define
Zj= Sn;and V; = 8n;(j Z 1). The Z- and V-processes thus defined are renewal processes
associated respectively with Type I and Type II counter models. The distribution and
characteristic functions for the Z-process are obtained explicitly. An integral equation
determining the characteristic function for the V-process is derived. Other quantities
connected with these processes are also studied. In particular,

Prob {Z; + Y = t < Zp41 for some k = 1}

and a similar quantity with Z replaced by V are derived explicitly as well as their limits
as t — «. Several examples are listed. A more general counter model proposed by Albert
and Nelson (Ann. Math. Stat., Vol. 24 (1953), pp. 9-22) is also studied and its solution is
given explicitly in terms of the solution of a corresponding Type II problem. (Received
July 17, 1957.)

-28. Contributions to the Theory of Random Mappings, BERNARD HARRIS,
Stanford University.

A random mapping space (X, r, P) is a triplet, where X is a finite set of elements = of
cardinality n, = is a set of transformations 7' of X into X, and P is a probability measure
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over . If x ¢ X and T ¢ r, T*z is defined as the kth iteration of T' performed on z, where
k is an integer either positive or negative. If for some k = 0, T*z = y, then y is said to
be a kth image of z in T'. The set of successors of z in T, Sr(z) is defined as the set of all
images of z, i.e., Sr(z) = {z, Tz, ---, Tz}, which need not all be distinct elements.
If for some k < 0, T*z = y, then y is said to be a kth preimage of x in 7. The set of all
kth preimages of z in T is P(,'f)(x) and Pr(z) = Ui._, P®(z) is the set of predecessors of
z. If there exists a m > 0, such that Tmz = z, then z is a cyclical element in T and the
set of elements x, Tz, --- , T™ 1z, is the cycle containing x, Cr(x). If there exists a pair
of integers k, I, Tz = T'y, then z ~ y under T. The resulting equivalence classes are
called the components of 7'. The author considers several choices of T, in each case choos-
ing P as the uniform distribution over T, and computes the distributions of the number
of elements in Sy(x), the number of elements in the cycle in the component containing z,
the number of cyclical elements, the number of elements in Pr(z), and the number of

components of T'. (Received July 17, 1957.)

29. Tabulation of the Trivariate Normal Integral, Preliminary Report, GEORGE
P. Steck, Sandia Corporation, (By Title).

Let F(h, k, m) = M f’i,, J-'L, dT (z, y, 2; p12.p13.p2), where T'(z, y, z; p12,p13.p5) is the tri-
variate normal density function with zero means, unit variances, and correlation coeffi-
cients pi.p1.02 . F(h, k, m) can be expressed as a sum of 3 univariate normal integrals
plus the sum of 6 T-functions (the T-function has been tabulated by D. B. Owen, Ann.
Math. Stat., Vol. 27, No. 4) plus the sum of 6 integrals of the form

S(m, a, b) = (1/4/27) "% ¢=#*12 T(az, b) da.

The function S(m, a, b) has been tabulated by numerical integration (but not checked)
for m = 0(.1)5.0; @ = 0(.1)[+/25 — m?/10m], b = 0(.1)1.0. The method used for expressing
the trivariate normal integral as a function of three variables applies equally well in ex-
pressing the n-dimensional normal integral as a function of n variables. (Received July
18, 1957.)

30. Exact Probabilities and Asymptotic Relationships for Some Statistics from
m-th Order Markov Chains, Leo A. GoopmaN, University of Chicago.

Exact formulas are given for the joint probability distribution of the set of observed
m-tuple frequencies (m 2 1) in an observed sequence {X: , X2, -+, Xy} from a (m — 1)-
th order Markov chain with a denumerable number of states. Formulas are also presented
for the conditional distribution of the set of m-tuple frequencies, given the set of n-tuple
frequencies, in a sequence from a chain of order =n — 1. If the chain is of order =n — 1,
and has a finite number s of states, the conditional probability (of the m-tuple frequen-
cies, given the n-tuple frequencies), when regarded as statistic computed from the
observed sequence, is asymptotically equivalent to the joint probability (regarded as a sta-
tistic) of a corresponding set of observed cell entries in a set of s»~! independent contin-
gency tables with fixed marginal totals (each table has s™~* rows and s columns), where
independence in each table is assumed. Several simplified tests, related to standard tests

- of independence in contingency tables, are given for the null hypothesis H.-; that the
chain is of order n — 1 against the alternate hypothesis H,._, . Results of P. G. Hoel (B7o-
metrika, Vol. 41 (1954), pp. 430-439), P. Whittle (J. Roy. Stat. Soc., B, Vol. 17 (1955), pp.
235-242), and R. Dawson and 1. J. Good (Ann. Math. Stat., Vol. 28 (1957)) are generalized
herein. (Received July 18, 1957.)
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31. Asymptotic Distributions of Some Goodness of Fit Criteria for m-th Order
Markov Chains, LEo A. GoopMaN, University of Chicago, (By Title).

I. J. Good’s review, for Mathematical Reviews, of P. Billingsley’s article in Ann. Math.
Stat., Vol. 27 (1956), pp. 1123-1129, proposed two conjectured generalizations to mth order
Markov chains (m = 0) of Billingsley’s results for zeroth order stationary chains. It is
proved herein that the first conjecture is correct, while the second isn’t. Billingsley’s re-
sults used the theory of finite dimensional vector spaces, while the generalization is proved
herein by approximating the goodness of fit criteria by functions of statistics whose
asymptotic distributions were derived in L. A. Goodman’s “Exact Probabilities and Asymp-
totic Relationships for Some Statistics from m-th Order Markov Chains.’”’ The generaliza-
tion follows: Let {X), Xz, -+, Xx} be an observed sequence from a stochastic process
where each random variable takes as values only the integers 1, 2, --- , s. Let fu be the
observed frequency of the m-tuple u = (w1, u2, -++ , um). Let H, be the composite hy-
pothesis that the process is a chain of order n(m + 1 > n = 0). Let H;, be any simple
hypothesis within H, , and let H, be the maximum-likelihood estimate of H ». Let

Umn = Zu[fu — funl/fum s

where fu.. is the expected value of fu , given H, , in a new sequence of length N. Then,
when H, is true, 7., has asymptotically (N — ) a distribution *"7"" K,y (x/N), where
* denotes convolution, g(A) = s™1Ms — 1), and K,q)(z/\) is the x?-distribution with

g(A) degrees of freedom. (Received July 18, 1957.)

32. On the Bivariate Sign Test, IsaporE BLumEN, Cornell University.

A test for the hypothesis that the median of a bivariate distribution is (4, v) is called
a sign test if it is based on the direction of the n vectors from (u, v) to (z: , y:), where ¢ =
1, .-+, n. The test proposed here is obtained by ranking the vectors according to the slope
(yi — v)/(z: — p). The statistic used is v* = (41 + v3)/n, where v, = 2} a; cos (xj/n)
and v; = Xj.; a; sin (wj/n), a; is £1 according as the difference y; — v is positive or nega-
tive, and the index j corresponds to the vector with the jth largest slope. The large sample
distribution of this statistic is obtained and it is compared with a number of other sign
tests in relative efficiency. (Received July 18, 1957.)

33. The Telephone Trunking Problem (Preliminary Report), HERBERT SCARF,
The RAND Corporation, (Introduced by T. E. Harris).

Customers arrive at a service point, with independent, identically distributed, inter-
arrival distributions. There are N servers, each of which serves according to the same
negative exponential distribution. The assumption is made that a customer departs im-
mediately if all of the servers are busy at the moment of his arrival, so that no queue is
formed. This model is solved for an arbitrary interarrival distribution, in the sense that
an explicit formula is obtained for the probability distribution of the number of busy
servers. In addition, a relatively simple formula is given for the expected fraction of the
customers turned away. (Received July 19, 1957.)

34. Asymptotic Independence of Tests of Parametric Forms of Cell Probabil-
ities in the Analysis of Categorical Data, EArL L. Diamonp, University
of North Carolina, (By Title).
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This is a generalization of some results given by Mitra in ‘“Contributions to the Sta-
tistical Analysis of Categorical Data’ (North Carolina Institute of Statistics mimeograph
series No. 142). We start from a product of multinomial distributions of the form

¢ = IL: [na!1; P/ sl

withZp;=1;i=ds-+ ;i =JJe-Ji;h1e (r1)s,...+, (a subset of r1 depending on
the subscript set 42 ««+ 7x); 22 € (rz),-,...;k HEERREE PR (T"“)"k sie=1,2, .-+, rpand

jl = 1,2’ et :Sl 5 ;jl = 112;"' 7Sl'
We next consider the hypotheses HS :p:; = fiP (61, +++ , 6,,) subject to
g (01, o0, 0) =0 (m=1,2- ,u <t)

and HP:pi; = 5)(01 TN 0:,) subject to g,(,?)((){ AEREIN 0:,) =0(m =1,2, - ,u <)
where ¢; , t2 < [total number of cells — total number of multinomial distributions]. Each
hypothesis is a composite one in which the 8’s or the 6’’s are the nuisance parameters agd
P, 12, ¢, and 9B are known functions. Necessary and sufficient conditions for the
asymptotic independence of H" and H{® are derived, these conditions being extensions
of similar conditions for more special cases discussed in Mitra’s paper. (Received July

22, 1957.)

35. Tests of Parametric Forms of Cell Probabilities and their Asymptotic
Power in the Analysis of Categorical Data, EarL L. DiamonD, University
of North Carolina, (By Title).

This is a generalization of some material in a previous paper by the author (‘“Exten-
sion of some results given by Mitra on ‘Statistical Analysis of Categorical Data’ ’’) pre-
sented at the March, 1957, IMS meetings in Washington, D.C. We start from a product
of multinomial distributions of the form ¢ = IT [n:! II; p:';-i/IIi ni;l] with 3; pi; = 1;
€= d1ds - Gk 3 J = Jije 0+ Ji ;916 (1), ..y (a subset of 71 depending on the subscript set
Goeeedin); 2 ()i 5 & (M) 5 % = 1,2, -+, pand i = 1, 2, -+, Sy
cee 3 51=1,2,---, 8i. We next consider the hypothesis Ho:p:; = fi;(61, -+ , 8:) subject
t0 gm(61, -++, 8) =0(m = 1,2, -+, u < t) against the alternative

Huipij = fij(01, -+, 6:) + nt2;

subject to gm (61, -+, 8;) = 0, where ¢ < (total number of cells — total number of mul-
tinomial distributions). The hypothesis is a composite one in which the 6’s are the nui-
sance parameters and f;; and g are known functions. Tests are given for hypotheses anal-
ogous to the hypotheses of ‘no partial correlation,” ‘“no multiple correlation,”
“no canonical correlation,” and ‘‘complete independence’’ in multivariate analysis, and
analogous to the hypotheses of “no block effect,”” “no treatment effect,”” and ‘“no block
or treatment effect’’ in analysis of variance. The asymptotic power of each test is derived.
(Received July 22, 1957.)

36. Tests of Functional Forms of Cell Probabilities and their Asymptotic Power
in the Analysis of Categorical Data, EarL L. Diamonp, University of
North Carolina.

This is an extension of some results given by Mitra in ‘““Contributions to the Statistical
Analysis of Categorical Data’ (North Carolina Institute of Statistics mimeograph series
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No. 142) and amplified by Ogawa in “On the Mathematical Principles Underlying the
Theory of the x% Test’’ (North Carolina Institute of Statistics mimeograph series No.
162). We start from a product of multinomial distributions of the form

¢ = IL: [nw! I1; p; /11 misl]

with Zipi; = 1,4 =t -tk ;] =Jije---Ji; 01 € (r)s. .5, (2 subset of 7y depending
on the subscript set 72 -« %x); 22 & (rz),}...;k HERRR T (Tk-l),'k stk =1,2,---, r and
=12+, 8 ;- ;571=1,2,---,8;. We next consider the hypothesis

Hofu(pis’s) =0 (m =1,2,---,1)

with ¢ < (total number of cells — total number of multivariate distributions), against
the alternative Hntfm(pis’s) = n 25, . A test is given for hypotheses of this form and the
asymptotic power of this test is derived. As an example, the case in which

fm(pt'i’s)(for m = l) 2, Tty t)

are linear is developed in detail. (Received July 22, 1957.)

37. Asymptotic Normality and Efficiency of Certain Nonparametric Test Sta-
tistics, HERMAN CHERNOFF AND 1. RicHARD SAvAGE, Stanford University.

Let X1,:-+, Xn and Y3, ---, Y, be observations from the continuous cumulative
distribution functions F(z) and G(x) respectively. If z;y = 1 when the ¢th smallest of N =
m + n observations is from F and z;y = 0 otherwise, then many nonparametric test sta-
tistics are of .the form T = X%, Eiziv. Theorems of Wald and Wolfowits,
Noether, Hoeffding, Lehmann, Madow, and Dwass have given sufficient conditions for the
asymptotic normality of 7'. In this paper we extend these results to cover more situations
with F = G. In particular it is shown for all alternative hypotheses that the Fisher-Yates,
Terry-Hoeffding ¢;-statistic is asymptotically normal and the test for translation based
on it is at least as efficient as the ¢-test. (Received July 22, 1957.)

38. Effects and the Classical Analysis of Variance Mixed Model, MaryY D.
LumM, Wright Air Development Center.

Consider the two-factor mixed model z;; = M + A: + b; + (Ab)i; + €ijr,
=1, ,Li=1, Jir =1, B),

where M, A; are constants; b; , (4b):; , esjr are independently normally distributed with
zero means and constant variances ot , 0% , o , respectively. Besides the effects b; , (4b);
one can alternatively consider the effects 8; ,v;;: 8; = b; + (4b).; ,v:; = (Ab)s; — (4D).;,
where (4b).; = Z!_, (4b):;/I. The effects v;; are subject to linear constraints 2} _, v.; =
0; nevertheless the mean squares are distributed as Chi-squares and F-tests are valid.
The experimenter is usually more interested in the effects 8; , v;; rather thanb; , (Ab);;
though it may also be desirable to investigate the latter. An F-test of the hypothesis 8; =
0 involves the mean square for error as the appropriate error term, whereas that of the
hypothesis b; = 0 involves the mean square for interaction. It is thus shown that the suit-
ability of any mean square as an error term simply depends on the particular effect in
which one is interested. The same argument can be extended to the general n-factor mixed
model. (Received July 22, 1957.)
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39. Equally Spaced Levels for Multi-level Continuous Sampling Plans (Pre-
liminary Report), DoNaLD GUTHRIE, Jr. AND M. V. Jonns, Jr., Stanford,
University, (By Title).

The tightened multi-level continuous sampling scheme proposed by Derman, Littauer,
and Solomon (Ann. Math. Stat., Vol. 28, No. 2, June, 1957) calls for sampling at levels
1,7, % -+, f% with k possibly lnﬁmte An alternative scheme proposed in this paper calls
for sampling atlevels 1,f,f/2, .-+ ,f/k.If k = «, then for plans with levels 1, f, 72, -+ ,
all levels of inspection correspond to null recurrent states in the Markov chain deseribing
the process for p less than the AOQL. In the scheme discussed here all levels of inspection
are ergodic for all values of p. In this respect the proposed plan gives better protection
against a sudden deterioration of quality. For k = 2, 3, 4, 5, the plans are compared on
the basis of expected first passage time to 100% inspection if p goes from p; (good quality)
to p; (bad quality) for fixed AOQL, and average fractions inspected equal at p1 and p; .
In addition, for both types of plans, contours of constant AOQL are given for & = 2, 3,
4, 5, . (Received July 22, 1957.)

40. Extension of the Mann-Whitney “U” Test to Samples Censored at the
Same Fixed Point, Max HALPERIN, National Institutes of Health.

Suppose we have random samples of size m and # from populations with continuous
cumulatives, G and F respectively. Denote an observation from @ by y and from F by z.
Let both samples be censored to the right at the same fixed point, z = T, y = T. A sta-
tistic, U., is defined, which is the sum of (1) The usual U statistic, as defined
to test against the alternative F(z) > G(2), all z, computed for the uncensored elements
of both samples, and (2) The product of the number of uncensored %’s and the number of
censored z’s. It is shown that, when F = @, —» < z < T, and for the total number of
censored elements in both samples fixed at the total number observed, say r, the distribu-
tion of U, is independent, of the specific nature of F, and U, , properly standardized, is
shown under appropriate conditions on m, n, r, to have an asymptotically normal distribu-
tion. A test of the null hypothesis, F = G, —» < « =< T, based on U, is proposed and
shown to be consistent against the alternative, F(x)/F(T) > G(z)/G(T), F(T) > Q(T),
—w < z < T. This alternative implies F(z) > G(z), —» < z < T. (Received July 22,

1957.)

41. On some Distribution-free Bias Properties of the Latent Roots of Real
Symmetric Random Matrices, H. ROBERT VAN DER VAART, University
of North Carolina, (By Title).

If the probability distribution of the £ X %k real symmetric random matrix' F is con-
tinuous and satisfies E(F) = &, then &(l1)) < M, 8(lk) > M, 8l — U) > A\ — A1, and

8(2.1’:-1 ) = Zhar.

Under the sameé conditions Med (1) = M1, Med (Iz) 2 M\ , whereas for many common dis-
tributions of F these inequalities regarding the medians are strict. In these statements
random matriz means matriz of random elements; the probability distribution of a matriz
stands for the joint distribution of its elements; the expectation of a matriz stands for the
motriz of the expectations of its elements; Iy < ls < -+ < Iy are the latent roots of F (hence
random variables) arranged according to increasing magnitude, while Ay S A\ < -+ < N\
are the latent roots of ® arranged in a similar way. Denote by A the diagonal matrix con-
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sisting of the elements A1, X2, --+ , Ay and by L the diagonal matrix consisting of the ele-
ments I, Iz, -+ , Iy . Then the proof is based on the existence of orthogonal matrices Y,
U and V such that ® = YAY', F = ULU’ and YV = U. Here Y is a matrix of parameters
and U and V are matrices of random variables. (Received July 22, 1957.)

42. On the Distribution of the Latent Roots of Real Symmetric Random Ma-
trices with Multinormally Distributed Elements, H. ROBERT VAN DER
Vaarr, University of North Carolina.

Let the 3k(k + 1) random elements
fisGg =11, -+« , 18,22, -« 2k, -+ bk — 1k — 1,k — 1K, kk)

of a k X k real symmetric random matrix F be multinormally distributed with &(f;;) =
eij and &(fi; , foq) = 0ij.pg - Then in order that the joint distribution of the latent roots
i £ 1 £--- £ I of the matrix F depends only on the various oj.p.-values and on the
latent roots A1 < A2 £ +-- < A of the matrix ® = || ¢4; || , and not on the elements of any
orthogonal matrix ¥ with & = YAY” {the elements of ¥ would be, in a sense, nuisance
parameters), there is an interesting necessary and sufficient condition on the ¢:;.p.-values.
Furthermore, in case ¥ = 2 a number of results on the joint distribution of /; and I, (evi-
dently depending on the matrix of ¢ij.p-values) are presented. They regard both the
amounts of bias of the I; as estimators of the \; and their variances and covariances. (Re-
ceived July 22, 1957.)

43. Bias in Certain Current Procedures of Response Surface Estimation, H.
RoBERT VAN DER VAART, University of North Carolina (By Title).

Be £ and § real k£ X 1 matrices, ® a k X k real symmetric matrix, 5 a real scalar vari-
able of which 7o is a certain value; &, 8, ® and 5 are non-random quantities. The equation
of any quadratic response surface has form n — 9 = B'¢ 4 £'®¢. Be the k¥ X k real sym-
metric random matrix F continuously distributed with &(F) = ®, then F is currently used
as an estimator of ®, the type of response surface being estimated from the latent roots
of F. The latter estimation method is biased: one will estimate unduly often that the sur-
face is saddle-shaped when in fact it has a minimum or maximum. Another corollary from
the distribution theory of latent roots is that generally the variances of the ‘“‘canonical
quadratic effects’ (i.e., the latent roots of F) are different from the variances of fu , f2,
etc., even with second order rotatable designs. These designs do have the gratifying prop-
erty that if the elements of F are multinormally distributed the joint distribution of the
latent roots of F does not depend on the nuisance parameters represented by the elements
of any orthogonal matrix ¥ with & = YAY’. Here A is the diagonal matrix consisting of
the latent roots of ®. (Received July 22, 1957.)

44, On the Numerical Computation of Certain Multivariate Normal Integrals,
H. RoBERT VAN DER VAART, University of North Carolina, (By Title).

Be y and n X 1 matrix, C a real symmetric positive definite n X n matrix with c:; =
1 = 1,---, n). Consider (1): | C I_l'fexp (—3y'C'y) dyr - -+ dy. , where integration
isover y: > 0G = 1, -+, m). If C is a Jacobi matrix (i.e., ¢;; = 0 for [ ¢ — j| > 1) the
integral (1) reducse to a sum of integrals (2): _f | E ['*dexz dess -+ dem—1m , withm = [in],
m even, where E represents any principal minor matrix of C with row indices

<< <ima < im,



ABSTRACTS 1071

and integration is over 0 < e12 < Cii,, *** , 0 < €m—tm < Cipyina - If m = 4, then (2) is
at most a double integral, which is for most sets of ¢;;-values numerically computable
to a for statistical purposes very satisfactory degree of accuracy by a nine-point integra-
tion method (equivalent to Gauss’ three-point method for single integrals applied twice),
or even—with less accuracy—by a five-point method which is not equivalent to any uni-
variate method applied twice. The simplicity (greatly enhanced by certain symmetry
properties of | E | with respect to ¢;; = 0) and accuracy of these methods make numerical
computation of certain multinormal integrals very easy. Generalization to m > 4 is im-
mediate. If integration in (1) is over y; > ww = 0 = 1,---, n) or if C is
no longer a Jacobi matrix, essentially the same methods apply, though without the short-
cuts made possible by the above-mentioned symmetries now being destroyed. (Received
July 22, 1957.)

45. Birth and Death Random Walk Process in s Dimensions, J. NEYMAN AND
EvizaseTH L. Scorr, University of California.

Consider two finite sequences {a:} and {b;} of Borel sets in s dimensional Euclidean
space R, . The a; are disjoint “cells”. The b; are disjoint ‘‘regions’’. Consider dimension-
less particles (‘“‘organisms”, male or female) located in R, . For 0 £ 71 = T,, symbol
6(T:1 , T2) denotes conditional probability that an organism aged T will live to be T, .
At times ¢t = 0, 1, 2, --- each surviving female gives birth to a litter compgsed of a ran-
dom number » of organisms of next generation. ® is the probability that an organism born
is female. All variables » are identically distributed, mutually independent and independ-
ent of all other random variables of the system. Given that an organism survives up to
time T'» and given that at time Th < T it is located at X (T'\) =_z: ¢ R, , the function

J@, 22, T1, Th)

represents the conditional density at z: ¢ R, of X (Ts), the position of this organism at
time 7'z . All organisms random walk independently. For ¢ = 0 and for Borel set ¢ C R, ,
the symbols e(c, t), B(c, t) represent the numbers of males and females of the ancestral
generation born at ¢ = 0 in the given sequence {a:} of cells, and v(c, ¢), d(c, )
those of male and female descendents of ancestors born in {a;}, all alive at time ¢ and at
that time located in c. The results obtained concern the joint distribution of » quadruples
ab;,t),B80;,t),v®;,t),a(;,t) corresponding to an arbitrary set of » regions {b;}. This
distribution is expressed in terms of the distribution of {«(a:, 0), B(a;, 0)} and in terms
of unspecified 9, ® and f. Applications include astronomy, ecology, and radioactive phe-
nomena. (Received July 24, 1957.)

46. On Convergence of Distribution Functions and of Moments of Order
Statistics, MANDAKINI RomaTGI, University of California, (By Title,
introduced by J. Neyman).

Let Y1, < Yon < +++ < Y,a be the s smallest order statistics out of a sample of size n
from a distribution F(x). It is assumed that there exit constants a. > 0 and b, such that
Yis = (Yin — ba)/a. has a limiting distribution that is nondegenerate as n tends to in-
finity. Then Y3, < --+ < Yin, where Vi, = (Yin — bs)/as , have a joint limiting distri-
bution. Furthermore the conditional distribution function of ¥z, < -+ < Yi., given
Yin , has a limit as n tends to infinity, which is a distribution function, and "the condi-
tional distribution function of Yis < -+« < Y(s—1ya , given Y, , has a limit which is also
a distribution function. If n is a random variable N whose distribution depends on a pa-
rameter v and if N /y tends to unity in probability, as v tends to infinity, then there exit
constants a, and 8, such that (Y:y — 8,)/a, has a limiting distribution as v tends to in-
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finity and a, and By can be taken to be a, and b, respectively. In the special case when
F(x) is a Normal distribution function, the first moment of Yi. converges to the first
moment of the limiting distribution, the second moment of Yi. is bounded for large n
and the third moment of Y1, diverges. (Received July 24, 1957.)

47. Best Unbiased Tests of Composite Hypotheses with s Constraints, MANDA-
KINI RonaTa1, University of California.

Let X be a random vector with probability density depending on s + k parameters
El, 8,00, -, 0= (§0). Hypotheses considered are Hi:§ = & , 6 unknown, and
Hy;t = £ = --- = & = £, £ unspecified, 8 unknown. Locally most powerful unbiased tests
with constant power on ellipsoids are derived for testing Hi and H:, under a set of as-
sumptions similar to those made in the Neyman-Pearson theory of testing hypotheses.
As an example, a test for equality of variances in s Normal populations is given. In the
case when the sample sizes are equal, the locally most powerful test with spherical power
surfaces is D=l 8 = \, where ) is a function of 2i=j ST . (Received July 24, 1957.)

48. On the Asymptotic Distribution of the Likelihood-ratio in some Mixed
Variates Populations, J. Ocawa, M. D. Moustara anp S. N. Roy, Uni-
versity of North Carolina, (By Title).

Let the likelihood function of the population under consideration be P(X | Ho) and
P(X | H) under the null-hypothesis H and the alternative hypothesis H respectively,
then it is well known that under certain conditions the random variable

—21log N = —2 log [max P(X | Ho)/max P(X | H)]

has the x2-distribution with suitable degrees of freedom in the limit as n, the sample size,
tends to infinity, provided the null-hypothesis H is true. S. 8. Wilks (1939) got this result
based upon J. L. Doob’s work (1934). Later (1943) A. Wald obtained the same result start-
ing from somewhat stronger assumptions. However, as far as the authors are concerned,
they have never seen any complete proof along the Wilks’ line published so far. In this
note, the authors are concerned with the asymptotic distributions of —2 log A for testing
various kinds of null-hypothesis in certain mixed variates populations. For that purpose
the authors will present a complete proof of the above mentioned proposition, and then
the validity of Doob’s assumptions was verified in each case which was of the authors’
main concern. (Received July 24, 1957.)

49. On Test of a Certain Hypothesis based upon Selected Sample Quantiles,
J. Ocawa, University of North Carolina.

The author reported on the estimation of the location and scale parameters based upon
the selected sample quantiles, and determined the optimum spacings for the normal and
exponential distributions. The author will present here the theory of testing a certain
hypothesis and show that the optimum spacings for estimation purpose turn out to be the
spacings which give the greatest powers for testing purpose. (Received July 24, 1957.)

50. Run Tests and Likelihood Ratio Tests for Markov Chains, Lo A. Goop-
MAN, University of Chicago, (By Title).
This article first discusses some runs tests as tests of randomness in a single sequence

of alternatives, where the number of kinds of alternatives is s and where the sequence is
long. Simple derivations of some long sequence run tests are given by making use of some



ABSTRACTS 1073

results concerning the asymptotic distribution of the observed transition numbers in a
sequence from a Markov chain. Since the asymptotic distribution of the transition pro-
portions is related to some standard asymptotic results for multinomial trials, a close
relationship is observed between certain asymptotic results in the distribution theory of
runs and in the standard distribution theory for multinomial trials. Large sequence runs
tests are presented for certain generalizations of the null hypothesis of randomness and
for certain alternate hypothesis concerning Markov chains, and the asymptotic distribu-
tions are obtained under both null and alternate hypothesis; thus, generalizing some
standard results in the distribution theory of runs. Runs tests for the special case s = 2
are studied in detail. Some simplified likelihood ratio statistics for testing generalization
of the null hypothesis of randomness and hypotheses concerning the order of a Markov
chain are studied in detail and compared with other statistics that have been suggested
in the literature. In the errata to his paper in Biometrika, Vol. 42 (1955), pp. 531-533, I.
J. Good refers the reader to the present work; some of the statistics mentioned
in his paper have been studied further herein and a number of inaccuracies in his paper
have been corrected. (Received July 25, 1957.)

51. Further Results in Testing of Hypotheses on a Multivariate Population,
some of the Variates being Continuous and the Rest Categorical, M. D.
MoustaFa, University of North Carolina, (By Title).

Consider a multi-way table such that certain ways refer to continuous variates and the
other ways are categorical. For certain problems all the categorical ways refer to variates;
for certain other problems all of them refer to ways of classification; and for some prob-
lems some of the ways refer to variates and the rest to ways of classification. The author
assumes that the conditional distribution of the continuous variates, given the categorical
variates, is a multinormal distribution; and in case some of the categorical ways are ways
of classification, the conditional distribution of the continuous variates will be a set of
independent multinormal distributions. For such multi-way tables, tests for hypotheses
like, say that of conditional independence or joint independence or total independence,
etc., are formulated. Considering large sample tests, the statistic used is the —2 log A
statistic, which, in each of these situations, is shown, in another paper, to have asymp-
totically the x2-distribution; but to adopt it to this study, the fact that some of the vari-
ates are categorical should be noticed. The author suggests a statistic which is algebrai-
cally simpler, more convenient and is asymptotically equivalent, in probability, to the
—2 log \ statistic when the latter is calculated directly from the likelihood ratio. (Re-
ceived July 25, 1957.)

52. Random Walks in the Plane with General Absorbing Barriers, M. V. Jouns,
Jr., Stanford University.
Let Y;,7 =1,2,---, be independent zero-one random variables with
Prob {Y; = 1} = p.

The points (Sn, n), n = 1,2, -++ , where Sp = Zj.1 Y., describe the path of a random
walk. An absorbing barrier may be characterized by a non-decreasing sequence of positive
integers a1 , a2 - - - , where absorption takes place at the nth stage if

Siéa'i!j=1127"'n_17

and S, > a, . Without loss of generality it may be assumed that a;.1 £ a; 4+ 1, for all j.
The probability of attaining the point (k, ») without prior absorption is shown by an ele-
mentary argument to be



1074 ABSTRACTS

where 7o = 1 and where the o’s are determined as follows: a; = j,j = 1,2, -+« jo . where
Jjo is the smallest j such that a; = j; &; = min {¢:a; = j}, 7 > jo. A similar expression is
obtained for the case of a random walk between two absorbing barriers. Application of
these results yields an explicit solution of the classical ‘“‘gambler’s ruin’’ problem where
the number of plays is finite and the stakes risked at each play are fixed but not neces-
sarily equal. (Received July 26, 1957.)

53. Mathematical Developments in the Theory of Human Lethal Dose, (Pre-
liminary Report), CrLirrorD J. MALONEY, Fort Detrick.

A number of two parameter families of curves (probit, logit, sinit) and one one param-
eter family (exponential response curve) have been proposed to express the relation be-
tween biological response and intensity of a deleterious agent. Two measures of response
in the case of disease agents are (1) sickness and (2) death. It was observed (Maloney,
Proceedings of the Second Army Conference on Design of Experiments, 1956) that, provided
morbidity and mortality are related to dose level by the same form of curve, and since
all dead individuals had necessarily been ill, that the morbidity curve must always lie
above the mortality curve when the two are plotted on the same graph, and hence can
be used to infer one parameter of the mortality curve from those of the morbidity curve.
The problem is so important that a search for minimum conditions for the validity of the
conclusion is appropriate. The present paper considers the consequence -of some relaxa-
tion of the assumption that the curve relating mortality to dose is a member of the same
two parameter family that relates morbidity to dose. (Received July 26, 1957.)

54. A Matrix Definition of the Correlation between Two Sets of Variables,
ANDRE G. LaurenT, Michigan State University, (By Title).

Let X1, X:be p X 1 and ¢ X 1 random vectors, p = ¢, and X = (X1, X2)’ be N0, o)
with covariance matrix ¢ = (04;), 2 = 1,25 = 1, 2, (all matrices non singular); let
oii = ool

where o; is triangular. Implicit in and consistent with Hotelling’s definition of canonical
correlations is the intuitively ‘“‘natural” generalisation of the correlation between X; and
X, as a matrix, namely P = o3'0101-! which yields the covariance matrix of X , given
X1, as os( — PP")a; . The squares of the canonical correlations are the roots of

| Ip* — PP'| = 0.

o = Diag. (¢;) R Diag. (¢:)’, where ® is the generalised correlation matrix

1p (1D,
(+7) 2= (o0%).
where D, = Diag. (o), ¥ = 1, -+- , p, is the canonical correlation matrix and ® and O

are “‘equivalent’ in that sense that there exists A such that

ARA' = D, A = Diag. (A1, As),
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A; orthogonal. If X is N(0, I) and R is the “correlation’ based on sample values, i.e.,
R = 8;'SuS;™, the distribution of R is a. | I — RR’ | (»—»—2-D/2 JR, with

oo () () /e (557 o ()

A scalar correlation coefficient between X; and X; can be obtained by means of a proper
scalar function of RR’. In case X = (X, Xz, X3)’, similar generalisations of the multiple
and the partial correlations, (starting from conditional distributions) yield the identity
(I — PyanyPsen) = (I — PiaPi1)(I — PuP3). (Received July 29, 1957.)

55. On Ranking Parameters of Location and Scale in Continuous Populations,
K. C. SEaL, Calcutta-University, (By Title).

The general problem of selecting from a given set of continuous populations a subset,
which should contain the most desirable population, such as the population having the
largest or smallest parameter of location or scale with certain specified risk, is studied
in this paper. The problem of ranking either the location or scale parameters when all
other parameters are assumed to be known is at first considered. The closely similar prob-
lem when both location and scale parameters are assumed to be unknown but when one
of these two parameters, either location or scale, can be eliminated by the method of stu-
dentization, is then discussed. It is also shown that the analogous problem of ranking
parameters belonging to multivariate populations is readily solvable from the proposed
solution to the above problems. When the same experiment is to be continued to more
than one stage the modifications required for the solution to such allied multistage prob-
lems are also indicated in broad outline. The decision procedure suggested for these prob-
lems is shown to possess many desirable properties which include properties of unbiased-
ness, gradation and monotonicity. The suggested decision rule also minimizes the expected
gize of the finally retained subset in most situations and, in fact, may be taken to be the
optimum from an infinite class of decision rules. (Received July 29, 1957.)

56. Statistical Estimate and Control of the Costs Caused by Accidents in a
Factory, Hans BtHLMANN, University of California, (Introduced by E.
L. Scott).

Consider the random variable Z equal total costs of all accidents in a time interval of
fixed length divided by sum of all salaries paid in the same time. Z depends on two fac-
tors, the number of accidents W and the amount of damage X caused by each accident.
Approximating the frequency of W by a normal distribution and assuming the distribu-
tion of damage to be of I'-type, the distribution of Z is obtained. Records of the number
of accidents and the total costs in the past intérvals provide maximum likelihood esti-
mates of the parameters and the expected value of Z. In practice, we want to estimate
the values of the parameters and to test the hypothesis that they are unchanged. The
results obtained include sufficient statistics for each of the parameters with their dis-
tributions. (Received August 2, 1957.)



