NOTE ON SUFFICIENT STATISTICS AND TWO-STAGE
PROCEDURES

By S. G. GHURYE
Unaversity of Chicago
0. Introduction. This note is the result of an attempt to discover problems in

which one can apply the two-stage procedure used by Stein [1] for tests regarding
the mean of a normal population. One such problem, that of testing for a loca-
tion parameter of an exponential population, was found to be easily soluble along
the lines of Stein’s work. An investigation of the problem of optimum statistics
for such procedures was also undertaken, and partial solutions, given in Sec. 2,
were found. In this connection, the author would like to thank the referee for
his useful comments.

1. Testing for a location parameter of a distribution. Throughout this paper
F(z) will be a one-dimensional c.d.f. with at least two points of in-
crease. Further, {Y,} will always denote a sequence of independent random
variables having a common c.d.f. F(z) and {X,} will denote a family of se-
quences of independent random variables, all elements of any one sequence
having a common c.df. F{(z — 0)/o], —© < 8 <w,0 > 0. We shall be dealing
with statistics or sequences of real and single-valued functions #(n; z1, - - , Z»)
and s(n; x1, -+, zs) of n real variablées, n = 1, 2, ---, about which one or
more of the following assumptions will be made as required:

AssumprioN I. For any integer n > 0, any a > 0, any real b and any

(@1, -+, z.) €RT,
1) tn;az, + b, -+ ,az, + b) = at(n; 1, -+, xa) + b.
AssumprionN II. Analogously,
2) s(n;axy + b, --- , ax, + b) = as(n; z1, + -+, Tn).

AssuMprioN III. There exists a positive, nondecreasing and unbounded
sequence k(n) such that

® Pr{t(n; Y1, -+, Ya) = 2/k(n)} = G()

is independent of n. Without loss of generality, we may assume k(1) = 1.
AssumprioN IV. The random variables ¢(n; Y1, -+, ¥V,)and s(n; ¥1, - -+ , ¥)a
are stochastically independent.
AssumprioN V. There exists a positive integer m, such that for any n > m,
t(n;xy, -, %,) is & function only of m, n, {(m; Z1, *++ , Tm) DA Tma1, *** , Tn«
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156 8. G. GHURYE

‘AssumprioN VI. Let
4) Pr{s(n; Yy, :--,Y,) <z} = H(z; n).

Then H(0; n) = 0 for all n.

Now, let ® be a population whose c.d.f. is known to be F[(x — 6)/s], but
0, o are unknown, and suppose that it is desired to obtain a test of Hy:0 = 6,
against the alternative 6 > 6, with the following properties:

(a) The size of the test is to be a prescribed probability « for all ¢ > 0;

(b) The power of the test for 6 = 6, + &, where § > 0 is a given number,
must be not less than a prescribed probability 8 > « for all & > 0;

(c) The power — 1 as § — . '

It is easy to see that, if Assumptions [-VI are satisfied, the following pro-
cedure, which is essentially that given by Stein, has the required properties:

Choose an m satisfying Assumption V, and let

(5) x = infimum of all y such that [ G(yu) dH(u;m) = 1 — o

[ 660 artsm— 1+ «] / [ 606 — Gtxu ~ 00) amtusm)
® v= if the denominator > 0,
0  otherwise;
M PG =1~ [ 6 Bl m) + v [ (Gm) — Glyu — 0 dHw; m);
8 x’ = supremum of all y such that P(y) = 8;
©) p=(x—x)/8>0.

Take m independent observations X;, - -+, X,, from @, and calculate
Sm = 8(m; X1, -+, Xm).

Let N be such that
(10) E(N — 1) < psm = k(N),
except if ps, < k(m), in which case N = m.
If N > m, take N — m more independent observations Xm41, -+ , Xx from
@®, calculate
(11) U= {N; X1, -, Xn) — 6}k(N)/5m,

and reject H, with probability ¢(U), where

0, u < X,
(12) o(u) =47, u=x
1, u > X.
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The expected sample-size is
E(N) = mPr {psn < k(m)} + ; (m + 1) Pr {k(m + r — 1)
(13) < psm = k(m + 1)}
=m+ 2 H{k(r)e o ";m},

where H(z) = 1 — H(z).
For computational convenience, we have the inequalities

(14) v < EWN) <v+ ¢

where

(15) v = mH{k(m)e"p"}; m} + u )k_](a'pu) dH (u; m),
apu>kim

(16) € = H{k(m)a'_lp—l; m},

and k() is any monotone function of » > 0 such that k{k™(n)} = n for
every integer n > 0.

It may be noted that, if in Assumption III we drop the restriction k(1) = 1,
then ck(n), with ¢ > 0, serves instead of k(n) (with a different G for each c).
However from (10) it is easy to see that N is independent of this ¢. Thus the
restriction k(1) = 1 does not cause any loss of generality. In the same way, it
can be seen that if we substitute cs(n; z1, - -+, Z,) for s(n; &1, - -+, 2a), ¢ > 0,
N is unaffected. .

Examples in which ¢ and s satisfying the assumptions can be found are pro-
vided by the normal distribution, which was discussed in detail by Stein, and
the exponential distribution which we shall take up here.

Of the several possible choices for (#, s) in the normal case, Stein considered
two, in both of which s* is the usual estimate of o*. By using a special linear
function for ¢, he was able to obtain a test whose power is independent of «
instead of merely being bounded below by a function independent of o as re-
quired in property (b) above. However, he noted that this procedure “wastes
information,” and advocated one using the sample mean as ¢. In fact, the use
of any statistic other than the sample mean is wasteful in the sense that it leads
to a higher expected sample-size, as we shall see in Sec. 2.

Next, let @ be a population with c¢.d.f. F[(x — 6)/c], where

: 0 if =0,
17) F(z) =

1—-—¢° if z>0.

Let 2y , -+ , & denote the rearrangement of numbers i, -« -, T» in as-
cending order of magnitudes, and let

(18) to(n;x;,‘w,x,.)=xm=min(a:1,---,x,.).
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This is a sufficient estimator of 6, and we shall see in the next section that it
is the best for use as “#”. If corresponding to independent observations X,
--+, X, from ®, we put Z; = X, and

Z; =Xy — Xy, 1=23,---,n,
the joint density of Z;, --- , Z, is
nlo"exp{—nz—0—(n—1z—- - —2}/c
(19) f(zly"”zn)= if zlg072i;0,'l:=2,3y'“°vn)
0 otherwise.

Any function satisfying Assumption II is a function only of the differences of
the arguments, and hence only of Z,, -+« , Z, . It is thus independent of Z; and
can be used as ““s” if it is positive with probability 1. This is true more gener-
ally, as shown by Lemma 2 of the next section. It will be seen (Example 2)
that, asymptotically as ¢ — «, the best statistic to use as s is

(20) 80(7&; £ PE xﬂ) = ;xi - nto(n; T1, * xﬂ):

which together with / is sufficient for o.
For this pair of statistics, we have from (19)

(21) k(n) =n, G(z) = F(x),
(22) H(u; m) = fo "% " dg/im — 2)), w>0
o u = 0;

y=0, x=a'"P_1

)

(23) o e
8p = {aVimY _ gUmy

and », € are given by

v=m ];mu'”'ze'“ du/(m — 2)! + {(m — 1)/c} f”u'"'lé"‘ du/(m — 1)1
(24) )
€ = f u" %™ du/(m — 2),

where ¢ = (op)”.
The values of » and e were calculated fora = 0.05 = 1 — gand a = 0.01 =
1 — B and several values of m and 8/¢. These are given in Table 1.

2. Optimum choice of statistics. We shall now prove three preliminary lemmas
which enable us to show that if a suitable sufficient estimator of 8 exists, it mini-
mizes the expected sample size among all ¢ satisfying the assumptions.

Lemma 1. Let Y be a real-valued, one-dimensional random variable, and f(y) a
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TABLE 1
Expected sample size
(The entries are given in the form » + ¢ and imply that y < E(N) < v + ¢)

7

m 0.05 0.10 0.20 0.40 0.60 0.80 1.00
2 379.0 189.4 94.8 47.4 31.6 23.8 19.1
+1.0 +1.0 +1.0 +1.0 +0.9 +0.9 +0.9
4 101.8 50.9 25.5 12.8 8.7 6.4 5.7
+1.0 +1.0 +1.0 +0.9 +0.8 +0.7 +0.6
6 81.0 40.5 20.3 10.4 7.6 6.5 6.2
a = .05 +1.0 +1.0 +1.0 +0.8 +0.5 +0.3 +0.1
8 73.6 36.9 18.5 10.0 8.3 8.1 8.0
+1.0 +1.0 +1.0 +0.7 +0.2 +0.0 +0.0

10 70.0 35.0 17.6 10.7 10.0 10.0 10.0
+1.0 +1.0 +0.9 +0.3 +0.0 +0.0 +0.0
20 63.9 32.3 20.3 20.0 20.0 20.0 20.0
+1.0 +1.0 +0.1 +0.0 +0.0 +0.0 +0.0
2 1980.0 990.0 495.0 247.5 165.5 123.8 99.0
+1.0 +1.0 +1.0 -fjl.O +1.0 +1.0 +1.0
4 218.3 109.1 54.6 27.3 18.2 13.7 11.0
+1.0 +1.0 +l‘.0 +1.0 +1.0 +0.9 +0.9

6 151.0 75.5 37.8 18.9 12.6 9.8 8.2
a = .01 +1.0 +1.0 +1.0 +0.9 +0.9 +0.8 +0.7
-8 130.1 65.0 32.6 16.3 11.3 9.3 8.2
+1.0 +1.0 +1.0 +0.9 +0.7 +0.5 +0.2
10 120.6 60.3 30.0 15.3 11.3 10.3 10.0
+1.0 +1.0 +1.0 +0.8 +0.5 +0.2 +0.0

20 104.0 52.0 26.8 20.0 20.0 20.0 20.0
+1.0 +1.0 +0.8 +0.0 +0.0 +0.0 +0.0

measurable, real-valued function with the property that for any real z, 6 and any
>0,
(25) Pr{f(cY + 0) — 6 £ oz} = Pr{j(Y) £ z}.

Then if f(y) s strictly monotone, there exists an interval I, open or closed, such that
yel=fy) =y, and Pr{Y eI} = 1.

Proor. To start with, we note that since the right hand member of (25) is a
nondecreasing function of x, f(y) cannot be a decreasing function; for if it were,
we would have

Prif(Y) < z} = Pr{f(Y + 6) — 6 < z} = Pr{f(Y) — 6 < z}
for all 8 > 0.

This implies that the c.d.f. of Y is constant and hence contradicts the assump-
tion that F(z) has at least two points of increase.
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Therefore f(y) is increasing, and
{yf@) < u} = {yy S 77@).
Let h(y) = f~(y) — y; then from (25) we obtain

(26) Pr{Y<x+ h—(a%-—l_—o)}=Pr{Y<:v+h(x)},

(27) Pr{Y=a:+ h(_aa_:;—l-_ﬂ)} =Pr{Y =z + h(z)}.
Suppose there exists a yo such that A(ye) # 0. From (26), we get the relation
PI‘{Y < Y + E%Q} = Pr{Y < yo + h(y)}.

By letting ¢ — 0 and again ¢ — «, we see that
h(ye) > 0 implies Pr{Y = y} = 1,
h(yo) < 0 implies Pr{Y < yo} = 0.

Hence, if there exist 2o , 3o such that h(zo) < 0 and h(yo) > 0, we must have
zo < yo. Consequently, there exist points zo, yo (which may be respectively
— o and «) such that

h(xo) = 0) h(yo) 2 0, h(y) =0 for m < Y < Yo,
and Prine <Y =y} = 1.

(28)

(29)

Finally, if h(yo) > 0 we see from (27), by choosing ¢ = 1 and 0 such that
2o — Yo < 6 < 0, that

Pr{Y = 5} = Pr{Y = yo + h(yo)} = 0

from (29), and similarly, h(xo) < O implies Pr{X = x,} = 0. Hence the result.
Next. we want to consider two statistics, one of which is sufficient for 6 and
both of which have 8 as a location parameter. More specifically we prove
Lemma 2. Let P(-; 0), — < 0 < =, be a family of probability measures on a
countably additive class of subsets of a set Q of points w; let f(w), g(w) be measurable
real valued functions on Q such that for any Borel sets S, T on the real line,

(30) P{f(S + 0) ng (T + 6); 6} = P{/(8) ng™(T); 0}.

If f(w) s a sufficient statistic for the family P(-; 0), the random variables
g(w) — f(w) and f(w) are stochastically independent.
Proor. Writing Pf(S) to denote P{f'(S) n Q; 0}, we have from (30)

(31) P{f(S) nQ; 0} = P(S — 0).
By the Radon-Nikodym Theorem and the sufficiency of f(w), we know that
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corresponding to each set T, there exists an integrable function A(T | z) on the
real line such that

PI®) ng™(D;0) = [NT|2) dPF @ — o).

This gives us

P{f7(8) ng™(T); 0} = P{f (8 + 6) n g~(T + 6); 6}
= [ X7+ 012+ 0 dBr@).
It follows that for every set T, we have

PUS) ng(T);0) = [ M(T — 2]0) dPf )

= [T - 2 arri@),
so that
Prig(w) e T | f(w) = 2} = u(T — z) for a.e. z [P,
and consequently
Prig(w) — f(w) € T | f(w) = 2} = u(T)

is independent of z.

CoROLLARY 2.1. Let ti(n; 21, « ++ , Zn),J = 0, 1, be functions satisfying Assump-
tion I and let to(n; 21, - - - , ) be a sufficient statistic for the family of distributions
I F(z; — 6), =0 < 6 < o..Then for anyn,if Xy, - -+ , X» are independent
random variables having the common c.df F[(x — 6) / o], the random variables
to(n; X1, -+, Xu) and ti(n; Xu, - -+ , Xu) — to(n; X1, - -+, X,) are independent.

CoROLLARY 2.2. If to(n; 21, - - - , %) is as tn Corollary 2.1 and s(n; 1, « -+ , &)
18 any function satisfying Assumption I1, the random variables to(n; X1, - -+ , Xa)
and s(n; X, - -+ , X,) are independent.

Lemma 3. Let o, ty, X1, - -+ , Xa be as in Corollary 2.1 and suppose that &y ,
t also satisfy Assumption 111 with respective sequences ko(r), ky(n). Then .

(32) ko(n) 2 Fa(n),
the equality holding if and only if
(33) Prity(n; X1, -+, X,) = ti(n; Xu, -+, Xa)} = L.

Further, for any a, b such that a < 0 < b,
Pria < t(n; X1, -+, Xa) — 0 < b}
(34) = Pria < h(n; Xy, -+, X,) — 0 < b}.
1 It may be of interest to compare this with the results of Pitman [3], pp. 401-402.
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Proor. From Assumptions I and III, it follows that
(35) Pr {ti(n; Xy, --+ , Xa) < z} = F{'(l::—o‘)‘ k](n)}) J=0,L1

Let f(z) = [ e dF(x), s = ko(n)/ky(n), and
' gle/ke(n)} = E{e"zltl(n; Ti,eee, Yp) — to(n; Yq,---, Y,,)]}.
Then from Corollary 2.1 and (35), we get
(36) fleaz) = f(2)g(z).

First suppose f(z)) = 0 for some 2. Then f(cr20) = 0 for every r, and hence
¢» < 1. On the other hand, if f(z) # 0 for all z, g(2) = f(c.2)/f(2) is a charac-
teristic function. Hence f(cn2)/f(2) = g(2)g(ca2) -+~ glen %), r =1, 2, -+,
is a sequence of characteristic functions. If ¢, < 1, lim,.« f(ch2)/f(z) = 1/f(2)
for every finite 2, and since the limit is continuous in z, it is a characteristic func-
tion. But f(2) is also a characteristic function. This implies |f(2)| = 1 for all 2,
which is impossible if F has more than one point of increase. Consequently,
¢, = 1, that is to say (32) holds.

It follows from (36) that ¢, = 1 if and only if g(z) = 1, in which case (33)
follows on account of Assumption I.

Finally, (34) is an immediate consequence of (32) and (35).

TarEOREM 1. Let ¢ and s be statistics satisfying Assumptions I-VI, and let 4
be a statistic, satisfying Assumptions I, II1 and V, which is sufficient for the family
of distributions II F(z; — 6), —w < 6 < . Let N; denote the sample-size in
the two-stage procedure using (4;, 8), © = 0, 1, with the same m, a, B, and 8. Then

37) E(N,) < E(N,) for all o,
the equality holding for all o if and only if
Prito(n; Xy, -+, Xn) = ti(n; X1, -+ , Xu)} = Lforalln = m.
Proor. The hypotheses of the theorem and Corollary 2.2 enable us to use (% , s)

for the procedure described in the previous section. With the notation used there
we have from (30), Gi(x) = F(z), ¢ = 0, 1, and from (9},

(38) po = p1.
From (13), we get

E(N)) =m + ;n H{k(r)o"p7"; m},
and using (32) and (38) the result follows.

RemARk. Theorem 1 solves part of the problem of optimization of the two-
sample procedure by showing that if a suitable sufficient estimator of 8 exists,
it is the best “#” to use. This leaves us with the problem of choosing “s”’. We shall
see that in the case of the normal and exponential distributions the best pair
(¢, s) to use, asymptotically as ¢ — «, is the pair of sufficient statistics (¢ , so)-
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LemMma 4° Let so(n; @1, -+, xn) and s(n; 2y, -+ - , ) be statistics satisfying
Assumptions I1 and VI, and let by be a statistic satisfying Assumption 1. Let (o , $o)
be sufficient for the family I Fl(x; — 0)/c], —o < 8 < o, ¢ > 0. Then
to(n;le e aXn): So(n; Xl, Tt Xﬂ)) and s(n; Xl: ) Xn)/SO(n;Xla )
X,) are mutually independent.

Proor. This result can be proved formally along the lines used for Lemma 2;
but this seems hardly necessary, and only an outline in terms of conditional
probabilities will be given.

Let u(n; 21, -+, @) = 8(m; &1, -+, Za)/so(n; 21, * -+, Za), and note that
u is invariant under the transformation z; — o2 + 6, ¢ = 1, - -+ , n.

For almost all ¢ and b,

Pr{u(n; Xy, -+, Xa) e S|t(n; X1, - -+, Xu) = @,
(39)
so(n; X1, + -+, Xa) = b}
is independent of (6, ¢) and equals
Pr{u(n; Yl, T Yﬂ) €S|to(n; YI, Tt Yﬂ) = a,
So(n; Yl, Tt Yﬂ) = b}a

using notation indicated at the beginning of Sec. 1. On the other hand, from the
hypotheses of the lemma, (39) also equals

(40)

Pr{u(n; Yl: Tty Y,,)sSIto(n, Yl: Ty Yn) =a—0,

o

o

So(n; Yy, -, Yn) =b
From the equality of (40) and (41), it follows that the conditional distribution of
u is independent of the conditioning values of # and s, so that w is stochasti-
cally independent of (%, ). But % and s, are mutually independent, since Corol-
lary 2.2 applies. Hence the result.

This lemma can be used to compare the relative merits of s, and any other s
asymptotically as ¢ — «. Let us assume that the hypotheses of Lemma 4 are
satisfied, that F is continuous and that # also satisfies Assumptions III and V.
Then we know that £, is the best statistic to use as “#’’, and both s, and s are eli-
gible as the ‘‘s” statistic. Let

(42) J(u) = Pr{s(m, Xl, teey Xm) = usa(m; Xl) e 7Xm)},

and H (u), Hy(u) denote the ¢.d.f.’s of s and so respectively. It will be understood
that we have the same m throughout the discussion. We already know

(43) Prito(n; X1, -+, Xu) £ 0 + oz} = F{zko(n)}.

(41)

My attention has been drawn to the fact that a general result of the type of those
given in Lemmas 2 and 4 has been previously given, for boundedly complete sufficient
statistics, by D. Basu [Sankhya, vol. 15 (1955), pp. 377-380.]
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Let

(44) M) = [ P b
Then

(45) ) = [ o) a7t

by Lemma 4, and we get

(46) [ P ane) = [ m) s
From (5), (8), and (9) on account of continuity, we have
(47) p=x=x)5% p=(0— x5
and

M) =1—a= fow M(xu) dJ (w),
(48) .
(M) =1 -8 = [ M) .

Hence,
49) (o~ xp) = M { [ 60 dJ<u>} — {f " M) dJ<u>}.

Now, from (14) and (15) we know that E(N), E(No) — » as ¢ — », and

sy | B om) dH)
B | " K opu) dH ()
Suppose
(50) k(u) = u'”,

where ¢ is a constant = 1. (This is the case in the normal and exponential popula-
tions.) Then ,

— fo " dHo(w) p
B0 a7 [ e

(51)

by (45).
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Therefore
1/c

p{f u’ dJ(u)f > po

implies that, asymptotically as ¢ — «, E(N,) < E(N). However, since

{[o u‘dJ(u)}”c > [o u dJ (u),

if we can show that
(52) =) [ wdI@ > % - x,

this implies that asymptotically (f, $) is the best, or minimum-expected-
sample-size, pair among those satisfying the initial assumptions.

We shall now prove (52) to hold in the two cases that matter. As previously
noted, sy and aso, where a is a constant >0, are equivalent statistics for our
purpose, and hence in what follows we shall only consider as alternative candi-
dates, statistics s which are not constant multiples of s, ; in other words, we
assume that J(u) has at least two points of increase.

ExampLe 1. Let F(2) = [Zo e~ du//2r, and assume a < 05 < 8.

M(y) is Student’s distribution, so that M(0) = 0.5. Hence

(53) x0 <0< yx and x <0< x.

Further, M (y) is concave or convex according as y > 0 or <0, and therefore .
M [EMyw)dJw) S y/ s wdJ (u) according as y = 0. From (53) and (49),
(52) follows.

ExampLE 2. Let F(x) be given by (17). Then

0 if y=0
M(y) = wherey = m — 1 = 1.
1—-1+y»™ if y>o0,
Consequently, all x’s are positive. Now let
1@ =y [ wartw) - ™ [ M) 1)
(54) .., w
= y£ w dJ(uw) — {_£ A+ yw™ dJ(u)}_”" - 1.
Then
fy) = f u dJ (w) — f u( + yu) ™" dJ (w)
) )

- { [ 1+ dJ(u)}—-(uH)/u
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It is easily seen that f'(y) > 0fory > 0; because the sign of f/(y) is the same
as that of

® GHD/e o ®
{[a+wrwe}™ [Tuarw - [Tua + w are
0 0 0
which is
>{f 1+ yw™ dJ(u)}{f 1+ yu)™ dJ(u)} f udJ (w)

— f u(l + yu)™ ' dJ (w)

> [ a4y s [ w0+ 507 @) - [ 6+ ) arw)

>0,

since % and (1 + yu)~" are monotone in opposite directions for y > 0, and the
same is true of (1 + yu) ™ and (1 + yu)™. Consequently, f(y) is an increasing
function of y > 0; (52) follows from (49), and asymptotically as ¢ — », (4,
8o) is the best pair of statistics to use.
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