CONTRIBUTIONS TO THE THEORY OF RANK ORDER STATISTICS—
THE “TREND” CASE!

By I. RicHARD SAVAGE?
Stanford University and Center for Advanced Study in the Behavioral Sciences

0. Introduction. In spirit this paper is a continuation of [5] and the techniques
and terminology developed there will be used. Here we are concerned with the
detailed relationships between the probabilities of rank orders under various
“trend” hypotheses. The relationships found are of interest in themselves and in
the theory of nonparametric tests of hypotheses.

"Typically we shall be concerned with mutually independent random variables
X1, -+, Xw such that X; has a distribution function of the form F(x — §,)
where the 6; form an increasing sequence. Conditions are given under which
one rank order is always more probable than another, one rank order is equally
probable with another, and these results are translated into conditions for ad-
missible rank order tests. References [1], [6], and [7] summarize information
regarding large sample properties of nonparametric tests of this type of hy-
pothesis.

In Section 1 two definitions of rank order are presented along with some
““algebraic’” properties of rank orders. Section 2 contains an enumeration of the
hypotheses that we are concerned with. Section 3 presents theory and Section 4
contains applications.

1. Rank orders.

DeriniTioN: The rank order corresponding to the N distinct numbers
Z1, +-, zyis the vector r = (1, - -+, ry) where r; is the number of z;’s < z;.
r is a permutation of the first N integers. If in the definition the z’s are replaced
by random variables then R will be used instead of r. R will be defined with
probability one when the underlying random variables have continuous dis-
tributions.

DEFINITION: r'Lijr if o = r, for i = k 5 j;ri = r;, r; = ri;and

(ri =)@ —5) > 0.

Thus; if r = (2, 3,6, 5,4, 1) and v = (2, 5, 6, 3, 4, 1) then r'Lar. We shall
write 7’Lr as an abbreviation for 7’L;;r or to denote that there is a chain of rank
orders 7', ---, ', --+ | 77 such that #'L; ;o' Lij, - r'Li '™ <+« r"Ligjr.
Thusif r = (2,3,6,5,4, 1) and v = (3, 5, 6, 4, 2, 1) then 'Lr, T = 2 and
r'Lis(2, 5, 6, 4, 3, 1)L4s(2, 5, 6, 3, 4, 1)Lyyr. For many of the hypotheses (see
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Theorem 1) that we shall consider, 7’Lr will imply that rank order ' is less

probable than rank order r.
DerinrrioN: r*Cr (rank order r* is the complement of rank order r) if

rf=N4+1—ryuq for ¢=1,---,N.
If »*Cr then rCr*. The necessary and sufficient condition for rCr is that
ri+ v =N+ 1.

If N* is the largest integer less than or equal to N/2, then the number of self
complementary rank orders is (N*) 12" and the ratio of the number of rank
orders to the number of self complementary rank orders is the product of the
odd integers not greater than N. Thus most of the rank orders, for large N,
occur in complementary pairs. Under a particular type of symmetry (see Theo-
rem 5) complementary rank orders are equally probable.

Another definition of rank order can be given in the following manner. Let
t = (11, -+, ty) where 1r; = j when the 7th smallest of the numbers

(x17”"xN)

is x; . The relationship between r and r is: 7, = b is equivalent to 1, = a for
a,b=1,---, N. It is easily verified that »'Lr is equivalent to t’Lr and that

r*Cr is equivalent to r*Cfr.

2. Hypotheses. Throughout we shall make the following assumption.

AssumprioN: The random variables X, - -+, Xy are mutually independent
and each X; has an absolutely continuous (w.r.t. Lebesgue measure) cumula-
tive distribution function.

We shall let Fi(x) denote the cumulative distribution function and f(z, 6;)
the density function of X; . The 6’s can be thought of as indices for the density
functions but in many of the hypotheses they will correspond to parameters
about which we shall make further assumptions.

Hy, : There exists a cumulative distribution function F(x) such that

Fi(zx) = F(x) for ¢=1,---,N.

H, is our null hypothesis and under H, each rank order is equally probable.
H, : The 6/s are real valued and the following conditions hold:

1. 6,6 =--- 5 0x.

2. If 6; < 0; and z < y, then

f (x’ 01) f (II?, 01)
f(yy 01) f(yy 01)

with strict > for some x < y.
3. f(z, 6) is a continuous function in z for each 6.
4. The set of points on which f(z, 6) is positive does not depend on 8:

v

0,
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Hy,. : The conditions of H; apply except H,(2) is replaced by: If
0; < 0; < -0 < 8y

and z; < x3 < --- < a3, then the determinant of (am.) = 0, where
Omn = f(Tm , 0;,). The inequality is strict for some ; < 22 < -+ < x5,
H; : The 6;s are real valued and the following conditions hold:
.S 6= - = 6y.
2. f(z, 0;) = g(6)h(x)e"™
where g and h are nonnegative functions.
H, : The 6’s are real valued and the following conditions hold:
.LO0O<6 =+ = 6x.
2. There is an absolutely continuous cumulative distribution function,
H(z), such that

Fi(z) = [H(x)]".

H; : The 6, = 76 > 0, and f(z, 6;) = f(x — 78) = f(10 — z).

The following relationships hold among H; to H; . H, implies H; implies H,
implies H; . Hs; is the same as H; . Hs is compatible with H,, Hp, and H; but
not H, . The densities under H; satisfy the monotone likelihood ratio condition,
the densities under H; have been described as being of Pélya-type k, the densi-
ties under H; are of exponential type [3], and the distributions under H, have
been of interest in nonparametric inference ([4], [5]). Hs implies that the density
functions are symmetric about their medians. In practice, when a one-parameter
family of distributions is assumed satisfactory for a particular problem, the
family used often satisfies H; . The Cauchy density with translation parameter
satisfies only H; . The distribution following Theorem 2k satisfies the conditions
of Hj but not Hy; . The extreme value distribution with log 6 playing the role
of the location parameter and the exponential distribution over the negative
reals satisfy the assumptions of H, .

A typical problem of interest is to form rank order tests of:

Hy—X,, -+, Xy are independently and identically distributed, against the
alternative hypothesis
H,—X:, -, Xy are independently and normally distributed with common

variance and E(X,;) = a + 1.0 where the y;’s are known and 6 > 0.

Tor hypotheses of the form H, it is always possible to relabel the X’s in
order to make the y.’s a nondecreasing sequence. In doing the relabeling in order
to preserve & > 0 it might also be necessary to replace all of the original ob-
servations by their negatives. Two sided alternatives would present no real
difficulties. The removal of the assumption of continuous distribution functions
and hence the possibility of ties would be more complicated.

3. Theoretical results. Due to the last remark made in Sec. 1 it will be ap-
parent that Theorems 1, 2, and 5 and their corollaries are valid if the r defini-
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tion of rank order is used instead of r. Theorems 3 and 4 and their corollaries
are valid only in terms of 1. The theorems, except Theorem 2k, with k > 2, give
conditions for determining when the probability of one rank order is greater
than the probability of another. These conditions yield necessary criteria for a
rank order test to be admissible. Theorem 2k involves a relationship between
k! rank orders, which relationship, for & > 2, has not helped in determining ad-
missibility of rank order tests.
TrrOREM 1. If Hy, then r'L;jr implies Pr(R = ') < Pr(R = r) when

0; < 6; and r; < Tj.

Proor. A direct computation yields

Pr(R=1r —Pr(R=r) = ff

L2 < TN K R

{[ 10 s, og] s, 007, 65) — £an 69, 0] [I=I dx]} .

itk %]

The first bracket of the integrand is nonnegative since j(z, 6) is a density
function. From assumption 2 of H; and since 6; < 8; the second bracket of the
integrand is always nonnegative and positive for some values of 2., and ., ,
say w and v, such that < v. From assumptions 3 and 4 of H; the whole in-
tegrand can be made positive in a region of the following type: x,, is near u
for r, < r; and x,, is near v for », = »; . Thus the integral is positive.

Without an assumption like I1; , Theorem 1 is false ([5], Sec. 5).

CorourAry 1.1. If Hy, then v'Lr implies Pr(R = r) > Pr(R = '), provided
the 6,, corresponding to those © for which r; # ri are not all equal.

CororLARY 1.2. In festing Hy against Hy with the added restriction

0 < b <0 < Oy

an admissible rank order test must have the following property: If r'Lr and the
probability of rejecting Ho is >0 when R = ', then the probability of rejecting
Hy equals 1 when R = r.

CoroLrArY 1.3, If Hyand 6, < --- < Oy, then Pr(R; = 1) > Pr(R;y1 = 1)
foreo=12-.- N — 1.

Let r* be a typical rank order of the set of %! possible rank orders which can
be formed by permuting & integers in k& positions of the vector describing a rank
order. One element and the % positions determine a set. Denote such a set by
® . If the number of interchanges required to bring the & movable coordinates
of 7* into increasing order is even let ¢(r®) = 1 and otherwise let ¢(+') = —1.
Thus for N = 5, £ = 3, and positions 1, 4, 5 the following constitutes an ex-
ample of an R; .
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25314 c = —1
25341 = 1
15324 = 1
15342 = -1
45312 = —1
456321 = 1

Tueorem 2k: If Hy, , then
2 ) Pr (R =120,

ricar
with strict inequality when the % values of 6 corresponding to the variable
ranks are distinct.
Proor. This theorem is proved in the same manner as Theorem 1.
To show that the results of Theorem 2k are not implied by the conditions of
Theorem 1, consider the following density function

: lz|>1,

f(x,0)={ 2 2 5 3
g(0)[100 + 10(z — 8) — €(x — 6)" — &z — 6)7], lz| =1,

where | 8] = 1, € is a small fixed number and ¢(6) is the normalization factor.
For this density the conditions of Theorem 1 hold but the sign of the deter-
minant in Hy is reversed. Thus not only is the condition of Theorem 2k not
valid for this example but actually the inequality is reversed in the conclusion.

TuroreM 3. If (1) the assumptions of H; hold, (2) rank orders t” and t are
such that

i, i
ZI’;’%Z%‘ i=11'“7N
i=1 j=1
and the inequality is strict for at least one value of © and (3) 6; = 6 where § > 0,
then
Pr(N = ") < Pr(R = 1).
Proor. A direct computation yields

PR =1) —Pr(R =1") = [11:]1 g(o,-)] f ... f [i[l h(z;) dx,-]

—0<L2 < <INLK®

N N
. I:exp <E z; 0,,.> — exp (Z z; 0,g)] .
=1 i=1

Tt is sufficient to show that the last bracket is always positive or equivalently
N

Z xi(org - 0:',’) > 0.

i=1
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The identity

N—-1

Zx((h. — 67) = Z(x —x,+1)[2(0=, — B ]

vields the desired inequality, since:

(a) T, — T <0,
(b) ;(0”—9,)—02(1}—1‘, éoy

and <0 for some ¢ by assumptions 2 and 3.

Assumption 2 of Theorem 3 is equivalent to: D jm;t; = D j—i t; for ¢ =
1, 2, --- N, and the inequality is strict for some 7. Incidentally, assumption 2
of Theorem 3 does not imply t”Lr. This can be seen by examining

r=(251,3,4) and " = (3,4,2,5,1).

On the other hand, 'Lt does imply assumption 2 of Theorem 3 in the obvious
direction.

CoRrROLLARY 3.1. In testing H, against H; (with the added restriction 6, =
10 > 0) an admissible rank order test must be such that if rank orders t” and v
satisfy assumption 2 of Theorem 3, then if the probability of rejecting Hy is positive
when t” occurs, the probability of rejecting Hy when t occurs must be one.

TaroreM 4. Under H, ,

Pr(R =1) = (Ii[l af))[I_I1 (Z o,,)] .

Proor. See Theorem 7a.1 and proof in [5].
CoroLLARY 4.1. In festing H, against H, with the added restriction 0; = 0
the uniformly most powerful rank order test is based on large values of the statistic

Ty = [1 (Z r,) .

7=1

In Corollary 4.1 “uniformly” refers both to 6 and to H(x).
TuroreMm 5. Under Hs , if r*Cr then Pr(R = r*) = Pr(R = r).
Proor.

N
Pr(R =r) = f f H [f(x,, — 46) dz.].
—ogm < <oy
Now make the change in variables z; = (N + 1)0 — yy—iy1 and obtain

PR =n) = [ [ TLUpan + 000 +1 = ) dyl

—0LY < <YN®

f f Ii [f(ysy — 48) dyi] = Pr(R = r*).

=0y < <YNLS®
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TABLE 1
Admissibility properties of rank order tests of trend
1 HYPOthesis . ... i s o Hs Hs
2. THEOreM . . ... oottt e Cor. 1.2 Cor. 3.1 Th. 5
i
3. Condition. ...l r'Lrst =1 r*Cris

(F—r) 2008

Statistic!:?

N
i) = Z, i + + + (61
N
To(r) = igl By + + +
N i 1—1
'1'3(7’) = 51;[1 szl T J -+ + —
N N
7’4(7‘) = & 52-1 d('l‘s N 1‘,‘) + —_ + l6‘
N—1
T(r) = ’zl d(Ti, 7'i+l) —_ — + 16}
N
Te(r) = '-E+1 d(n,r:) 0 — + |1}
(1N:2n)
Talr) = ,él (N — 20+ Dd(ri,ra-:10) - - + 1]
(N=n)
Ts(r) = izl d(ri, Tangs) — - + [
(N=3n)
Tor) = Z d(ri,a) - - + 1]
(N=2n)
N-1
Tw(r) = % [d( max r;,741) —d(ria, min ry)] — — - [2
=l 1<i<d 1<j<i
Tu(r) = Tulr) — To(®), ¢ = ry—iw) - - + [2]

1 For each statistic large values are critical for the alternatives of Sec. 2.

2 Define E;n as the expected value of the sth smallest observation in a sample of N from
a normal distribution with mean 0 and variance 1. Also define d(z, ) as 1if 2 < y and as
Oifz = y.

3 If 'Ly implies 7'(r) > T'(+') the symbol + is recorded. If +’Lr implies 7'(r) = T'(")
the symbol 0 is recorded. If there exists 7’ and r such that +'Lr and T'(r) < T'(r') the sym-

bol — is recorded.
1 The results are easily obtained. The positive results are found by first examining the
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In the notation of [5] for the two-sample case define 2*Cz to mean that
¥ =1 — 2y—ip1.
Then, under the assumptions of symmetry and translation, z¥Cz implies
Pr(Z = z*) = Pr(Z = 2).

The proof is much like that of Theorem 5. Theorem 6.1 of [5], for the two-
sample case, is implied by Theorem 1.

4. Applications. Many rank order tests have been proposed for the hypotheses
of Sec. 2. At the present time we present a catalogue, far from complete, of such
tests. Also included are some new tests. For all the tests listed large values of the
test statistic are critical for the alternatives under consideration. Information
regarding these tests is summarized in Table 1.

The statistic T was introduced in Corollary 4.1. The statistic T’ yields the
rank order test whose power function has the largest derivative at § = 0 in
testing H, against the alternative that X;, ---, Xy are independently dis-
tributed each with a normal distribution having common variance and

E(X) =a+1i6, 6>0.

The symbol + in the column marked ’Lr means that the test statistic satis-
fies the admissibility condition of Corollary 1.2 and the symbol — means that the
test fails to satisfy this condition. The symbol 0 means that T(+') = T(r) can
occur when 7’Lr and thus Corollary 1.2 can be useful in discriminating between
tied values of T. Positive results are obtained for those test statistics which make
intercomparisons between all of the coordinates of the rank orders and negative
results correspond to those test statistics whose structure is rather simple and not
all of the intercomparisons are made.

The symbol 4 in the column labeled Y, (tj — t;) = 0 means that the cor-
responding test statistic satisfies the admissibility condition of Corollary 3.1 and
the symbol — signifies the statistic does not satisfy this condition. The results are
like those for the *'Lr column with a few more negative results since the con-

L;; relationship. The negative results follow from counter examples. Thus for T's consider
r=3,2,541and " = (5,2,3,4,1).

§If i (t] — 1) = 0 for all 4 and strict inequality for some ¢ implies T'(r) > T(r")
the symbol -+ is recorded and the symbol — is scored if for some r” and r satisfying the
partial sums condition T (") > T'(r).

¢ The positive results for 71 and 7% are obtained in the same manner as the proof of
Theorem 3. The positive result for 7% is implied by Corollary 4.1. The negative results are
bbtained by constructing counter examples. Thus for 7 consider v = (1, 8,2, 7,6, 5, 4, 3)
and v’ = (4,5,3,6,7,8,1,2).

" 7The symbol + is recorded if 7*Cr implies 7'() = T(r*) and the symbol — is recorded if
for some r* and r we have r*Cr and T'(r) % T (r*).

8 These results are trivial.

9 References are given to places where the test statistic has been used for the types of
alternatives considered in Sec. 2 without attempting to reflect priority of publication.
Reference [6] summarizes large sample efficiencies for many of the tests.
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dition to be filled is stronger. The most interesting of these results is the — for
T, which is essentially Kendall’s tau. Thus for some levels of significance Ken-
dall’s tau is inadmissible amongst the class of rank order tests when considering
trend in exponential alternatives.

The symbol + in the column labeled 7*Cr means that *Cr implies T'(r*) =
T(r). Under the conditions of Theorem 5 which frequently hold in practice
this is a reasonable condition, i.e., rank orders which are equally probable give the
same value for the test statistic. The sole negative result corresponds to T’
which is the optimum statistic for a class of alternatives not included in the al-
ternatives considered in Theorem 5.

Since the two forms of rank order, r and t, are equivalent in the sense that one
determines the other, the statistics in Table 1 could all be expressed either as
functions of r or r. T:, for instance, appears exactly the same in both cases.
On the other hand, T is easier to define in terms of r and the natural definition of
Ts is in terms of 7.

The interpretation of Theorem 1 may be modified to give useful results about
rank order tests of independence for bivariate distributions. In the density
function f(z, 8) replace 8 by y and now write it in the form f(z | y), i.e., the con-
ditional density function of z given y. When X and Y have a joint bivariate
distribution assume the conditions of H; (and of Hy) are satisfied for f(z | y).
It is easily verified that when f(x | y) satisfies the conditions of Hy then f(y | x)
satisfies the same conditions. Thus the meaning of “X and Y are jointly of
Pélya-type k” is clear.

In the bivariate case define rank order in the following manner: Let
Z1,% ;- ; Ty, Yy be N pairs of numbers such that no two of the z’s (y’s) are
equal. Rearrange the order in which the pairs are written to obtain zp; , ¥y ;

- s Ty , Y Where yu; < Yz < -+ < Y . The rank order is now given by
the vector r = (r1, -+- , ry) where r; is the number of z;; £ x(;; . When the
pairs x;, y: are replaced by random variables X;, Y; the rank order r can be
replaced by the corresponding rank order E.

When the pairs X, , Y; are mutually independent with a common density func-
tion with respect to Lebesgue measure, then the random variable R is defined
with probability one. If the null hypothesis (X; and Y; are independent) is also
true then Pr (R = r) = 1/N!. On the other hand, if X; and Y; are jointly of
Pélya-type k, then the results of Theorem 2k hold. The proof consists of noting
that for given yp;, - -- , Yy the desired inequalities hold between the proba-
bilities of rank orders. Thus the inequalities must hold unconditionally since
m(y) > n(y) implies Em(y) > En(y).

The statistics Ty, and T, have been frequently proposed as tests of inde-

"pendence and from the results of the preceding paragraph we obtain some
evidence that they are admissible when the underlying bivariate distribution is of
Pélya-type 2. The other tests in Table 1 could also be used as tests of independ-
ence. Those tests which have negative signs in the »’Lr column, however, will be
inadmissible.
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