ON SEVERAL STATISTICS RELATED TO EMPIRICAL
DISTRIBUTION FUNCTIONS'

By MEYER Dwass

Northwestern University

1. Introduction. Let X;, ---, X, be n independent random variables, each
with the same continuous c.d.f., F(z). Let F.(x) be the empirical c.d.f. of the
X,’s. We consider the following random variables,

Dn = sup (Fn(t) - F(t))7
—0L tL o

V.= inf {FQ):F.() — F@t) = Da),
—0 Lt <o

where {F(f): } denotes the set of values of F(¢), for which ¢ satisfies the con-
dition after the colon. These are sets in the interval (0, 1). In the definition of
U.,u{ } means Lebesgue measure. Obviously, there is no loss of generality in
supposing that the X,’s are uniformly distributed over (0, 1) and hence

U, = u{t:F,(t) — ¢ > 0},

W D, = ozlfgh(F;.(t) - 1),
V.= inf {&:F.() —t=D,}.

—0 Lt <o

In [5], Kac showed that as n — «, U, has an asymptotic distribution which
is uniform over (0, 1). A stronger result was recently obtained by Gnedenko and
Mihalevié in [4] in which they showed that for every n, U, is uniformly distrib-
uted. Birnbaum and Pyke in a forthcoming paper [2] show that for every =,
V., is also distributed uniformly over (0.1). The methods of [2] and [4] are com-
putational and the purpose of this note is to derive the uniform distribution of
U, and V, by a short method which employs results of E. S. Andersen and a
well-known relationship between the Poisson process and uniformly distributed
random variables. In Sec. 3, a generalization of these results is given.

2. Proof of uniform distribution of U, and V,. The proof depends on two sets
of facts. The first refers to the Poisson process. By this we mean the stochastic
process, X (¢), with independent and stationary Poisson distributed increments,
defined for ¢ = 0 and such that X (0) = 0. For this process, it is well known that
given that X(1) = n, a positive integer, then the conditional distribution of the
discontinuity (jump) points, & < £ < -+ < f, of X(#), 0 = ¢ = 1, is that
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of the ordered values of n independent, uniform random variables. Another way of
saying this, somewhat roughly, is that the conditional distribution of the random
function X (#),0 < ¢ < 1, given that X(1) = n, is that of the empirical c¢.d.f. of n
independent, uniform random variables. For a proof of these facts see p. 400 of
[3]. The second set of needed facts is contained in a paper of E. S. Andersen [1],
namely:

LemMA (ANDERSEN). Let Yy, Y, - - - be independent and identically distributed
random variables. Make the definitions

So=0(as), 8= X;,
j=1

L, = smallest © for which S; = max (0, Sy, ---, S,) .

N, = number of positive termsin Sy, ---, S,.
Then
1
(2) P(L,.=m[S,.+1=O)=P(N,=m|S,+1=O)=r+1,
form = 0,1, .-, rif and only if
(3) P(Si:Sf+l=O):0’ (1:=1,2,"',7').

We remark that Andersen’s results are much more general, but we state them
in a form convenient for our applications.

TaeoreM 1. U, and V. are each distributed uniformly over (0, 1).

Proor. Consider the Poisson process X(f), 0 < ¢ < 1. Divide the
interval (0, 1) into the r + 1 parts (0, 1/(r + 1)), (1/(r + 1), 2/(r + 1)), -- -,
(r/(r + 1), 1), where r + 1 is greater than n and is a prime number. (Whenever
we state 7 — « we will understand that r + 1 goes through the primes.) The
increments of X (#) in these intervals are independent and identically distributed
Poisson random variables. We denote these increments by Wy, Wy, -+, Wy,
respectively, and define ¥; = W; — n/(r + 1),s =1, .-+ ,r + 1. The ¥’s are
independent and identically distributed. We want to show that they satisfy (3) of
Andersen’s lemma. This is so because S; = S,,; = 0 implies that r+ 1)
X(i/(r + 1)) = ni. This cannot hold since by the primeness of r + 1, n must be
a factor of X(i/r + 1), but since X(f) is non-decreasing this would mean
X@/(r + 1)) = n, or r + 1 = 4, a contradiction; thus (3) holds. Under the
condition X(1) = n, X(¢) is distributed like F,(¢), for's < ¢ < 1. Hence we can
define Un, V, for X(¢), 0 < ¢ < 1. We next observe that when X(1) = n, then

v, - N |4 LB

"r4+1 Tr+1’ "r4+1] Tr+1°
where A, B are constants which depend on 7 but not on r. Thus, under the con-
dition X(1) = n, both absolute values in (4) converge in probability to zero as
r — . Since N./(r + 1) and L,/(r 4+ 1) are asymptotically uniformly dis-
tributed over (0, 1) as r — o, this completes the proof.
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3. Generalization. A generalization of Theorem 1 can be given which may be
of interest. Let

Xll,“‘ ,Xlnl;"' ;Xkl,"',lek,

ben = ny + - -+ + m; independent random variables each uniformly distributed
over (0,1). Let F*(#), - - - , F*(£) be the empirical c.d.f.’s of each of the % sets of

variables and define
F,t) = pFP@) + - + aF ), 0st=1,

where p = (01,02, - , o), pi > 0, pr + p2 + - -+ 4+ pr = 1. In the special case
where p; = ni/n,1 = 1, - - - , k, then F,(¢) is the empirical c.d.f. of the combined
set of n variables. Otherwise F,(¢) can only be described as a nondecreasing ran-
dom step function on (0, 1) such that F,(0) = 0, F,(1) = 1. Nevertheless,
random variables U, , D, and V, analogous to U, , D, and V, may be defined for
F,(t) exactly as was done in (1) for F,(¢); (replace Fn(¢) by F,(¢) in (1)). In the
following theorem we understand them to be so defined.

TaroreM 2. U, and V, are each distributed uniformly over (0, 1).

Proor. Let Xy(f), Xa(t), -+, Xi(t) bé k independent Poisson processes and
define X(¢) = piX1(2) + - -+ + pXx(#). Then X (2) is also a process with station-
ary independent increments. Define now p = (p1, p2, - - , px),

U, = p{t:X1t) — X(1)t > 0,0 =t < 1},
D, = Sup (X() — X(1)8),

V, = iof {t:X(t) — X(1)t = D,}.

0<t<1
We suppose first that
(5) = ai/a, -, ;= a/a,

where a, , - - - , a; are positive integers, and a; + - - - 4 ax = a. If b is a number
such that P(X(1) = b) > 0, then U,, ¥, are each uniformly distributed over
(0, 1) given that X(1) = b. The proof of this fact follows exactly the proof of
theorem 1. In particular the definition of the p.;’s by (5) allows a verification of
the condition (3) of Andersen’s lemma which is exactly analogous to that done in
the proof of Theorem 1. Since the p,’s as defined by (5) are dense in the set of all
possible p/’s, it follows by a simple continuity argument that the conditional
distribution of U,, V, given that X(1) = b, is uniform without the restriction
(5). If X(1) = mXa(1) + - -+ 4+ ;Xi(1) = b, this need not uniquely determine
the values of the X;(1). That is, there may be two different sets of positive or

zero integers, ;, -+, Tx ; Y1, - -, Yk, such that
pmit o ot =prt oo ey =0

On the other hand, there is a dense subset of the k-dimensional unit cube where
this cannot happen, namely any dense subset, each point of which has rationally
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independent coordinates. Thus, in such a dense subset X(1) = piny + -+ +
pxny, if and only if z,(1) ="ny, - -+, 2:(1) = m, for a set of p;’s which are dense
in the set of all possible p.’s. For such p;’s the conditional distribution of U, and
V, given that X,(1) = ny, -+ -, Xs(1) = my , is thus uniform. This holds also for
the exceptional p;’s by a continuity argument. This completes the proof since
FO®), - -, F®(1) are distributed like X1(2), - - - , Xi(¢) for 0 < ¢ < 1, under the
conditions that X3(1) = n,, -+, Xi(®) =

4. Concluding remarks. The linear combinations of Theorem 2 are convex
(e + - -+ + px = 1) and positive (p; > 0). The convexity, as well as the strict
positivity, is a matter of convenience. The condition of non-negativencss, how-
ever, cannot be removed. It is easy to verify directly, for example, that the
theorem does not hold for

F(t) = pFP0) + pF®0),

if p1 > 0 and py < 0. The trouble arises because the condition (3) of Andersen’s
lemma fails to hold.
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