SOME PROBLEMS OF STOCHASTIC PROCESSES IN GENETICS!
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Summary. In genetics, stochastic processes arise at all levels of organization
ranging from subunits of the gene to natural populations. Types of stochastic
processes involved are also diverse. In the present paper, the following five
topics have been selected for mathematical discussion and new results are pre-
sented: (1) Random assortment of subunits of a gene. (2) Senescence in para-
mecium due to random assortment of chromosomes. (3) Process of natural
selection in a finite population (interaction between selection and random ge-
netic drift). (4) Chance of fixation of mutant genes. (5) Population structure and
evolution. Finally it is pointed out that new mathematical techniques will be
needed for a satisfactory treatment of Wright’s theory of evolution.

“Elles n’auroient di leur premiere origine qu’a quelques productions fortuites,
dans lesquelles les parties élémentaires n’auroient pas retenu l’ordre qu’elles
tenoient dans les animaux peres & meres: chaque degré d’erreur auroit fait une
‘nouvelle espece:. . .

Des moyens différents des moyens ordinaires que la Nature emploie pour la
production des animaux, loin d’étre des objections contre ce systéme, lui sont
indifférents, ou lui seroient plutdt favorables,’’?

—Maupertuis (Oeuvres, 1756)

1. Introduction. These words, written two centuries ago, foreshadow the sto-
chastic nature of genetic and evolutionary processes. Actually, stochastic pro-
cesses are found in all levels of organization with which genetics is concerned,
in the gene, the cell, the organism, and the population.

The types of stochastic processes involved are also diverse. Of special impor-
tance is the Markov process, which Kolmogorov [1] called stochastic definite;
the exact treatment of regular systems of inbreeding is a typical example of a
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finite Markov chain, though workers in this field have seldom used such a ter-
minology [2] [3]. The fate of an individual mutant gene appearing in a popula-
tion may best be studied by the theory of branching processes. The probability
distribution of gene frequencies in natural populations is important in the
mathematical theory of evolution developed by Fisher and Wright. It contains
many difficult problems of continuous stochastic processes in which the Kol-
mogorov equation plays a fundamental role [4] [5] [6] [7].

In the present paper a few topics will be selected from various levels of or-
ganization ranging from subunits of the gene to natural populations.

2. Random assortment of subunits in chromosome division. The idea that
each gene is composed of a number of subunits is a natural one, since analogous
situations are familiar in physics and chemistry. If the subunits are of two or
more different kinds, they will be sorted out in the process of chromosome
division.

. In fact, such a model was proposed more than three decades ago to explain
the high mutability of the so-called mutable genes. Unfortunately, precise ex-
perimental results in a few higher organisms apparently contradicted this
model [8]. Later, however, as investigations of the finer structure of the chromo-
some have developed, a multiple-strand structure has been revealed and this
encouraged the formulation of the same type of model again. Matsuura and
Suto [9], in order to explain certain irregular segregations in maize, assumed
that each chromosome contains 8 strands and that mutation may affect any
onc of the 8 gene replicates. A similar model was used by Auerbach [10] to ex-
plain the occurrence of mosaics in the offspring of Drosophila males treated
with mustard gas. More recently, Friedrich-Freksa and Kaudewitz [11] carried
out an interesting experiment with Amoeba proteus treated with radioactive
P32 in which they assumed that sorting-out of the radiation-damaged strands
or subunits causes death to the organism in later generations.

Let us consider a model in which each chromosome consists of # subunits
and suppose that a mutation has occurred in one of them. The subunits dupli-
cate to produce 2n which separate at random into two groups of n subunits to
form the daughter chromosomes. Thus the total number of subunits per chromo-
some is kept constant, but the number of the mutant subunits may change
from generation to generation due to random segregation. We follow a single

“line of descent obtained by selecting randomly one of the pair of daughter
chromosomes in each generation. We shall designate by E;(z = 0, 1, ---, n)
the state in which a given chromosome contains exactly 7 mutant subunits. Let
.a” be the probability that the chromosome is in the state E; at the /th genera-
tion (assuming that the mutation occurred at ¢ = 0). In the present model, the
transition probabilities p;; = Pr{li; < E.;}(,j = 0, 1, 2, - - - , n) are given by

W e BE/E)
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Thus the probability chain will be expressed by
(2.2) a” = P

in which &' is a column vector whose sth element is ai? and Pisann X n
matrix whose element in the sth row, jth column is p;;; . Obviously E; and E,
are absorbing barriers and the remaining states Ej , - - - ,» En_y1 are all transient.
Eigenvalues of the matrix P, which satisfy | P — X\ | = 0, are

(2.3) A=2 <2,:::>/(2:> (r=0,1,---,n).

This can be shown by following a procedure similar to that which Feller [5]
gave in an appendix of his paper (p. 244), noting that a non-trivial set of y,’s
which satisfy

meyj = MY
=0

can be written in the form

Yyi = Z cvj(") (¢, is a constant)

v=0

> O NO) '2n it 4 2n
j=Zolez.7 = (%) (n_y)/<n)’

where j” = j(j — 1) --- (7 — » + 1) is the factorial of degree ».

Though the general expressions for eigenvectors of P and its transpose P’
corresponding to these eigenvalues do not seem easily obtainable, we can ob-
tain numerical results for small values of n. Thus we can construct formulae
giving probabilities of various states at a given generation.

I have worked out the cases of n = 2, 3, 4, 5, 6, 8, and 16, the details of which
will be published elsewhere.

We are particularly interested in the probability () with which a mutant
chromosome (i.e., a chromosome containing only mutant subunits) first appears
by the sorting out process in a given generation #( = 1, 2, 3, --- ). This is ob-
tained as dy” = a” — a{'™ for the case of n subunits. For n — 2, 4, 8 and
16, we have

w _ 1 g)“‘

@ ”6(3 ’

(t) _ 1 9 -1 _ (é)‘—l (E)t—l
dy ——m{l% (7> 330 5 -+ 135 70 ,

® _ _l__ B)t—l _ (1_2_>l—1
d” = 12870{(242'0) (15 (709.1) 15

+ (904.5) G%g)t—l — (686.9) <1£905)H + -- } ,

and
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TABLE 1
" fmax drax (%)
2 1 16.667
4 5 2.287
8 15 0.481
16 35 0.111
dis = 0.0051626 (3 1) 0.0193172 37 -+ 0.0358431 399
624\ - 13728)“l
— 0.0457009 <8—99-) + 0.0401643 <ﬂ27_3 + ctt.

If the mutant chromosome causes death to the Ameba as in the model of
Friedrich-Freksa, ef al. [11], d* gives the probability of a death at the #th gener-
ation.

It may be expected on intuitive grounds that the larger the number of sub-
units, the later will be the appearance of the mutant chromosome. One way of
expressing this tendency is to calculate the value of ¢ which maximizes d®¥.
Table 1 shows these values and corresponding values of d.

Next we shall consider the situation in which = is very large. The proportion
of mutant subunits x = i/n (0 £ x < 1) may be treated as a continuous vari-
able with good approximation. Let ¢(z, f) be the probability density of x at
time ¢ measured in generations. If éx is the amount of change in x per generation,

E(z) = 0, E@Gz)’ = z(1 — z)/(2n — 1) and, for k = 3,
E(5z)* is o(1/n). Therefore we can use the following differential equation to

obtain ¢(x, £) (see [16]):

2

do(x, t) _ 1 9
ot~ 2@n — 1) o

(24) {e(l — 2)¢(, 1)} O<z<1),

with the initial condition

o ~ - _1
(2.5) o(x,0) = % (13 n) ,

where & is the Dirac function. The singular equation (2.4) is equivalent to the
one describing the process of random genetic drift in natural populations if we
put 2n — 1 = 2N, N being the effective population size. The complete solution
of this equation has been worked out (see Section 4). The pointsz = Qand z =1
act as absorbing barriers and the rate of fixation at * = 1 is given by ¢(1, )/4N
which reduces to

dff) _ 1 Z (_1)1—12(‘& + 1)(2’5 + l)e_‘(i*l)"4".

T 4Nn T
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The value of ¢ giving d maximum is obtained by solving
1 — 1567 4 84¢™™ — 3006 + 825¢ " — ... =0,

where » = #/2N. The required root of this transcendental equation can be ob-
tained numerically; r = 1.2940 - - - .

From this we can derive the following remarkable asymptotic relations
(n— «):

f bmax ~ 2.597,
(2.6)
ldmax ~ 1.08/(4n”).

Namely, fmax Will be proportional to the number of subunits and de.. will be
inversely proportional to the square of that number.

Finally it is desirable to consider the cases in which the initial number of mu-
tant subunits is more than one, that is, some number, say np, where p is the ini-
tial proportion of the subunits (0 < p < 1). The limiting probability of absorp-
tion at n, starting at 4, is the 7th component of an eigenvector corresponding to
) = 1, and from the third formula after equation (2.3) it follows that p = ¢/n
is the required probability. The total frequency of mutant chromosomes in the
#th generation will be expressed in the form:

2.7) & (p) = ;0 &’ =p+ é Ci(p, WA?,

where the C;(p, n)’s are functions of p and n but not of ¢. If the mutant chromo-
some changes the fitness of its possesser, this type of formula must be applied
with caution. Generally d< should be used as a basis of comparing expectation
with observed results.

For very large n, (2.7) should approach

(2.8) P+ 2 @+ Dpg(—=1)'FQA — 0,0 + 2,2, p)e FEDIE
4=1

where ¢ = 1 — p and F designates the hypergeometric function (see (5.3) in
Section 5).

The experimental data of Friedrich-Freksa [11] appear to agree with the
model for n = 16.

3. Senescence in Paramecium. It has been known to biologists for a long
time that if cultures of the protozoon, Paramectum, are kept under exclusive
asexual reproduction, they lose vigor and eventually die. This phenomenon is
known as senescence.or aging of paramecium and in fact is one of the old prob-
lems in biology. Recently Dr. T. M. Sonneborn has made extensive studies' of
this phenomenon and discussed a hypothesis that the aging is due to an ac-
cumulation of chromosome aberrations in the macronucleus (cf. e.g. Sonneborn
and Schneller [12]). Following the suggestion of Dr. J. Lederberg, I have tried
to work out the logical consequences of the stochastic model involved.
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The macronucleus is considered to be polyploid, consisting of, say, # ¢chromo-
some sets each with n chromosomes. As in a polyploid nucleus of higher plants,
the various chromosomes are mixed at random inside the nucleus’. If we desig-
nate the chromosomes of a set by successive letters 4, B, C, --- , N and desig-
nate sets by subscripts, then the normal constituent of the nucleus will be ex-

pressed in the form:
n

A1 By Cp---N;
Az Bg Cg"'Ng

m
Am Buw Cu--- Nn
We designate the total number of chromosomes by M(= mn).’

On this model we assume that at the division of the macronucleus, each
chromosome duplicates itself followed by the random distribution of chromo-
somes into two groups of equal number to form the daughter macronuclei.
The death by aging is assumed to occur whenever chromosomes of any
one type are lost entirely from the nucleus by chance. Various states of the
nucleus will be expressed as n dimensional vectors. Here we have a hierarchical
structure of absorbing barriers, and a direct attack on the problem may seem
extremely difficult. However, because of the symmetry of the model, we can find
an easier approach. Suppose we start from an individual with normal macro-
nucleus, and each generation takes one of the daughters to continue the lineage.
Our purpose is to calculate the probability that all the » chromosome types
coexist in the individual at the fth generation. Since the process of loss of any
type of chromosome is irreversible, we can treat the problem as if all possible
chromosome constituents are viable and then remove unsuitable parts after-
wards.

Let us fix our attention on the tth generation. We designate by P; the probabil-
ity that all the chromosomes except those of one specific type have been lost by
that time, by P, the probability that all but 2 specific types have been lost and
that these two coexist. Generally P; will be defined in a similar way. Since we
can classify n chromosome types into two alternative groups like A vs. non A4,
A or B vs. neither 4 nor B, etc.,

¢1=P1’

¢ = <?)P1+P2,

- b3 = <:]))) Py + <;) P, + <g) P;, etc.,

+ This model is essentially different from the one considered by Kimball and Householder

[13] to explain the delayed lethal effect of radiation.
57 in this section has a different meaning from that of the previous section. Generally
the same symbol in different sections may not have the same meaning.
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up to

R D LR G L o ) P

where ¢; represents fif (i/n) in (2.7) ({=1,---, n — 1). For example, ¢
is the probability that all the chromosomes except A or B or both have been lost
and this is a sum of the probabilities that all but A have been lost (P;), that all
but B have been lost (P;), and that A and B coexist but all others have been
lost (P2). It is convenient to consider the above relations as a linear transforma-
tion of P;’s into ¢;’s with an (n — 1) X (» — 1) matrix whose element in the

1th row and jth column is *) . The inverse transformation can be shown to have a

matrix whose element in the th row and jth column is (—1)** (;) . Let Q(= P,)
be the probability that all the chromosome types coexist in the macronucleus at
the /th generation. Since 2 n; <Z’> P, =1,
n—1 n n—1 i (1
a=1-5 () p=1-F 0 (M)
i=1 \? . =1 J

Substituting ¢; = f& (j/n) from (2.7) and noting that

n—1
5 com (M) Gm = 1
we have
0 =% 5 (-0 (;‘) o (),
where

o)/

According to Sonneborn, the usual strains of Paramecium have a chromo-
some number of n = 41, but also there are strains with n = 35 and 50. There
is a good reason to believe that the macronucleus is at least 100 ploid (m = 100).
Thus the total number of chromosomes M in the macronucleus would be of the
order of 5000. This fact will enable us to use the asymptotic formula for £ (j/n)
given in (2.8).

o= & (-1 (;‘) 3 @ + DG/ = /(=1
' X F(1 — i, + 2, 2, j/n)e-ti+nen

or if we put
n—1

o = EI (-—l)i (?)(]/n)(l — J/’n)F(l — 1,14+ 2,2,5/n)

=
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3.1 Q = Z (2 + 1)(_1)n+aa‘ gLt AN
=1
It can be shown that o; = O for¢ <n — 1. Fori 2 n — 1
o _ln=2t
" n — D’ n =0

and in general, writing ¢ = (n — 1) + »(» = 0),
(it VLI SRRV (v +n— 2) b+ + 20— DIt o

R Ay e p+n—2/" (u+n-— 1 whn=ls

where ©pya_1 is Stirling’s number of the second kind defined by
= }_‘1 &’ 57

(see [14]). Examination of the absolute values of ay_14» at » = 1, 2, - - - (small
values of ») suggests that they are at most of the order of 1/x relative to that of
a,-1 . This enables us to write down the following asymptotic formula for small
Qg :

2n — D! (1\" —to—1)t/am |
(3.2) Q ~ %’___l))’_ (ﬁ) Pl (t— o);
or applying Stirling’s formula for n!,
! 1 _ _ n—1
(3.2" Q 5 exp{(2 log2 — n < P ) t} .

Formula (3.2) can also be derived by a different method, by using the multi-
variate Kolmogorov forward equation. To reach a given small probability of
survival (2), the approximate number of generations required will be given by

f = n4—1"—1 (0397 — 035 — 2.3 logy, ©).

In the case of m = 100, n = 41, we have{ = 156.4 — 23 logi;o© and the gener-
ations giving 99%, 99.9% and 99.99 % deaths are respectively about 202, 225,
and 248 generations. This agrees reasonably well with the finding of Sonneborn
that under exclusively asexual reproduction, many of the lines die before 200
fissions and almost all die before 324.

A slightly modified model was suggested to the author by Dr. J. Lederberg:
After chromosomes have reduplicated themselves in the macronucleus, they are
_distributed into two daughter nuclei in such a way that each chromosome has
an independent and equal chance of going to either daughter. This differs from
the previous model in that the total number of chromosomes per cell does not
remain constant. This leads to the following asymptotic formula for the probabil-
ity of survival:

Q ~ (1 _ e—-4ml(t+4))n (t N OO)
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Tor n = 41, m = 100, the number of generations for 99 %, 99.9 % and 99.99 %
deaths are respectively about 175, 210, 246, rather similar to the previous model.

Also these models allow predictions for time of death of a lineage derived from
repeated regeneration from a small fraction of the macronucleus and for segrega-
tion of recessive factors, thus permitting two additional independent tests of the
models by comparison with data.

4. Process of natural selection in finite population (interaction between se-
lection and random genetic drift). From the standpoint of population genetics,
the most elementary step in evolution is the change in gene frequency, especially
the one due to natural selection. It may not be difficult to imagine that the
process of change is not entirely deterministic, since there exist various factors
which introduce an element of indeterminacy into the process, among which
random sampling of gametes due to finite population size is of special interest.
Let A and A’ be a pair of alleles whose frequencies are respectively ¢ and 1 — «
in the population. In natural populations, the number of individuals is usually
large and there may be overlapping of generations, so that gene frequency and
time parameter (f) may be treated as continuous variables with advantage.
We shall designate by ¢(z, p; t) the probability density that the gene frequency
lies between 2 and z -+ dx at the fth generation given that the initial gene fre-
quency is p at ¢ = 0.

The simplest situation is obviously that of pure random genetic drift in which
no mutation, selection, or migration is involved. The gene frequency changes
randomly from generation to generation due to random sampling of gametes in
reproduction. In this case if N is the number of reproducing individuals in the
random mating population, ¢ satisfies the following partial differential equation

[15], [16].

(4.1) 3 = IV 3% {x(1 — x)} O<z<1),

with the initial condition
é(z, p; 0) = 3(z — p),

where & represents Dirac’s delta function. Equation (4.1) is a special case of the
Kolmogorov forward (or Fokker-Planck) equation, and its pertinent solution is
given by
(2 + 1)L — 1) 1 —i(+1) /4N
4.2) e, Py t) = - Tiy (r)Ti—1 ()€ ,
where r = 1 — 2p, z = 1 — 2z and Ti_(r) is the Gegenbauer Polynomial
defined by

Tiea () = (@ -2|— D g (, +2,1—142, L%._f)
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Boundaries 2 = 0 and = 1 act as absorbing barriers and as the number of
generations increases, the probability distribution of the classes in which A and
A’ coexist (“heterallelic,” or unfixed, classes) approaches a definite form and
decays at the constant rate of 1/2N. The process ultimately leads to complete
fixation or loss of one of the alleles.

When linear pressures (mutation, migration) are involved, the problem
becomes a little more complicated. A thoroughgoing analysis of the solutions
of the differential equations in this case has been made by Goldberg [17]. The
present author also obtained the pertinent solution® by studying the law of change
in the moments of the distribution [6]. Malécot [4] [18] studied interesting
problems of migration and decrease of correlation with distance in the case of
no selection

Tor the cvolution of the genetic system, however, natural selection which
acts on mutant genes will be of utmost importance. The simplest situation here
is genic selection in which no dominance exists. Suppose gene A has selective
advantage s over A’, measured in Malthusian parameters [19], that is to say,
the rate of geometric growth. The partial differential equation now becomes

4.3) g—‘f = I}\_/% {z(1 — )¢} — s-(% {z(1 —2)¢} O <z<1),
with the same initial condition as before. Recently this equation was used by
Wright and Kerr [20] in connection with their selection experiment in very small
populations. The state of steady decay of the heterallelic classes was successfully
analysed by Wright. The complete solution of the above equation, which re-
duces to that of pure random drift for s = 0, is given in terms of oblate spheroidal
functions studied by Stratton and others [21]:

¢(x, D; t) = kzﬂ Ck e—')\kt+2czvg)(z)’

where ¢ = Nsand ¢ = 1 — 2z. The spheroidal function Vi (2) is expressed asa
series of Gegenbauer polynomials:

Vi) = 2 fk Ta@),
n==0,1

where f%’s are constants, and primed summation is over even values of n if &
is even, odd values of n if k is odd. For details of the solution see [7]. The bound-
arics z = 0 and » = 1 act as absorbing barriers as in the preceding cases and
the gene A will ultimately be fixed in the population or completely lost from it
The probability of fixation is larger, the larger the value of s.

% Strictly speaking, the existing solution which treats boundaries as reflecting barriers
is not entirely satisfactory, because for small populations boundaries should act as elastie

barriers
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At the state of steady decay, the probability distribution ¢ decreases in value
at a constant rate \ :

. 1d¢_ _
mog = o

For small values of ¢, we can expand Ao into a power series in c.

2 4 2 s 231
5%.7 3-58-7 58.73-11
This suggests that genic selection increases the rate of decay as compared with
the case of no selection (¢ = 0), at least when ¢ is small. Values of A, for larger
values of ¢ will be found in the above reference [7] in which values of 2N\, up
to Ns = 8 have heen studied.

Very often, however, there is some dominance between alleles, and usually
“complete” dominance. The main purpose of this section is to develop a method
to analyse this sitnation.

Let us suppose that A is dominant over A’ and the dominant genotypes 44
and AA’ have selective advantage s, measured in Malthusian parameters, over
the homozygous recessive (4’A’). The differential equation for the probability
distribution ¢ is

@5 2= L0 - e} - L sl - 2) 0<z<1),

with the initial condition

(44) 2NN\ =1+ g P

é(z, p, 0) = ¥(x — p).
If we apply the transformation
¢ — e—)\te2cz(1—z/2) w
to (4.5), we obtain the following ordinary differential equation:

46) (1 — Dw” — 4zw' +[A -2 —%(z“’ - 1) +;‘§(z2 -1 + z)’]w =0,

in which A = 4NX and ¢ = Ns. We note that for the case of no selection (¢ = 0)
the pertinent solution is the Gegenbauer polynomial. So we try to expand the
solution into a series of Gegenbauer polynomials, which are known to form a
complete orthogonal system in the interval [—1, 1]. Let

w = ZO dn T:t(z))

in which the d,’s are constants. If we substitute this into (4.6) and use repeatedly
the recurrence relation,

ThG) = 2 123 T () + 2-’%—% T (2) (set T"4(2) = 0)
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we obtain a 9-term recursion formula for the d,’s. Now we expand A and d,’s
into power series of c:

A =ko+ ke ko 4+ kd®> + -+,

dy = (aic + ac® + asc® + ---) do,

dy = (aic + o3¢’ + a3’ + --+) do,

ds = (a3c® + o3c® + aic' + - ) do,

d4 = (a§c2 + a§63 + . ")do,

ds = (asc® + -+ ) do, ete.,
and substitute these into the recursion formula. By picking out coefficients of
equal powers of ¢, we can determine the &’s and o’s, by means of which the eigen-
value A (or A) and the eigenfunction w are expressed. The most important in-
formation is the smallest eigenvalue (A\o) which gives the “rate of decay,” and
the corresponding eigenfunction. To get \o, we set ko = 2, since for ¢ = 0,
A(= 4NX) should be 2, as shown in the previous treatment of pure random
drift in which the final rate of decay is 1/2N.

Though the calculation involved is quite tedious, we can obtain the desired
coefficients step by step. For the smallest eigenvalue Ao we have:

. «9C

47) 2NN =1 -—4c+ 2.1;)37 ¢+ 2.;3.7 ¢ — 2%:.;3;1.1562.;??19]_ R
The coefficients of the eigenfunction are:

=0 al= -t g M

2-3-7 30527
= —gmm, g, o= —TILXI107 -,
3 _ 1
= mET

oy = 249 X 107 ete.

The same method may be applied to get similar expansions for other eigenvalues
and eigenfunctions. ,

The shape of the distribution curve at the state of steady decay is given by
(4.8) é(z) = &Py, .

It will be convenient to adjust do so that [s¢(z) dr = 1 (fixed classes exbluded).
- The rate of fixation and loss of the gene A per generation at this state is given

by ¢(0)/4N and ¢(1)/4N and therefore

(4.9) 4NN = ¢(1) + ¢(0).

This can be derived from (4.5) noting that ¢(z) is finite at the boundaries (z = 0
and » = 1), as shown for the case of no dominance in [7].
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TABLE 2

2Ns =1 i 2Ns = —1
0.0 0.688 l 1.389
0.1 0.764 i 1.251
0.2 0.838 ’ 1.142
0.3 0.910 1.056
0.4 0.977 0.990
0.5 1.037 0.940
0.6 1.088 0.908
0.7 1.128 0.879
0.8 1.155 0.865
0.9 1.168 0.860
1.0 1.166 0.866

A numerical example will be given here. For weak selection favoring domi-
nants; 2Ns = 2¢ = 1, we get

2N\ = 0.928
and
wo = do[Ts(2) — 0.0058T1(z) — 0.00287T(z)
+ 0.0004T5(2) + 0.00006T3(z) + -],

in which Ts(2) = 1, Th(2) = 3z, Ta(z) = $(62° — 1), Ts(2) = $(72" — 32), -+ - .
Values of ¢(x) at 0, 0.1, 0.2, - - - and 1 are listed in Table 2. They are adjusted
by Simpson’s rule so that the area under the curve is unity. ¢(1) + ¢(0) comes
out 1.855, while 4N)\, is 1.856. The agreement is satisfactory for this level of
approximation. As a second example, we assume weak selection against the
dominants: 2Ns = 2¢ = —1. 2N g is 1.128 and values of ¢(z) are given in Table
2. In this case ¢(1) + ¢(0) comes out 2.254 while 4N, is 2.256. Again the
agreement is satisfactory.

The above treatment leading to the power series expansion of eigenvalues and
of coefficients of eigenfunctions is rather heuristic. For the more rigorous treat-
ment of the problem, further investigation of these series will be required.

As to uniqueness of the solutions of the type of singular partial differential
equations considered in this section, an investigation could presumably be based
on Section 23 of Feller’s paper [22].

The most remarkable fact suggested by the above analysis seems to be that
as compared with the case of pure random drift, selection toward dominants
(s > 0) decreases the final rate of decay, while selection against dominants
(s < 0) increases it. At least for weak selection the above results follow from
(4.7), since the most influential term —ic is negative if c(= Ns) is positive and
positive if ¢ is negative.

For this continuous treatment to be applicable, the population number N
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TABLE 3
Classes Frequencies %
74 4+ 147 14.80
64 + 247 16.48
54 + 34’ 16.32
44 + 44’ 15.51
34"+ 54’ 14.28
24 + 64’ 12.64
14 + 74’ 9.97
Total............ ... 100.00

should be fairly large so that 1/N is negligible as compared with 1. If the popula-
tion is extremely small, we must treat the problem by the methods of finite
Markov chains. The transition probability that the number of A genes in the
population becomes j in the next generation, given that it is 7 in the present
generation will be given by

Pils = (2‘?) x'j(l - zl)ﬂv—j (¢4,j=0,1,---,2N),
where ' = z + 6z, in which z = /(2N), and éz is the change of gene frequency
by selection per generation and is sz(1 — z)’ if s is small. The rate of decay of
the unfixed classes and their limiting distribution may be obtained by iteration.
For example, if N = 4, 2Ns = 1, the limiting form of the distribution (fixed
classes excluded) becomes as follows (Table 3), with rate of decay (\o) 11.875%,
giving 2N\, = 0.9500. If there is no selection (s = 0), it turns out that the rate
of decay becomes 1/2N = 0.125 or 12.5%. Note that with selection for domi-
nants, the rate of decay is smaller.

5. Chance of fixation of mutant genes. In any large natural population, gene
mutations may be occurring in each generation. Most of the mutant genes are
likely to be deleterious but a few of them may turn out/to be advantageous.
Such advantageous mutant genes have a tendency to increase their frequencies
in later generations thus having a positive chance of establishing themselves
even in a very large population. Because of its importance in evolutionary
genetics, the probability of fixation of mutant genes has been studied by Fisher
[23], Haldane [24] and Wright [25] [26]. However, due to mathematical difficulties
involved, so far only a few cases have been successfully worked out.

In this section I will try to present the solution under quite general conditions
and will show that the previous results are obtained as special cases.

We will designate the selective advantage of the mutant homozygote (4 4)
by s and that of the heterozygote (A A’) by sh. Let u(p, t) be the conditional
probability that the mutant gene reaches fixation by the /th generation, given
that its initial frequency is p. Under the assumption of a continuous model and
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random mating.it is possible to show that u(p, t) satisfies the following partial
_ differential equation:

_p(1 —p)d'u _ _ du
(5.1) az TIN o + sp(1 — p){h + (1 — 2h)p} —— %
Here we have inevitably the following boundary conditions:
(5.2) u(0, £) = 0, u(l,t) = 1.

For the special case of neutral genes (s = 0), the pertinent solution is
(53) ulp, ) = p+ 2, @i + Vpg(—1)'F(1 — 4,4 + 2,2, p)e ",
=1

which agrees exactly with the results obtained by the study of moments [16].
Usually the process of evolution extends over an enormous period of time and
hence the probability of ultimate fixation will be of special importance. We will
designate such probability by u(p) which is defined by

u(p) = lim u(p, ?).
t->%0

For the neutral mutant gene, u(p) = p. If » is the initial number of mutant
genes, u(p) = v/2N for this case and hence the probability of fixation per mu-
tant gene is 1/2N.

For the general case the probability may be obtained. by setting du/a¢ = 0
in (5.1). This leads to

? 1 ‘
(5.4) u(p) ____j; e—2ch(l—z)—~2:x dx/-[o e—?cD:(l—:c)—zcx da:,

where ¢ = Nsand D = 2h — 1.

The rate of approach to the ultimate state of complete fixation or loss may be
given by the smallest eigenvalue Ao of equation (5.1). For a small value of ¢,
we can expand )\, into a power series in ¢ as follows:

(5.5) 2NXo = 1 + Kic + Ko + Kid® + Kuc* + -
where
1 223 1 2°
Ki= =10, Ki=gptim Dy Kemgga D5l
.1 A 283
Ki="gmz ozl ~mmul e

It should be noted that for the case of no dominance D = 0 and the above series
(5.5) agrees with (4.4) provided that 2s is used instead of s to'express the selective
advantage of the homozygous mutants. For the case of complete dominance,
D =1 or —1 according as the mutant gene is either dominant or recessive.
In the former case of D = 1, (5.5) agrees with (4.7). Returning to formula (5.4),
we will consider a few cases of special importance in evolution. To obtain the
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chance of fixation of individual mutant gene denoted by « we may put p = 1/2N.
For the case of no dominance (D = 0), we have

u=(1-¢"/0-¢"),
or denoting the selective advantage of the homozygote by 2s,
u=(1-—¢e")/1 — ™).
Thus for a slightly advantageous mutant gene we may write
(5.6) u = 2s/(1 — ™)

with good approximation. The result agrees with Fisher [23] who used the method
of branching processes and also with Wright [25] who used the method of in-
tegral equations. For a large N this chance is very close to 2s as given by Haldane
[24]. For a slightly disadvantageous mutant gene (s < 0), we have

5.7 u=28/("" — 1),

where s’ = —s. The chance is not negligible if Ns’ is small. The result agrees
with that obtained by Wright [25].

For the completely dominant gene (D = 1) with small selective advantage
s(s > 0) we may use the formula u = 2s unless Ns is small.

The case of a completely recessive mutant gene (D = —1) with small selective
advantages s (s > 0) in the homozygous state is of special interest. Haldane
[24] estimated the chance of fixation as of the order of 4/s/N using the method
of branching processes and Wright [26] estimated it as of the order of 1/s/2N
by his method of integral equations. Qur formula (5.4) gives

(5.8) u = v/2s/(xN)
as the best simple approximation for a large N. Since
V'2s/xN = \/2/7\/s/N = \/4/x\/s/2N,

it may readily be seen that our result lies between those of Haldane and Wright.
Furthermore it is interesting to note that Wright [26] obtained numerically
the formula 1.1(s/2N)! as the average chance of fixation for values of s ranging
from 4/2N to 64/2N. The factor 1.1 is indeed very close to +/4/x which is

1.128 --- .
Finally our general formula (5.4) allows us to calculate the chance of fixation

of a nearly recessive mutant gene with selective advantage s (s > 0) in the homo-
zygous state. Namely for 0 < h < 1, we may have

(59) u = g 4/ 23(1,,—;2”) / {1 — 26(v/4Nsh/(1 — 2h)) }

as a good approximation, unless 2N's is small. Here ®(z) stands for the error
function

®(r) = (1/4/27) foz e dy.
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As an example consider a case with N = 10° and s = 10™". If the mutant gene
is completely recessive (b = 0), u & 0.8 X 10~°. With slight phenotypic effect
of h = 0.01 in the heterozygote u ~ 0.9 X 107%, while with

=01 u=x23X10"%

6. Population structure and evolution. So far we have considered the process
of change in gene frequency in an isolated population in which mating is ran-
dom and the number of individuals remains constant through generations.
This may be an over-simplification for the study of evolutionary processes in
general, since most species in nature may have a much more complicated breed-
ing structure. Unfortunately this immediately brings us baffling problems, for
the solution of which new techniques will be required.

First let us suppose that a species is subdivided into numerous isolated colo-
nies, each of which may receive, from time to time, migrants taken as random
samples from the whole population. Mating is assumed to be random within
each colony. Following Wright [27] we will call this the “island model.” The
model may be realistic to describe a species inhabiting an archipelago such as
the Galapagos Islands studied by Darwin. The number of individuals may
fluctuate from generation to generation not only due to fluctuation in environ-
mental conditions but also due to change in the genetic make up of each colony
which in turn is influenced by the population number. If the number of repro-
ducing individuals per colony is small, say less than 100, and if isolation is so
severe that less than one migrant is expected per thousand generations, the
chance of disadvantageous mutant genes reaching fixation may be considerable,
as suggested by (5.7), and accumulation of such genes will lead to extinction of
colonies. We would like to know then what is the chance that an isolated colony
becomes extinct before a migrant comes in to start a new colony. What is the
joint distribution of the population number and the gene frequency among
colonies at the steady state? These questions may have to be answered before
we reach conclusions on the optimum structure of populations for the evolution
of a species.

Next we will consider the continuum model of a population. The model is
realistic for representing a species inhabiting a wide range with more or less
uniform density. Here the whole population can not be a random mating unit
since a tendency toward “isolation by distance’” may arise due to limitation in
the locomotive ability of the organism [27]. In the course of time advantageous
mutant genes may arise with exceedingly low rate in various spots in the con-
tinuum and these will spread into the population. If the local fluctuation of
‘gene frequencies is negligible, the process of spread will be very similar to dif-
fusion of physical particles in a medium, except here that differential rate of
multiplication is involved among particles.

Let x(u, v) be the relative frequency of a mutant gene denoted by A at a
point (u, ») in the continuum with rectangular coordinate system. The process
of spread of the advantageous dominant gene may be described by the equation
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(6.1) %z = mVz + sz(1 — z)°,
where s represents locomotive ability of an individual and corresponds to a
diffusion constant in physical systems, V* denotes the two-dimensional Laplace
operator (8°/8u’ + 8°/3¥"), and s is the selective advantage of the dominant gene
A to its allele A’. The simplest situation is that s is constant throughout the
continuum. The mutant gene will spread in the form of concentric circles from
the point of origin which we may take as (0, 0). Introducing the polar coordinates
(r, 6) and assuming that 8°z/4’0 = 0, (6.1) becomes

ax oz |, lox 2
6.2 LT, 02 -
62) ar  or? + ror +aa(l — 2,
where 7 = mf and « = s/m. At an early stage when the frequency of A4 is still
low, the distribution may be approximated by

z(r, ) = xoe”*’gmr/27,

where z, is the initial frequency of A at the origin. Beyond this stage, however,
we face a difficult problem of solving a non-linear diffusion equation.

The problem of steady state distribution is worthwhile to investigate if the
mutant gene is advantageous within a closed region but disadvantageous out-
side, as in the case of melanic genes in many lepidopteran species which in recent
years have increased their relative frequencies in a spectacular fashion in many
industrial areas but remain in low frequencies in rural districts—a phenomenon
known as “industrial melanism” [28].

Real mathematical difficulties arise, however, when we take random fluctua-
tion of local gene frequencies into consideration. The fluctuation may be due to
random sampling of gametes in reproduction or due to random fluctuation of
selection intensities brought about by chance fluctuation of local environments.
Notable contributions have been made by Wright [27] [29] [30] and Malécot
{4] [18] for the case of no selection, but more important cases involving selection
are yet to be worked out.

Such studies should be indispensable for our understanding of the process of
speciation and also of the mechanism of evolution in general.

In his theories of evolution Wright [31] put forward an important concept of
“balance,” especially of balance between directional factors such as selection,
mutation, and migration and undirectional or stochastic factors such as random
sampling of gametes and random fluctuation of environmental conditions. It
appears that new methods of stochastic processes will be needed for a satisfac-
tory treatment of Wright’s theory of evolution.
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