ESTIMATES OF ERROR FOR TWO MODIFICATIONS OF THE
ROBBINS-MONRO STOCHASTIC APPROXIMATION
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1. Introduction. The Robbins-Monro procedure is a process of the following
form. For each number z, Y is a chance variable having a variance which is a
bounded function of z; i.e., E(Y, — E(Y,))’ < o® < . The regression curve
y = f(x) = E(Y,) is presumed to be unknown but supposed to lie below the
horizontal line y = « for x < 6 and above it for x > 6, where « is specified and
6 is to be estimated. Let

(1) Xn+1 = Xn - a,.(Y,,,, - a) (n = 17 2) °c ')7

where the «, are specified numbers and assume that E(X; — 6)° = V* < «;
then under suitable conditions X, converges to 6. Following the paper of Robbins
and Monro [10] there appeared a succession of papers ([1] through [14]) in which
the conditions for convergence were relaxed, the type of convergence strength-
ened, the asymptotic distribution of X, found and the whole process generalized
and simplified. The question of an optimal stopping rule however remains open.
We assume here that the regression line lies between two straight lines with
finite and positive slopes, i.e.,

a+mx—0) £ fa) £ a+ Mz — 6), ifz =0,

(2)
a+mx—0 2 flx) 2 a+ M — 0), ifz <6,

with 0 < m < M < ». With this condition Dvoretzky [6] showed how to
choose the a, to minimize a bound on the error E(X,., — 6)° after a fixed num-
ber N of observations Yx,, ---, Yx,. Here we give analogous results for two
modifications of the Robbins-Munro procedure: (i) instead of taking one ob-
servation at X, one takes several and uses the average instead of ¥, in (1), i.e.,

Yo 4+ -+ YR¥ _a),

Ny,

(3) Xk+1 = Xk - a;.,(

the idea being that it may cost less to take several observations at one point
than the same number of observations at different points; and (ii) using (3)
with @z = a (k = 1, 2, ---); the object being simplicity in performing the ex-
periment.
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1004 H. D. BLOCK

Clearly with the n; as well as a; at our disposal in (i) we can get E(Xpi1 — 6)°,
where

) om =N,

with (3) at least as small as E(Xy — 6)? by (1). We shall see that we can’t do
any better with (i) either, so the only saving in (i) is in the smaller number of
“set-ups”’ required. On the other hand we cannot expect to do betier with (ii)
but we shall see that under certain conditions we can do about as well, so that
the increase in simplicity may be worthwhile.

The notations and assumptions introduced above will be used throughout the
remainder of this paper.

The author is indebted to Professors J. Kiefer and J. Wolfowitz for introducing
him to this subject.

2. The Robbins-Monro process. For the sake of completeness and compari-
son we give first the Robbins-Monro case already handled by Dvoretzky [6.]
TuroreM (1). Assume that

2 20‘2
(@) V° = Ol —m)"
If

_ my*? _ 3
(B) an_m, n_172y ’:Vy

then with X, given by (1),
Ve
oF + m VN’
(8) the constants a, given by (B) are optimal in the sense that if the a,, do not satisfy
(B) then there exist processes (1) satisfying () for which (v) does not hold.
ReMARK 1. If the condition («) is not satisfied it is still not difficult to find the
optimal a,’s from the derivation below (see Dvoretzky [6]). In this case the esti-
mate of error is not so neat; if we take instead a, = 2/[M 4+ (2n — 1)m] it
is not hard to verify that

(5) E(xys — 6)

(v) EXyp — 0)° < and

s - (M — mP'V* 4+ AN
=L+ @GN = Dmf

Proor. Let Yx, = f(X.) + e, where E(en|21, -+, xa) = 0, Een |1,
-++, Z,) < ¢". Then from (1)

Xops = 0 = Xo — 0 — a,(f(X0) — @) — aGues
= [1 — ¢, 9(X)(Xn — 8) — Guen,
where f(z) — a = g(z)(x — 6) and in virtue of (2), g(x) satisfies: 0 <m =
9(2) £ M. E(Xp1 — 0 < E[(1 — a.9(Xn))'(X» — 6)'] + a2o”. Now
1—a9(X,) =1—am
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and sinee from («) and (B) a, < a; < 2/(M + m) we also have a,9(X,) — 1 =
a.M —1=1— a,m. Hence

(6) EXp — 0 = (1 — am)’E(X, — 60)° + a3,
or using {8) and then iterating from n = N downward

[ + (N — DW’VIPE(Xy — 0)° + om’V*
(02 + Nm2V2)2

<+ (VN = 9w VIPEX s — 0)° + 2wV _

= (o + Nm?V?)? =

< 1720'2

= ¢ + mVeN'
To verify (8) let g(z) = m and var e, = o". Then (6) becomes an equality and the
unique minimizing a,’s are given by (8); to see this let E(X, — 6)* = B, and
note that irom (6), (with » = N), having fixed a,, - -+ , ax—1, the value of By is
fixed and By, = (1 — aym)’By + ayo’. The minimizing value of ax satisfies
ay = mBy / (¢ + m’By), and the minimum value of By, satisfies By =
(c*By) / (6" + m’By) or

E(Xy1 — 0 =

1 1 ? 1 ?
1 _tym_ L1l ANm
BN+1 BN o Bl o
Henece
V20_2
By 2 ey

with equality holding if and only if the a, satisfy (8).
REMARK 2. It is of some interest to compare the error for the Robbins-Monro
procedure

2
[~

E(Xpn — 0 < — 7
4 2
with the error of the maximum likelihood estimator of the special situation when
the regression is known to be linear with known slope m with errors normal
(0, ¢°). If we take N values for z:X;, X, --- Xy by a procedure which is in-
dependent of 6, and observe Y, = f(X.) + e&» = a+ m(X, — 0) + e,
the joint density function of Xy, ---, X,, Y1, ---, YV, is

( 1 >N 6—2—:52(11,‘—«—7"(%—0))2 dF(zy, + -+, &)
\/ga ’ 3 n/y
where o is known and 6 is to be estimated. The maximum likelihood estimator is
6 =X — (1/m)(Y — «) which is distributed normally (6, ¢®/m2N). Now
¢ / [(e?/V?) 4 m’N] < o*/m’N so that as long as V* < « the Robbins Monro
estimator is better. The condition V* < o is guaranteed, e.g., by taking X; = 0.
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3. The averaged Robbins-Monro process.
THEOREM 2. Let

. 2%
——— . = >
@) m(M — m)V? Q=1
and let ny, ny, -+, n, be positive integers whose sum is N and such that
(i) mEQ  m S Qt o
—m’
2m(m + me) < 2mm + -+ 4 npy)
nzéQ'l'—W, ) n, = Q + ]\/[—m
If
2
(lll) ar = mV (k = 1’ 2)"'7p),

o + mVi (i + ne + -+ + m)
and the X, are given by Egq. (3), then
aV?
(v) the constants ax are optimal in the sense that if the ai do not satisfy (iii) then
there exists a process (3) satisfying (i) and (ii) for which (iv) does not hold.
REMARK 3. Again if (i) is not satisfied it is not hard to find the optimal a;’s
from the derivation below. Of course we can always achieve the estimate (5),

with the a:’s chosen as in Remark 1.
Proor. From Eq. (3)

(iv) ElXpu — 0F < and

Xiw = 0 = [1 = aeg(IXs — 6) — 7 @ + - + &™),

2 2
E(Xp — 0)° < E{ll — aug(X)P(Xs — 0)%) + 22,

again 1 — ag(Xi) = 1 — awm and ar £ 2/(M + m) so that
@ E(Xp — 0)' = (1 — axm)’E(X, — 0)° + 22

Using (m) and 1terat1ng from k = p down, one finds (iv). Again with g(z) = m
and var (¢”) = o*, inequality (7) (w1th k = p) becomes an equality which is
minimized when a, = (mBgn,) / (¢* + m’Byn,) and

B,d '

o? + m*Bpn,
_]:__ = _1— m2np = e s+ = i + m2(n1 + o + np) .
Bp+1 Bp 0'2 Bl 0'2 ’

ie., By = (6'V?) / (¢ + m*V?N), and the equality is achieved if and only if
the a;, are given by (iii).
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4. A fixed value for the a; . Here X; is given by (3) with
a=a k= 1,2 ---,p).
TuEOREM 3. Let

24"
@) G —myv

-Qz .

ATOGED 6T

Let p be any integer satisfying
2 2
log <1 + V'm’N )

0.2
(2D
I follows easily from (a) that at least one such p exists.

If

(b)

A

p = N.

() 0 = o2 + Vm2N

m

b

and if the equations

2 2 2
(d) nk=(1_m)p—k(i+_‘}:m_w (Ic=1,2,~~~,p)

define ny, - - - , ny as integers, then
2 V20'2

(&) E(Xp1 —0)° = T VN’ and

() for a fived value of p satisfying (b) this choice of @,y , - -+ , n, ts optimal in
the sense that +f (d) defines integers but ny. are chosen satisfying (4) but not condition
(d), or if a does not satisfy (c) then there exists a process (3) with the a’s equal,
for which (a) and (b) are satisfied but (e) does not hold.

Remark 4. The condition (a) here is less stringent than the corresponding
conditions (a), (i) in the preceding theorems; but the assumption that (d) de-
fines integers is of course unpleasant; if (d) does not give integers, but one
chooses the n; as the nearest integers to them then one would expect that the
estimate (e) would not be very much in error, especially if N is large. We have
not done the computations for that case.

Proor.

1)
Kews — 0 = (1 — ag(X))(Xs — 6) — a [ +

e e,gﬂk)]
b

N

2 2
E(Xus = 0" < B(L - ag(X) (s — 0 + 22



1008 : fA. D. BLOCK
Again 1 — ag(X;) £ 1 — ma and from (a) and (b) it follows that
a = 2/(M + m)
so that ag(X;) — 1 < aM — 1 = 1 — ma. Hence
E(Xep — 0 = (1 — ma)’E(X: — 6)° + (a’”) / me.

Iterating we get

2 2 2 2
E“W‘”Véﬂ—nMﬁa—anaﬂwa+£L]+ﬂc
Np—1 Np

< -
8 . .
X é(l—nwf”ﬂ4-ff[l~k“ ma) (1 — ma)
nP n,,_l np_2
T ma)“’”z]
+ + — |

Using (c), (d), we now get (e). The argument for (f) follows as before; namely,
if g(x) = m, var (ef”) = o°, then the equality in (8) holds, and the unique
minimum, subject to the constraint (4), occurs when a, n, satisfy (c), (d). To
see this let » = 1 — ma so that

2 2
EXpn — 0) = 1V + (L;Tr%'_

© 1 p -
= + et )
— Ny — Ng — *°° — Np1 Np—1 Ny
From
IE(Xp1 — 0)* _ _ 3
T = 0’ k=12 P L,
we get
p—1
(10) nk=r1’"‘<N—an>, k=1,2’...’p_1’
=1
Hence
p—1
p-1 (7' - Tp) (N _ Z nk>
k=1
ne =
k=1 1—7r
and
p—1 _
(11) NS p=0=-n¥

k=1 1 —1r?) :
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Using (11) in (10) we get m = " (1 — )N}/ (1 = ¢"), k=1, 2,---,
p — 1. Using this in (9) we get

1 -1 - r)o’ Z,rk—l

_ 2= 2p 172
E(Xpn — 0)° = "V + o >

1 —r")%"
Nm?

This has its minimum when r* = ¢* / (Nm’V* 4 ¢°). The corresponding values
of a, m; are given by (c¢), (d), and so E(Xp.1 — 0’ = 'V /(& + Nm*V?)
with equality holding if and only if (¢) and (d) are satisfied.

ReMARK 5. The estimate of error in each theorem ((y), (iv), (e)) is the same.
In Theorem 2 it is independent of how the N observations are partitioned
amongst ny, - -+ , M, as long as. (i) is satisfied. In Theorem 3 this partition
affects the estimate while the choice of p (subject to condition (a)) does not.
If it costs less to take several observations at the same point than the same num-
ber of observations at various points then one will keep p as small as possible
in each case.

Of course with these estimates of error we can at once give confidence intervals
for 6, via Tchebycheff’s inequality.

REMARK 6. Similar estimates can be made for a process taking place in a Hil--
bert space; for example suppose we wish to find a solution 8 to the equatlon
K(0) = a where K is an operator satisfying ||K(z) — ol = C|lz — 0|%,
C < =, (K(z) — K@), z — 6) = c|lx — 6|}, ¢ > 0. (For example a positive
definite continuous linear operator has this property; cf. Blum [2]). If X, =
X, — an(K(X,) — a + €), where ¢, is a vector; and if & is an additive and
homogeneous function such that &(e., g(X,)) = 0 for any vector function
9(X) and &(]|ea|]") < o°, then

8| Xnp — O] £ (1 — 2a.¢ + dAC)E|| X, — 6] + and”

— r?])v2 +

The optimal a.’s and best estimates of error are now obtained from the recur-
sions @, = (cB,) / (CB, + &), Boya = (1 — 2a,¢ + a:C)B, + aio’. The modi-
fied procedures may be treated similarly; now, however, it turns out that the
estimate of error in case (i) does depend on the partition (n, -+ -, n,) of N.
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