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0. Summary. The comparison of the sensitivities of experiments using different
scales of measurement or different experimental techniques can be effected
through a comparison of noncentral variance ratios. The distribution of the ratio
of two noncentral variance ratios is obtained and its properties are discussed.
Based on this distribution, tests of hypotheses on the parameters onnoncentrality
of two noncentral variance-ratio distributions are developed.

It is shown that the distribution of the ratio of two noncentral variance ratios
may be approximated adequately by the distribution of the ratio of two central
variance ratios with appropriately adjusted degrees of freedom. A table for use
in applications of the latter distribution is given for one-sided tests at the 5%
level of significance.

Through the association of the distribution of the multiple correlation co-
efficient in regression models with that of the noncentral variance ratio, it was
also possible to develop test procedures on multiple correlation coefficients.

Much of the discussion in this paper is on comparisons of similar experi-
ments in the sense that variance ratios with the same degrees of freedom are
compared. However, it is shown how these results may be generalized for com-
parisons of dissimilar experiments.

1. Introduction. The problem of comparing different scales of measurement
for experimental results was discussed by Cochran [1] in considerable detail in
1943. He assumed that analysis of variance techniques were applicable and con-
fined his attention to the case in which all scales measure the same experiment.
It was noted that a comparison of the sensitivities of two scales should depend
both on the experimental errors associated with them and on the magnitudes of
the treatment effects in the scales. In the concluding section of his paper Cochran
indicated how a result of Pitman [7] may be used to compare the sensitivities of
two scales in two-treatment experiments and went on to state that in general
the comparison should depend on a test of significance of a hypothesis on the
parameters of two noncentral variance-ratio distributions. It is this problem
that is considered in this paper. The results will be useful not only in comparing
scales of measurement per se but in comparing different experimental techniques
" in a broader sense in similar experiments and, under certain conditions, in com-
paring two population multiple correlation coefficients.
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COMPARISON OF SENSITIVITIES 903

Let ¥ be a noncentral variance ratio with 2a and 2b degrees of freedom (it
is convenient to use the degrees of freedom in this form; a and b may be integers
or half-integers and no generality is lost). Then we define

(1) W = 2aF/2b
and % has the density function,

) f(u; @, b, \) = f(i; a, b)e Fila + b, a, Mi/(1 + w)].
Here \ is the parameter of noncentrality associated with # and .
(3) f(u; a, b) = f(u; a, b, 0) = [Bla, H)Iu" (1 + w)™*,
where B denotes the beta function, and

ala 4+ 1) 2°
BB + 1) 2!

is the confluent hypergeometric function.’ If v is related.to a central variance-
ratio F through (1), f(u; a, b) is the density function of u. References [3], [13],
and [11] are noted for discussions bearing on derivations of (2). \

In Model I of the analysis of variance with so-called fixed parameters in the
additive model, if 7; is the effect of the 7th of ¢ treatments, Z$=1 7: = 0, and,
if ¢ is the population experimental error,

1F1(Ol,ﬁ,x)=1+§x+ + ...

t
(4) A=k Z‘,l 3/20,
where & is the number of observations in each treatment mean. We see at once
that A is a parameter incorporating both the experimental error associated with
the scale and the magnitudes of treatment effects in the scale. We take v, and .
as defined in (1) to be the appropriate statistics for two similar experiments on
which to base comparisons of the sensitivities of the two scales or experimental
techniques. We shall consider the distribution of

(5) W= /vy

under the assumption that the two similar experiments are independent.

The term “similar experiments’ has been used in the sense that F-ratios for
treatment comparisons resulting from them have the same degrees of freedom.
When, in addition, k; = k., k;, the number of observations in each treatment
mean of experiment ¢, we shall call the two experiments identical. Major emphasis
will be placed on the distribution of @ when % and 4. arise from identical ex-

‘periments. Then the null hypothesis of equal sensitivities is equivalent to the
hypothesis that the two parameters of noncentrality, A\; and Az, associated with
1 and 4, are equal. When the experiments are similar but not identical, the
hypothesis should be on the equality of Ai/k, and As/ke .

3 We shall use the ‘““dot’’ notation to indicate variates and distributions associated with
poncentral valiance ratios. Functional forms will be abbreviated, e.g., f(%; a, b, \) to-f(a),
whenever it may be done without confusion.
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While values of the distribution function of w will be obtained for small a and
b, adequate tabulation of the distribution would be difficult with ordinary com-
puting facilities and would result in a three-parameter classification even for a
specified level of significance. Similar difficulties entered in the tabulation of the
distribution function of w although tables and charts are available ([11], [4],
[6], and [12]) and Patnaik [5] proposed an approximation in that case. Patnaik
essentially approximated to the density f(&; @, b, \) using the density

( 1/K)f<%; a’, b); the two densities for % were given equal first and second mo-
ments through choice of K and @’. In our notation,* it is required that
(6) & =(a+MN/(a+2\) and K = (a+ N\)/a.

In this paper we consider approximating to both the distributions of %, and 4,
following Patnaik’s method and then obtain the distribution of # on the assump-
tion that w is the ratio of two independent variates with distributions of the
form (3). The distribution of the ratio of central variates,

) w = u/usz,

is then of interest. It will be shown that the distribution function of w with 24’
and 2b degrees of freedom is a good approximation to the distribution function of
w with 2a and 2b degrees of freedom given \; = X\, = A on the basis of a com-
parison of available percentage points of the two distributions.

Values of wy such that P(w = ws) = .05 have been tabulated for ranges of
values of a’ and b. The computation of such tables will be discussed.

2. The distribution of the ratio of similar noncentral variance ratios. The
marginal distribution of % in (5) is obtainable from the joint distribution of
1 and 4, written as the product of two expressions like (2) on the assumption of
independence of %, and %, and given similar experiments in that both variates
depend on 2a and 2b degrees of freedom. With the specification of f and ,F; in
(2), this joint density function is®

M S TN B L BB s B

7lsl
C (14 )T 4 o) 0 <y, £ .
When we define new variates « and z through the relations
= wx —1)/(w—2z) and 4 = (x — 1)/(w — x),

# has the definition (5) and we may write down the joint distribution of w and z.
From that joint distribution it is at once evident that the marginal distribution
of ¥ is

4 Patnaik’s notation differs from that used here. His degrees of freedom, », , »: , and »,
correspond to 2a, 2b, and 2a’, respectively; his A is twice our . K in our notation corresponds
to Patnaik’s k.

57 and s take values 0, ... , » unless otherwise specified.
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g3 @, b, A, N) = e M T ’;},:f [B(a + r,b)B(a + s, b)]™

(8)

. 1 . .
- W H(; a, b, 1,8), 0w S oo,
where

(9) H(,w) — (,w — 1)—(2a+2b+r+s—-l) f (x _ 1)2a+r+s—l(w _ x)zb—-lx—-(a+b+r) dr.
1

The form (8) is adequate for all values of u including «w = 1 in view of the follow-
ing form (10) for H(w).

The integral (9) appearing in (8) may be written in terms of hypergeometric
functions following Erdélyi ([2], p. 115). Then with the transformations, y =
(x—1)/(w—z)when0 = w < l,andy = w(zx — 1)/(w — ) when 1 < % < o,

Hw) = | g7 70 + ) ™01 4 )7 dy

(10) =BQa +r+s52b):Fi(@a+b+r2a+r+s
2a+20+r+s1l—uw), 0=Zw<=l,
and
—Qatrte) [ 2atria—t Y e —(a+b+r)
H(w)=w a1TrTs f yar: (1+—. (1+y) a "d?/
o W
(1) = w ®B2a + r + s, 2b):Fifa + b + s,

26 +r+82a+20+r+s,@w—-1D/wW], 1=uw= .

H(w) is expressed in the two forms for convenience; H(1) may be obtained
from either form and there is no discontinuity for H(w) at v = 1. The integrals
in (10) and (11) hold for 0 = % =< o ; the division is made only to obtain ex-
pressions in terms of convergent hypergeometric series. Final forms for §(w)
could now be obtained by substitution for H (1) in (8).

From the specification of H(w) in (9) it is clear that we could obtain a finite
series expansion using binomial expansions in the integrand for 2a, 2b, r, and s
are integers. These finite sums can of course be related to the functions .F; in

(10) and (11).

3. Properties of the distribution, §(w). (i) Bounds and values of §(w»). When
w = 1, with the replacement of (1 + w4y) by (1 4+ ¥) in the denominator of the
integrand of (10), it is apparent that H(w) < B(2a + r + s, 2b) and then,
from (8)

g) < Mt Y (""T",‘s),"’ B(2a + r + s, 2b)

(12)
- [B(a + r,b)B(a + s, b)]™, 1= 4= .
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Similarly, when 0 < w =< 1, with the replacement of [1 + (y/w)] by (1 + y)

in the denominator of the integrand of (11), we have
H('ll)) < w—(2a+r+x)B(2a +r+ s, 2b)

and again from (8)

L —Ai=Ae,; —(a+D) Ao/ )°
(13) gl) = zr: 28: ris! BQa +r + 5,2b)

- [Bl@a +nbB@ +sb]7, 0=w=sl

But B(2a 4+ r + s, 2b)[B(a + , b)B(a + 5, b)) " = Bla+ b+ r,a+ b+ s)
-[B(b, b)B(a + r,a + s)]* < 1/B(b, b) and

(14) G) < MV /Bb,b), 1=Zw = o,

and

15) i) < 1 B(b,b), 0= w = 1.
g

Now convergence of the series for §(u) is established for 0 < w < « for all
terms of that series are positive.

Limits for §(u) as w — 0 and as & — « may be obtained. Returning to (8)
and (9), we note that

atr—1 W (=1)% ! 2atr+a—1 2b—1_—(a-+b+r)
W H@W) = @ l)za+2wm—1f. (x—1) (x — W)z dx

X3

1
(l —_— w;g“'*'zb-fr-ﬂ—l ./;) (1 - x)%+'+a—1xb_2—5 dx,
16
() w<1,$>0’a>1+g,
iné
< (1 — w;;)ﬂ+2b+r+s—lB(2a +r+ s,b —1 - E),

W< 1L,E>0ab>1+¢

Hence limao w* 7" H(@w) = 0 if @, b > 1, for ¢ is at our disposal. This implies
that limy.o g(b) = 0if @, b > 1, which will be the case in all practical situations.
A similar argument shows that limg.. §(ib) = 0if @, b > 1.

In summary,

g(O) =0, ab>1,

) i) =TS );":f B(a + r + s, 2b)[B(a + r, b)B(a + s, )"

< 1/B(b, b),
g(OO) = Oa a, b > 1:

and the series for §(w) converges for 0 = w = . When A, = Ag, as will later
be required, P(u; < 1) = P(u, < ) = § and we see that §(u) then has a median
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at v = 1. In general §(w) is a unimodal distribution with mode between 0 and 1
and approaches 0 as % — 0 and as v — .

(ii) Moments of (). The kth moment of w, E(4*) = jit can be obtained most
casily from the joint distribution of %, and %, and the definition (5) for w. Then
it is a simple problem in integration to show that

ll:l,c — 6_)“—)‘2 P(b + k)I‘(b ot k) Z E )\1)\; B(a + k + ra — k + 8)

TO) sl Ba+raTs)
(18) _ a2 TO+ BTG — k) T(a + k)T (a — k)
= IO T@p  Tethal)

< 1Fie — k, a, Az)

fora, b > k. When k = 0, it is clear that jio = 1.
When &k = 1, we sum (18) first with respect to r and obtain

2
;z£=e‘ (a+x,)[ + +2(a+1)+ ]

This may be rewritten as the integral (obtamed by multiplying each term in
the series by A7~ and noting that it is an integral of Aj %" followed by some
reduction),

b PP
(19) M1 = b —1 (@+ M) »/o Yy e dy.

Expansion of the exponential in the integrand of (19) and subsequent integration
yields

o bla4+ ) A A2
I e I R

In the special case where ¢ = 2, it is apparent from (19) that
d1 = b2+ )1~ ¢™)/(b — 1.
When k& = 2, reduction similar to that when k = 1 yields
dz = a(a + 1O + Dl(e — 1)(a - 2)(b — 1) — 2)I”"
1+ 2v/a + N/a(a + DI — 20/a + 3\/a(@ + 1) — - |,
a, b > 2,

(21)

When a and/or b is < 1, jir, k = 1, does not exist; when a and/or b < 2, iz,
k = 2, does not exist.

4. The distribution of the ratio of noncentral variance ratios (general). While
the distribution of # obtained in Sec. 2 will usually be the one required in practi-
cal work, it is not much more difficult to obtain more general results.

Consider independent variates Fiand Fy, iy = a1 Fi/by, v = aFo/bs,
and w = ciiy/ti, where F; and F, are noncentral variance ratios with degrees of
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freedom, 2a, and 2b, , and 2a; and 2b, with ¢ = ab;/a:b, and parameters of non-
centrality, A, and A., respectively. 4, and u, will then have distributions of the
form (2). An argument similar to that of Sec. 2 yields for the density function of

g(; @y, by, a2, b2, A1, No) = e Z z ):_1':,2 [B(a, + r, by

(22)

- Blas + s, b)Y H (s 4y, by, a2, be, 7, )

where
(23) H(w) =j(; y"l+"2+’+“"1(1 + ,u-)y/c)—(al+bl+r)(1 + y)-—(a2+bz+s) dy

similar to (10). The integral (23) can be used to express H () in terms of a hyper-
geometric series when 0 < % = ¢ and it can be transformed to a form similar to
(11) and thence in terms of a hypergeometric series when ¢ < w < «.

This general case is not of interest in comparing the sensitivities of experi-
ments except as it reduces to the case of similar experiments and possibly when
ay = az,b], #~ bz.

5. The distribution of the ratio of central variance ratios and its properties.
We have already indicated in Sec. 1 that we shall approximate to the distribution
of the ratio of two independent noncentral variance ratios using the distribution
of the ratio of two independent central variance ratios. The necessary distribu-
tion and its properties may be considered by the specialization \; = Ay = 0 in
results given above. We now summarize those results for this special case for
they will be required in following sections.®

General results (22) and (23) now become

(24) g(w; ay , bl y 02, b2) = c_al[B(a'l ] bl)B(% ) bz)]_lwal_lH(w; a, bl y Q2 b2)7
0=ws=E o,

where
(25) H(w) = fo ¥ 4 wy/) (L 4 )T .

We consider in more detail the case for which F; and F, arise from similar ex-
periments. Then, with @y = a; = a, by = b, = b, we have

)  gw;a b) = wH@; o b)/Ba B, 0Zws w,
with
@) ) = [ I+ )+ 9 dy,

¢ We retain the notation already adopted but drop the ‘“dot’’ when discussing central
variates and their distributions.
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H(w) in (27) may be rewritten from (10), (11), and (9) respectively as
H(w) = B(2a,2b).F:i(a + b, 2a,2a + 2b,1 — w), 0sw=1

28) = w B(2a, 2b).Fila + b, 20,22 + 2b, (w — 1)/w], 1Sw< o

IIA

= w — 1)-(2a+2b—1) f @ — l)za—l(w _ x)2b—1x«-(a+b) dz, 0<w .
1

We now list certain special cases of g(w) that were used to some extent in
checking tables prepared by more general methods in Sec. 8. These results are
most readily obtained from the third form of (28).

Paramelers g(w)
()a=30b=1 In w/7’v/w (w — 1)
(i)a=30b=1 1/2v/w(1 + Vw)
(ii)a=4%,b=%. 4w’ — 1 — 2w ln w)/7"Vww — 1)°
(iv)b=a+ 3 [2B(2a, 2a)] w7 (1 + V)™
54 -
(v) @ = %, (a +b) an integer. 2¢ > [wB ((%’ ;)) siflf”’ p + cos: ad g (—1)*H

BO+3b+3—19
B, b+ 1 —9)

Results similar to (iv) may be given forb =a — 3, b =a = 3/2,b = a += 5/2
and b = a + 7/2 without much trouble.

Results on the form of §(w) carry over to g(w). Thus the limit of g(w) is zero
as w — 0 and as w — . In addition the median value of w is unity as it was
for w with A; = A, . Moments of w about zero follow from the more general case

also. Now

. —27
sinh ’x:l, z = 1Inw.

(29) ur = B(a + k, b — k)B(a — k, b + k)/[B(a, b)I.
In particular,

(30) pr=ab/(a —1)(b—1), ab>1,

and

(81) w=abla+ 1B+ 1/(a— 1B —-1@—2)b—-2), ab>2
The variance of w is

(32) o = ab(2a’d + 2ab° — @* — b* — 4ab + 1)/(a — 1)*(b — 1)*(a-— 2)(b — 2).
. Consider b for similar experiments with 2a¢ and 2b degrees of freedom and
assume that A; = A2 = A\. We then compare the moments of 1 with the moments

of w for similar experiments with 2a’ and 2b degrees of freedom with o’ =
(@ + A)*/(a + 2\) as given in (6). From (30) it now follows that
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Na+N—1) ]

(@ —1(@+N)

= (@ + MNb/(ea — 1)® — DA + N a) for large a.

Wl = (a+ Nb/(@ — D — 1)[1 +

Also, from (20),

=124 X ] -6 -

= (@ + Mb/le — DO — 1)1 + N a) for large a.

Hence u; and g; are approximately equal under the stated conditions for large a.
Similarly it may be shown that, for large a,

s = iy = b(b + 1)@ + 2aN + N 4+ a+ 2V)/(a — 1)(b — 1)
(@ = 2)(b — 2)(1 + Na)’.

6. The probability integral of §(w). We first consider w based on similar ex-
periments, §(w) in (8), and turn our attention to means of evaluating G(uo) =

P = o) = f " g(w) dw. With interchange of order of integration and the
0
definition of H(w) in (10), it follows that

Glio; ,0,0,0) = €T 5 );,‘,;‘,2 [B(a + r,b)B(a + 5, D)™

(33) . .
— —(a 8 wo » \ QT T «\—(a T .
. { S + ) (+H)f0 W)™ 1+ )"y d dy.

Transformation from % through setting + = wy/(1 + wy) and integration with
respect to z of the resulting integrand, 2°*" (1 — z)*™, following expansion in
binomial series allows us to write

Gl = eV 2 > M [B(a + r,b)B(a + s, b)]™

rls!
(34) . j;w ya+s—l(1 + y)—(a+b+s)(woy)a+f(l + woy)—(a+r)
[ i (b — Doy (b — )b — 2(ny) ~~-]dy
at+r (a+7+1DAF+wy) 2N e+ 7+ 2)(1+ woy)? ’

When b = 11is an integer, the series in square brackets will be finite. Furthermore,
it has been shown [8] that

G(uing 58,1y M, No) < Gl 5,1 + 3, M, M) = Qo 0,m + 1, M, M)

for n an integer. We shall then only consider the evaluation of (33) or (34) when
b is an integer and obtain values of G(un) by interpolation when b is not an
integer. This can be attempted in several ways.



COMPARISON OF SENSITIVITIES 911

(i) Direct evaluation of G(un) from (34). Evaluation of G(in) from (34) will
depend on the evaluation of integrals of the form

(35) k(g ; m, m, p) = fo YA+ )T + ey) P dy

like H(w) formerly defined and where for fixed » and s in (34), m =
2a4+r+s+jn=a+b+s,p=a+r+755i=0-:-,0b—1),ban
integer. As for H(w), h(ixn) may be written in terms of hypergeometric series,

h('u')o)=B(m,n+p—m)2F1(p,m,n+p,1——u’)o), Oé’f,()oé ]7
and
h(io) = 1wy "B(m, n + p — m)Filn, m, n + p, (o — 1)/wn], | £ w0 = =,

when n 4+ p — m > 0 as will be the case here. If tables of the hypergeometric
function were available, we could evaluate G(uy) through evaluations of A(uin)
and using a finite number of terms of (34) which may be shown to converge
through a method similar to that used in Sec. 3(i).

As an alternative to the use of hypergeometric series, h(un) may be trans-
formed to a form like (9) and evaluated through the use of binomial expansions
in the integrand. )

Use of (34) to evaluate G(un) will in most instances require evaluation of a
large number of terms to attain even 2- or 3-decimal accuracy.

(ii) Integration for G(ux) after summation in (34). When b is small (say b < 6),
the following method based on interchange of the order of summation and inte-
gration in (34) gives good accuracy in evaluating G (in). Observe that

Z( Aoy >‘I‘(a+b+8)=P(a+b)lpl<a+b,a’_}g_y__>

“\1+y/ sil(e+s) I'(a) 14y
_T(a+b) A2y ) (__ Ny
- I‘(a) exp (1 + Y IFI b} a, 1 + y) ’

the latter form based on the use of Kummer’s relation (|2], p. 253). This second
confluent hypergeometric series is finite. We can also write

E( Moy )' Ta@+b+7r

~\1 + wy/ ril(a+7)
. [ 1 b=Dwy . .  (=D7 ( wey )"”}
a+r (@+r+ DA+ oy (@a+b4+r— 1)\1-+ thy

> (My_) 1

7 \1 4 upy/ 7!
“(Po+ 1Py +r(r — DPr+ --- +r(r — D---(r — b + 2)P5]

_ Mty Aty Aoy )”‘1 ]
= e"p(l ¥ ww)[‘””(l ¥ woy)P‘ + +(1 Fy) )
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where P;,72 =0, ---, (b — 1) are polynomials in wwy/(1 + oy) independent of
r and determined by appropriate grouping of terms in the first form above. With
the substitution of the results of this paragraph in (34),

Neey I'(a + b) .0 Y —(a+b) . . \—G
G(wo) = W Wo A v (1 4y (1 4 o)
' . M N o ey
(36) exp ( TF gy T+ y) lFl( b, a, T u'Joy)
. Y . Moy Y ]
7o (% ) P () o]

Evaluation of G(uo) now depends on evaluating a finite number of integrals
of the form

® i 1
. I(ig; N\, p,q) = -\
an [ I exp[ {1 T T 1F y}]
(14 9)77A 4 woy) ™ dy,

where p and ¢ are integers or half-integers and when A; = X, = A, the case of
most immediate interest. Reduction of (36) to integrals like (37) follows when
powers of ¥ and powers of oy in the numerator of the integrand of (36) are
written respectively as powers of [(1 + y) — 1]and [(1 4 woy) — 1] and expanded
in finite binomial expansions. Recursion formulas reduce evaluations of (37)
to forms depending on five basic integrals, I(uo; A, 0, 2), I(uo; N, 1, 1),
I(uo; N, 3/2, %), I(un ;N\, %,3/2) and I(iin ; A, 5/2, ). Some of the recursion for-
mulas are

I(w‘) 3 >" b, Q) ('Il'Jo - 1)—1[1.1)0I(1Z}o ; >‘7 P — 1’ 9)

—I(wo; M\ p, g — 1)), pegzl,
I(uo; =2, 0,¢) = N7{(g — 2)I(wo; A, 0, ¢ — 1) — wg'e "]

—aiig T (o 5 N, 2, ¢ — 2), q> 2,
IGn ;A 2,00 = 27[(p — 2I@o; N p —1,0) — e

— ol (o ;A\, p — 2, 2), p> 2,

IGin ;)\, 2,00 = A1 — e — wol(uo ;M\, 0, 2).

The basic integrals may be evaluated by expanding their integrands in Taylor
series about wo = 1. The coefficients in the resultant expansions depend on in-
tegrals of the form

® yr ——?Ld é‘/'l—m\ul_ rq+2d
fo _(l+y)q“e Hidy = | e ( w)u™ du,
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which may be evaluated directly. When wo, = 2, it is advantageous to obtain
the series in an expansion in terms of 1/w about 1/wy = 1. This is not a different
problem since it is easy to show that I(1/ ; A, p, q) = ol (v ; N, ¢, p). Schumann
[8] has shown that if ¢;, 2 = 0, ---, r, are terms in the Taylor expansion of
I(1/wo ; A, p, q) and if R, is the remainder after these (r 4+ 1) terms,

1 > 'U‘);Rr+l/tr+l(w0 - 1)r+1 > tr—-l/[wotr—l - ('wo - l)tr]-

This relationship was used to determine the accuracy of evaluations of the basic
integrals. For brevity we have omitted the demonstration of the stated in-
equalities.

This method (i) was used to obtain the values of G(uo) given in Table II
and for the comparisons in Table IV. It was found that the Taylor series for the
basic integrals converge slowly and as many as 18 terms were required to obtain
6 decimal accuracy in some of the basic integrals. Since the five basic integrals
are used in recursion formulas, errors tend to be magnified; however the com-
bination of integrals I(iy ; A, p, ¢) required to evaluate G(uy) enter in such a
way that errors in the I(uy ; A, p, q) are to a large extent compensating for each
other and reasonable accuracy can be obtained.

The computation required to construct even a limited table of values of G (i)
is very extensive and an approximate method was found.

(iii) Approzimation to G(wo) using G(ir). We have indicated that we shall
approximate to §(w) with \; = A\; = X and 2a and 2b degrees of freedom by using
g(w) with 2a’ and 2b degrees of freedom. We shall extend this idea to yield an
approximation to G(uo) using G(u») where

(38) G(uo) = fo b g(w) dw.

Evaluations of G(w,) will be considered in the next section. The results in Table
IV indicate that the approximation will be adequate for most practical situations.
Extension. The discussion of G(uix) has so far been limited to the case for similar
experiments. The extension to §(uy) in (22) is straightforward. Difficulties in com-
putation are however almost prohibitive.
For the general case, the form of G(uo) like (34) is
A2
rls!

G(wl);ah bl,a%b?’)‘l,)\? = e_)‘l—h E Z

(39) - [Bla + r, b)B(as + s, bo)™ f., YA 4 )T (g )
1 (b1 — Dyuir/c .. :I dy.
a+ 71 (a4 r 4+ DA+ yie/c)

This distribution function has the same form as (34) and methods of evaluation
discussed for (34) could therefore be applied.

< (1 g/ [
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7. The probability integral of g(w). Results on the probability integral of
g(wo) with Ay = Ay = A carry over to the probability integral of g(w) when A = 0.
For similar experiments the form comparable to (34) is

G(wo; 0, b) = [B(a, ) [ ) ¥+ )7 (woy)* (1 + woy)™
(40) ’

a (e+ DA+ wy)  2la+ 2)(1 + wy)®

Again the serics in square brackets is finite when b is an integer.
G(wo) can be obtained in a form like (36) when b is an integer and depends on
integrals

(41) I(wo; 0, p,q) = I(wo;p, q) = fo @O+ »7°Q + woy) ™ dy.

: [1 (b — Dwey (b = 1 — 2wy’ _ ] dy.

Fror example, when @ = 2, b an integer,
G(wo) = 1 = bb+ DO+ DI(wo ;0 + 1,0) — (b + 1)I(wo ; b + 2, b)
= bl(wo; 0+ 1,04 1) + bl(wo; b+ 2,0 + 1)].

Similar expressions may be found for other values of a, given b an integer. Inter-
polation for » not an integer is again possible or direct evaluation may be used.

Tasie I
Values of wo for similar experiments such that 1 —G(wo) = .05
\\ b 1 2 3 4 5 6 7 8 9 10 15 0
a d.f 2 4 6 8 10 12 14 16 18 20 30 )
1 2 166.12(32.76 [26.76 [24.37 [23.10 {22.31 [21.77 (21.39 (21.10 {20.87 {20.21 |19.00
3/2 | 3 |40.81/18.35 |14.40 {12.81 [11.97 {11.45 ({11.09 [10.85 {10.65 {10.50 {10.07 | 9.28
2 4 13.91 |10.62 | 9.32 | 8.62 | 8.19 | 7.90 | 7.69 | 7.54 | 7.41 | 7.06 | 6.39
5/21 5 11.82 | 8.87 1 7.70 | 7.11 | 6.68 | 6.42 | 6.23 | 6.09 | 5.96 | 5.64 | 5.05
3 6 7.86 | 6.77 | 6.18 | 5.78 | 5.54 | 5.37 | 5.25 | 5.13 | 4.82 | 4.28
7/21 7 7.2216.17 | 5.61 | 5.26 | 5.03 | 4.85 | 4.72 | 4.61 | 4.30 | 3.79
4 8 5.75|15.21 | 4.88|4.65| 4.48 | 4.35| 4.24 | 3.94 | 3.44
9/21 9 5.45|4.92 | 4.59 | 4.36 | 4.19 | 4.07 | 3.97 | 3.68 | 3.18
5 | 10 4.70 | 4.37 | 4.14 | 3.98 | 3.86 | 3.76 | 3.48 | 2.98
1172 1 11 4.52 | 4.19 |1 3.98 | 3.82 | 3.70 | 3.60 | 3.32 | 2.82
6 |12 | 4.05|3.84 | 3.68 | 3.56 | 3.46 | 3.18 | 2.69
13/2 | 13 3.94 | 3.72 | 3.57 | 3.45 | 3.35 | 3.07 | 2.58
7 |14 3.63 | 3.47 | 3.36 | 3.26 | 2.98 | 2.49
15/2 | 15 3.56413.393.27 | 3.18 | 2.90 | 2.40
8§ | 16 3.3213.203.11 | 2.83 | 2.34
1772 | 17 3.26 | 3.14 | 3.05 | 2.77 | 2.28
9 |18 : 3.09 | 3.00 | 2.72 | 2.22
19/2 | 19 i 3.04 | 2.95| 2.67 | 2.17
10 | 20 : 2.9112.63 | 2.12
21/2 | 21 f 2.87 | 2.59 | 2.08
15 | 30 | 2.36 | 1.85
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Tasie IT
Values of o such that 1 —G (i) = .05
4. A
T | W 4 6 8 ’ 12 16 u | 60 100
2 ‘ 2 e — 24.1 l 22.3 21.4 20.6 20.0 9.7 19.4
2 4 11.6 10.1 9.3 { 8.5 8.1 7.8 7.6 7.2 7.2
4 4| 104 ] 94 89 [ — — — - | -
2| 6| 87| 74| 66 — — — ! — - | -
Tasre IIT
Values of wo auch that 1 —G(wo ;a’,b) = .05
df. 2
20 | » | 4 | 6 s | 12 16 2% 0 60 100
2 2 — ‘ —- 23.4 21.9 21.1 20.4 —_ — 19.2
204|110 96| 88| 80| 76| 72 | — — | 6.6
4 | 4 9.8 8.9 8.4 | -- - - - - | -
2 | 6 8.3 l 7.0 6.3 : —- — i — ' —

The recursion formulas previously given may be applied when X is set equal to
zero. The computation of G(w,) is considerably easier than that for G(uwy).

In certain special cases alternative methods of evaluating G(ws) are available
based on the special cases indicated in Seec. 5. For example, when b =a -+ } ke
G(wo) = I.(2a, 2a) where I, is the incomplete beta function with z = 'wo/ (1 + wd).
Other special cases with b = a — %, b = a & £, ete., were used as a check on
some of the computing.

The general form like (40) based on (24) is

Glws; ar, by, as, by) = [Blas, by)Blag, bg)]™ / N 4 )

(42)
(i — Dywe/c

(@ + D + ywo/o)

..]dy,

Table 1. Values of wo such that 1 — G(wo) = .05 are given in Table I for similar
experiments for ranges of values of ¢ and of b wide enough to meet most practical
situations. The table is essentially restricted to values of the parameters, a < b
for g(w; a, b) = g(w; b, @) and indeed a =< b again covers most situations com-
monly met.

The formulas given in Secs. 6 and 7 were used in constructing Table I, and
“trial and error’’ methods were used to arrive at the appropriate values of wy .
Tables of the incomplete beta function were used to check certain entries in view
of the special cases mentioned in Sec. 7.

- (ywo/e) (1 + ywo/c)™™ [a_l -

8. Tables of G(u,) and G(wy).
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Tasre IV
Bounds on 1—G(ws ; a, b, \) for certain values of we in Table 111
a 5 A o . é(un, a, b))
1 1 8 23.4 .945-.950
1 2 4 11.0 .935-.940
1 2 6 9.6 .940-.945
1 2 8 8.8 .940-.945
2 2 4 9.8 .945-.950
2 2 6 8.9 .945-.950
2 2 8 8.4 .945-.950
1 3 4 8.3 .940-.945
1 3 6 7.0 .940-.945
1 3 8 6.3 .940-.945

Table 11. Some of the values of 1 such that 1 — G(uw,) = .05 are given in
Table II. For this table, \; = A, = A, and F; and F, defining u were both taken
to have 2a and 2b degrees of freedom. Formula (36) was used after the basic
integrals I(wy ; X, 0, 2) and (s ; A, 1, 1) were evaluated in the manner described
in See. 6(ii). Values of A, @, b in Table II are too limited to make the table of real
practical use and its main purpose is for comparison with Table III.

Table I11. We approximate to G(ux ; a, b, \) using G(ws ; a’, b) where a’ is
defined in (6). This approximation has been used to obtain values of w, listed in
Table III such that 1 — G(wo ; @, b) = .05, the values being obtained by inter-
polation in Table I. Table III then contains values of w, appropriate for com-
parison with values of uy in Table II. We see immediately that values of wo and
wo agree quite well. We can more easily assess the importance of the small dif-
ferences observed by examining Table IV.

Table IV. In Sec. 6(ii), bounds on the error in computing G(uy ; a, b, A) were
stated. In order to further compare the approximation to values of iy in Table IT
by values of w, in Table III, we have considered the values of wy in the first three
columns in Table III and evaluated 1 — G(wo ; a, b, \) as indicated for Table II
and in Sec. 6(ii). Then bounds on 1 — G(wy) are given in Table IV. Each value of
wo is such that 1 — G(wo ; a’, b) = .05. From Table IV it is clear that the values
wo are sufficiently close to the appropriate values of w4, to be satisfactory for
most purposes. )

Some general comments based on Tables II, III, and IV are in order.

(i) Values of G(uyo ; a, b, A) and G(w, ; @, b) are fairly stable even for con-
siderable variation in values of A. This implies that it will have little effect in
applications if we enter tables at a value of A somewhat different from its true
(and usually unknown) value.

(ii) Values given in Table III are close enough to the corresponding values in
Table II, even for small degrees of freedom, to make their use meaningful. Since
the construction of percentage points of g(w) is much easier than the construction
of such values for (i), it was decided that Table I be constructed and that its
use will be satisfactory.
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9. The use of Table I.
(i) Tests of hypotheses on sensitivity. In the comparison of the sensitivities of
identical experiments, we shall be interested in tests of the hypothesis,

(43) He: A==\,
against one-sided and two-sided alternatives,
Ha:(1) M > N
(2) M #= s

The test statistic is v and we limit consideration to the case of identical experi-
ments, & = Fy/F,, F, and F, independent noncentral variance ratios with
parameters A\; and A, , respectively, and 2a and 2b degrees of freedom. The test
procedure will be to reject H, with significance level a for H, : (1) when 1w > tio(a)
and to reject H, with significance level 2a for H,:(2) when w > () or 1/w
> wbg(a). The other one-sided alternative, Ha:\; < s, is included under H,: (1)
by interchange of definitions of ; and F,.

It is apparent from §(w) that N enters as a nuisance parameter in the calcula-
tion of w(a). Fortunately wo(e) is not greatly affected by changes in A and con-
sequently it should be satisfactory to estimate A by taking the average of esti-
mates of A\; and \;. Such estimates may be found through estimating A in (4)
through equating well known expectations of mean squares to observed mean
squares in the analysis of variance.

We use Table I to obtain an approximation to ww(.05). It is necessary only
to compute o’ in (6) using @ and the estimate of A and then to interpolate in
Table I for wo , the required approximation to y(.05). Since we are at present
limited to the use of Table I, we must take o = .05.

(ii) Tests of hypotheses on multiple correlation coefficients. Consider R, the multi-
ple correlation coefficient of the dependent variable on p independent variables,
in usual multiple regression with assumed nonstochastic independent variables.
Let R be based on N observation vectors. Then it is well known that R*/(1 — R?)
has the distribution f{[R*/(1 — R*); p/2, (N — p — 1)/2, \] defined in (2) and now

(45) A= (a+ b)e'/(1 =5,

where p is the population multiple correlation coefficient estimated by E.
To compare two population multiple correlation coefficients in identical re-
gression experiments, we test

(46) Hq: pi=p1=p

(44)

.against
Ha:(l) pi > Pg
(2) p1 = p: .

This test is identical with that of hypotheses (43) and (44) upon proper associa-
tion of the parameters. We have redefined A in (45) and now require

(47)
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a = p/2
(48) b =N —p—1)/2
= Ri(1 — R3)/Ry(1 — RY).

), and hence p; and p; , must again be estimated and we suggest the method
proposed by Snedecor ([10], p. 348). This method is given by

(49) p(estimated) = 1 — (1 — R*(a + b)/b

in our notation.

It is of interest to compare values of p’ in identical multiple regressions, for
R? is commonly used as a measure of the fraction of the variation in the de-
pendent variable explained by regression on the independent variables.

10. Concluding remarks. The main effort in this paper has been devoted to
considerations on the distributions of w and 4 for similar experiments. We have
indicated, however, the necessary generalizations for consideration of the dis-
tributions of w and w based on central or noncentral variance ratios with 2a,
and 2b; and 2a, and 2b; degrees of freedom. For example, G(w) in this general
situation is given in (42).

The main applications of this work are in the comparison of the sensitivities
of identical experiments and in the comparison of the squares of multiple correla-
tion coefficients from identical regressions [in the sense that (a + b), @ and b in
(45) and (48) are the same for both experiments]. Schumann [8] has suggested
that, when a; and a, and b; and b, differ only slightly and are moderately large,
an adequate approximation to we(.05) may still be obtained from Table I.

Consider the more general situation with a; = a; = a, b; not assumed equal to
b2, and k; not assumed equal to k., k; , and k. being values of & in (4) for the
two independent experiments. Then, for a test on sensitivities, we would take
the null hypothesis to be

(50) Hoﬁ }\1/]01 = )\g/kz = A.

Our test statistic would be w = F,/ F, where F; , ¢ = 1, 2 is a noncentral vari-
ance ratio with 2a¢ and 2b; degrees of freedom and parameter of noncentrality
N I F;, 4= 1,2, is distributed approximately like K.F; , written F; ~ K, F; ;
where F; is taken to have the central variance-ratio distribution with 2a;
2(a + A)*/(a + 2);) and 2b; degrees of freedom, we take

(51) w~ KiF\/KoFs = (a + kiA)F1/(a + kA)F,

‘ = cu1/uy ,

where

(52) ¢ = bi(a + kad)(a + 2k1A)/b2(¢ + IaA)(a + 2kqA)

in view of (50), (6), and the definition for « parallel with (1). For the test on
sensitivities, we suggest the following procedure based on the apparent stability
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of values of w, in Table I, but the suitability of this procedure is not now subject
to check. Estimate ¢ by first obtaining estimates of A; and A, from the separate
experiments and by using the average of the estimates of A\;/k; and Ay/ks to esti-
mate A. Use the distribution of w = u,/us for similar experiments taking a* =
(a1 + a3)/2 for a and b* = (by + by)/2 for b and read the critical value w, from
Table 1. The critical value of iy is then taken to be cw, as an approximation. A
similar procedure may be used with the correlation coefficients. If (a; + b1) =
(az + b,), the hypothesis that p; = ps is not equivalent to the hypothesis that
A1 = Agin view of the form for X in (45). The steps required for an approximation
are parallel to those discussed in this paragraph.

Extensions of Table I for values of « other than .05 are desired. Means of ex-
tending Table I for values, « = .025, .01, and .005 are being investigated and it is
hoped that these extensions can eventually be obtained. Extensions of Table I
to the general case where a; % a» and b; 5 b, are not being considered. These
tables would only occasionally be required in applications.

We have suggested situations wherein this work will be useful. Examples in
taste testing, field experimentation, and regression have been worked out in
detail by Schumann and Bradley [9].
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