ON SOME DISTRIBUTIONS RELATED TO THE STATISTIC D}

By Z. W. BirNBaUM AND RonNaLp PykE!
University of Washington

1. Introduction and summary. Let X; < X, < --- < X, be a sample of size
n, ordered increasingly, of a one-dimensional random variable X which has the
continuous cumulative distribution function F. It is well known, [1], that the
statistic
(1) DY = sup (F.(z) — F(z)},

—0 LT L+
where F,(z) is the empirical distribution function determined by X;, X,, ---,
X , has a probability distribution independent of F. One may, therefore, assume
that X has the uniform distribution in (0, 1) and, observing that the supremum
in (1) must be attained at one of the sample points, write without loss of general-
ity

() D} = max (i/n — U)),
1Sisn
where U; < U, < --- < U, is an ordered sample of a random variable with

uniform distribution in (0, 1).

For a given n > 0 define the random variable ¢* as that value of 7, determined
uniquely with probability 1, for which the maximum in (2) is reached, i.e., such
that

(3) D} = */n — U,
and write
(3.1) Us = U*.

The main object of this paper isto obtain the distribution functions of (¢*, U*),
of +* and of U*. The asymptotic distribution of a, = 7*/n is also investigated,
and bounds are obtained on the difference between the exact and the asymptotic
distribution.

A number of general identities, which are not commonly known, have been
verified and used in proving the above-mentioned results. Since these identities
may be helpful in other problems of this type, they are separated from the main
proofs and appear in the next section.
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180 Z. W. BIRNBAUM AND RONALD PYKE

2. Some useful lemmas.
Lemma 1. For all real a, b and integer n = 0

n

@) Z()<a+z><b DRRRRRTD o} el

=0 =0

Proor. The identity
®) 6-mE(}) @+ -9 = @+,
for all real a, b and integer n = 0 (for b = n the left-hand term is defined as the
limit for b — n) was proven by Abel ([2], Vol. 1, p. 102). Denoting the left side
of (4) by f.(a, b) we have
£e) = 1)) = 6 = ) 35 () (@ 96 — 97 = @+ 5"

by (5). For n = 1, (4) is obviously true. Assuming it is true for n» — 1 we have

@) = nfaa,B) + (@ + b = m 3 @D,

=0

which completes the proof of (4) by induction.
LemMmA 2. For all real a, b and integersn = 0

© Z (?) @+ 90 =9 = F @+ D@t

Proor. For b # n, the left side of (6) is by Abel’s identity (5) equal to
[(a+b)" = (a+ n)"l(b — n)7,

which is equal to the right-hand side of (6), summed as a geometric progression.
That (6) is true for b = n follows from the continuity of both sides of (6).
Lemma 3. For all real a, b and integers n > 0

(a - 1)(b —_ n) Z.— <> (a + ,L)’(b _ i)n—i—l

@ =
=n-—_T_—1[(a+b)”(a+b—n— 1) — b+ 1D"0 — )l
Proor. Since (¢ — 1)/ (¢t +1)=(a+72)/(GE+ 1) — 1, we may write

@-Db-mE; e (f) (@ + )b — )"+

:';7;’ Z%(?_—:: i) a—14i+4 D0+ 1 —i— 1)

— (b —n) Zﬂ% (f) (a + )b — )™,
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Applying Lémma, 2 to the first sum and identity (5) to the second, one concludes
that this is equal to the right-hand side of (7).
CoROLLARY 1. For all integers n > 0 we have

®) (:‘) fn — ) = (0 4+ )™,

n—1 1
Z;) 141 ‘
Proor. For a = 0, (7) yields

Ly 1 (n) o n—i—1 __ 1 [’IL" —_ b” n n]
i) - = | 0 )

and (8) follows for b — n.

3. The distributions of (:*, U*), 7* and U*. The following notations will be
used: for any function f, denote by [f ¢ B] that subset of the domain of f on which
f takes values'in B, a subset of the range of f; for any univariate distribution
function, F, let Pr denote the n-dimensional product measure determined by
the probability measure associated with F; without a subscript, P will be that
measure determined by the uniform distribution function; the value of n, though
suppressed in the notation, shall always be made clear by the particular cir-
cumstances of its use; furthermore, forj = 1,2, --- nand u ¢ [0, 1], set

pi=Pl* =7, G*u,j) = PIU* = u,¢* £,
9) '
H*(u) = PU* = u];

for real z, [z] denotes the greatest integer less than z.

All the theorems of this section are stated at the outset, and the proofs are
then presented in what appears a natural sequence.

TaEOREM 1. The probabilities for i* are given by

— 7 ”21 1 (n) -1’( ')n—s'—l

(10) pi=n 2\ i'(n — ¢
Jorj=1,2---m,

TuEOREM 2. The joint probability distribution of t* and U* is given for all
u € [0, 1] by

G*(u’ k) = i‘K(u;]) ' (k = 1’ 2; v n),
where
K(u,j) = PIU* = u,i* =j] =
Dj ) . if nu = j
n—lz<n> G — w6 — nun™ X (:') (nu —t — D¢+ 1)

=5 \? te=[nu]

(11)

if nu < j.
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TaeorEM 3. The random variable U* is uniformly distributed over [0, 1].
Proor or TueoreEM 2. Forj = 1, 2, - -+, n, consider the events
B, = [U* < uji* =
=[U; <wu;j/n—U; >i/n— U, ()]
Employing the transformation
Z;i=U;; Zi=U;—-U;, (@#5
one obtains
Bi=1[Z; 2u;Z:> (@ —j)/n, (0 #))l
Setting Z = (Z,, Z,, --+ Z,), the joint probability element of Z for j fixed is
dH{(Z) = n'dZ,dZ; - - - dZ,
for
[-Zi=Zi1 <4y 5£2,,=0=2Zju=s---=2Z.=1-172)
and zero elsewhere. Assume » and j fixed such that nu < jand 1 < j < n.
Writing A = [nu), one has

Kwj) = [ aH2)

0 Zj-1 Zj-rt1 Zj-\ 22
= n! de_l [ de_z e [ de_)\ f de—)‘—l v aZ,
2/n —u

~1/n A n —u

u 1-2; Zn Zit2
. [ dz; f iz, f AZy - f AZss.
Zy (n—7)In (n—j—1)/n 1/n

By the linear transformation

Z:'+t' fori=1,2,--~,n—j,
2 =131 — Z; fori=n—j+ 1
14 Zi i fori=n—j+2,n—-5+3,---,n,
one obtains
1 Zp-r42 Zpn—\+1
K =nt [ dono [ v [ daws o
(n—1)/n (n—A)/n 1—u
12) .
Tn-j+2 Tn—j+l - %3 %2
[T g [T g o [l [ .
1-u (n—i7)In 2/n 1/n

Denote by Ji the result of integration up to and including that with respect to
Zx . By repeated integration one finds

n—j n—j—1
J Tp—jt1 Tn—i+l
n—j

=(n—j)l—n(n—j—1)!°
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Hence

N R R VRO LM

where for7 =0,1,2, ---, 7,

N =w .
Wiu,j) = 2l =5 F D (nu — 1 + 1).
Repeated integration gives
n—\ n—A—1 i —A—1
_ Taa1 Taat1 ooy @ — 14 u)
J"_x_(n-—k)! n(n — \ — 1)!+‘_§+1W.(u,.7) 1 —=x—=1

By properties of the binomial expansion one obtains

T P —1 "Z—:" (n - ( . y
n—N nan—rA—-D! @w-NI=\ s ) Tnagr = 1 4w

(1= W) = (s + N)/7)

and therefore

n—\ _
I 1 > ('n )‘) (@arpr — 1 + w)°

(13) - (n — N5 s
A1 =W (s 4 N /0 — ul.
The identity
1 Zn Zn—X42
f( iy dz, f( o dny * - f; ol (w — 1 4 Tnry)’ dTnrg -+ - dny dTn
_ s! —(s+\) A L (8 + >\> _ _ s+A—t t—1
=¥ >\)!n [(nu) ; ; (nu —1—10) 14+ 7]

is easily proven by induction on A. Applying (5) one shows that the right side
of this identity is equal to

sin” ™M R 5 4\ e -1
Hence it follows from (13) that
K(u,j) = nlJa

=1 "E_x ( n ) 1 — )" s+ A — nu)n™ gf (s -}; )\)

N o= \S + A =

i — ¢t — D4+ D

]

which is the expression in (11) in the case nu < j.
With a few minor changes, the above argument may be also used to prove
Theorem 2 for j = 1 and 5 = n. For example, in the discussion preceding (12)
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one has to define Zy = Z,,; = 0, in (12) Jo = 1, and in (13) 2,41 = 1. Since
= 1 has A = 0, the theorem in this case follows directly from (13).
To complete the proof of Theorem 2, it remains to consider the case of u =
j/n. Since DY = 0 then, by (3), U* < ¢*/n. This implies that for u > j/n
we h3ve

[U* <w,¢* =j] = [U* = j/n,o* =j] = [* =],
hence the first statement of (11) is true.
Proor or THEOREM 1. We have
pi = Pi* = j] = PIU* = j/n,¢* =]

lim K(u,j)
w/iln

L2 a - o 3 () G- om0 0

N i=j =

which, after neglecting zero terms and interchanging summations, becomes for
s=1—1

-3 (:‘) t+07 % (" : ‘) Gt =D — s+t — )

> (:‘) (t + 1)‘-*0: — -y

by a direct application of the binomial expansion. Setting ¢ = n — ¢ — 1 for
t < m, one obtains

n—i-1 ) .

the last sum being zero for j = n. By Corollary 1 it follows that for all 7,

1 =1 n 1:‘.~_7:n—s'—l
RS O E

This completes the proof of Theorem 1.
Proor or THEOREM 3. With A = [nu] as above, it follows from Theorem 2 that

H*W) = 3 K(w,9)
A
D SPNE Z( )(1 w6 — nun™

j=1 i=2+1 n i=]

ZXG) (nu — ¢ =1)"'¢ + 1
s
Interchanging summations in the last term according to the pattern

n

)39 3 SED FNCIIND I 35 WP

JeAtl =g fam) t=\+1 tum) t=t
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(the second step follows because the index j does not appear in the summand;
the last step follows since at ¢ = X the summand is zero), one obtains

A n
H*(w) = ’Z_; pi+n" § (?) ¢+ D

(19) )
Z_; @ =A@ — nw) (:L: tt) (n — nw)" " ou —t — 1)

Using known properties of the binomial expansion, one can show that, whenever
n—1#1

n—t

> — N — nw) + st — A — nu) +

8=0

(15)
(n : t) (mu — t — 1)'(n — nu)"™" 7 = —(t — N — ¢t — D"

When n — ¢ = 1, this sum reduces to
1
Sim—1—=Nn—-1—nu)+s@n —2 -\ —nu) + S}(=1)°
(16) 8=0
=—Mn-1-N—n(l —u).

Substituting (15) and (16) into (14), while setting ¢ — ¢ = s, one obtains
A n—1
B = Xy — 1 55 (1) 6 = N+ D7 — ¢ =
@an =1 = \!
-1 =-w—n"r—-Na+ 1"

Employing Theorem 1, Corollary 1 with ¢ = n — ¢ — 1, and Lemma 2, one
concludes from (17)

- ””‘)\—n+i+1(n>.- wn—i a" A —i—1-2
* n ) n—i

<:¢) Fn— )" — (1 —u) — (0 — Npn
5 (:o) i — )" — 14+ u

=0
= u.
This completes the proof of Theorem 3.
A consequence of Theorem 1 is the following
CorOLLARY 2. For all integersn > 0,7 > 0,
0<p1<pz<"' <pn<1:

7 =il

e 1

lim np; = —,
n-»00 4=1 7/!

=1

. e
lim npns = ¢ = LG DT
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Proor. The first statement is evident from (10); the second follows from (10)
by applying Stirling’s formula; and the third follows by applying Stirling’s
formula to the expression

SRR VA, (:‘) i(n — )",

= n" =1+ 1

which can be obtained from (10) by Corollary 1.

Thus the statistic D} places more weight upon the larger observations than
on the smaller ones, in the sense that the maximum deviation between F and
F, is more probable to occur at X, than at X, fork = 1,2, .-+, n — L

4. The asymptotic distribution of a, = i*/n. Writing U}, instead of U*, we
have according to Theorem 3,

(18) P[Un < u] = Hn(u) = u, 0= u

IIA

1.

Since the Glivenko-Cantelli theorem ([3], p. 260) implies that D} converges in
probability to zero, it follows from (3) that

(19) on — Usr — 0 in probability.

From (18) and (19) one can conclude that a, is asymptotically uniformly dis-
tributed on [0, 1].

The following theorem contains more specific statements on the asymptotic
behavior of the distribution of a. .

TuEOREM 4. For every positive z'nteger n we have

n—1
(20) Bla) =14 Lamm B,
— a=1_1
(21) x—,‘/n*"“ngz%éPr{a,.<x}§x for0 =z = 1.
i=0 ¢!

Proor oF THEOREM 4. From Theorem 1 we have

—'n-l > X3 — n—1i—1
Elan) = 1211";‘11'—'- 1( )Z(n )
— 1 . l _]_: —n—1 ny . ot
_5(1 n>+2n ;\3 i)z(n )

and this by Lemma 1 yields (20). To obtain the upper bound on Pr {a, < z}
in (21) we note that

[nz]

Gu(x) = Pr {an < 2} = 21 Pi

Yu=

and in view of Corollary 2 this must be <z forall1/n < z < 1.
To obtain the lower inequality in (21) we need
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Lemma 4. Let X be a random variable with c.d.f. F, such that F(0) = 0,
FQl+4+0) =1 F@&) =xzfor0 <z = 1. Then

(22) F(s) =2 s — vV2E(X) — 1.

Proor or LEMMA 4. We have

B(X) = foleF(X) >1 - folF(X) ix

s

gl-—f:deX— )F(s)dX—ledX=%{1+[3—F(3)]2}

F(s
and this implies (22). One verifies directly that, for given s and F(s), equality
is attained in (22) when F(¢) = ¢ for 0 < ¢t < F(s), F(¢) = F(s) for F(s) =
t<s F@) =tfors =t =1

According to the upper inequality in (21), Pr {a, < z} fulfills the assumptions
of Lemma 4, which together with (20) yields the lower bound of (21).

It may be noted that by an application of Stirling’s formula one obtains from
(21)

(23) 0 £ 2z — Pria, < z} = 0(n™),
and that (20) together with (3) yields

n—1 ¢

(24) E(DY) = 2% U1

=l
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