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0. Summary. Let X;, X3, -+, X, be n independent identically distributed
random variables with cumulative distribution function F(x — £). Let

é(Xl)X2)"' )Xﬂ)

be an estimate of £ such that v/n(f — £) is bounded in probability. The first
part of this paper (Secs. 2 through 4) is concerned with the asymptotic behavior
of U-statistics modified by centering the observations at £. A set of necessary
and sufficient conditions are given under which the modified U-statistics have
the same asymptotic normal distribution as the original U-statistics. These
results are extended to generalized U-statistics and to functions of several
generalized U-statistics. The second part gives an application of the asymptotic
theory developed earlier to the problem of testing the hypothesis that two
populations differ only in location.

1. Introduction. Let X;, X5, -+, Xnand ¥y, Y,, --+, Y, be two inde-
pendent samples of observations from populations with cumulative distribution
functions F(z .— &) and G(z — 7) = Fl(x — 7)/8] respectively, £ and 5 being
the unknown location parameters and & a seale parameter. No knowledge is as-
sumed concerning the distribution functions F and G except that they are
absolutely continuous. The problem considered in this paper is that of testing
the hypothesis that the two populations differ only in location against the
alternative that the Y’s are more spread out than the X’s and vice versa, or in
symbols

H: =1,
(1.1)
A # 1.

From intuitive considerations and the work of Fraser [1], it seems likely that
there do not exist similar tests for testing the hypothesis H, which are very
satisfactory. The following simplified problem was therefore considered by the
author [2]. Let the location parameters £ and # be known, say ¢ = n = 0, so
that the distribution functions of X and Y differ only in the scale parameter.
Then the problem considered is that of testing the hypothesis

H': =1, ie., F = G,
A6 =1, ie,F#=4G.
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TESTING THE HYPOTHESIS 61

Several nonparametric tests have been suggested for testing the hypothesis
H’, particularly by Mood [3]. The author [2] has considered some of these tests
and discussed their asymptotic properties from the point of view of power con-
siderations. These tests are based on what are known as generalised U-statistics
and are reasonably efficient. But our main interest lies not in testing the hy-
pothesis H' but H. However, once we have a class {Wy} of tests for testing the
hypothesis H’, a class of tests {Wyx} for testing the hypothesis H suggests it-
self. This class of tests may be obtained as follows. We obtain suitable estimates
of the parameters ¢ and 5 and then apply any of the tests of the class Wy to
the deviations of the X’s and the Y’s from the respective estimates.

If the X’s and the Y’s come from normal populations, the usual test of signifi-
cance for testing the hypothesis H is the variance ratio test based on the sta-
tistic

> - P
(12) F= quber s
2 (X —X)

i=1

which is also the most commonly used statistical test for comparing sample
variances. Usually, however, since little is known about the populations from
which the samples are drawn, this test is used as if the assumption of normality
could be ignored. It appears, however, that this is not the case.

The sensitivity to non-normality of the F-test was first pointed out by E. S.
Pearson [4] whose findings were later confirmed by Geary [5] and Gayen [6].
They showed that the F-test is particularly sensitive to changes in Kurtosis
from the normal theory value of zero. It is easy to see that the F-statistic when
suitably normalised is asymptotically distribution free. More recently, Box
and Andersen ([7] and [8]) have studied this problem in great detail and have
shown on the basis of extensive sampling experiments that the F-statistic so
normalized is insensitive to departures from normality.

Since the tests considered in [2] are nonparametric and reasonable for normal
alternatives, it appears that they might be more efficient for non-normal al-
ternatives and also more stable for small samples. We propose, therefore, to
investigate whether such tests, after modification by the introduction of esti-
mates of parameters are asymptotically distribution free.

This is achieved by considering the asymptotic theory of generalised U-
statistics modified by the introduction of estimates of parameters, which is -
given in Secs. 3 and 4. In Sec. 5, it is shown that the nonparametric test pro-
posed in [2], after modification, is asymptotically distribution free for popula-
tions with bounded and symmetric probability densities. It turns out however
that ‘even under such restrictive conditions, the nonparametric test proposed
by Mood, after modification is not asymptotically distribution free. Finally,
the last section considers the small sample behavior of the proposed test for
some particular alternatives.
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2. Some definitions and known results.

Dermrmion 2.1. Let X;5,7 = 1,2, -+ -, n; for a fixed 7 be independent ran-
dom variables identically distributed with c.d.f. Fi(x) and density function
Sfi(z). Let 2 run from 1 to k and 81 = 71, 82 < Mg, - -+, 8 < n; . Further, let

10(’114, crt g Usy 3V, 0y Usp o W1, W,y oo ,wsk)

be a function symmetric in each set of its arguments. Then the statistic

Ny -1 N2 -1 T -1
Uy =

S1 S2 . Sk

: Z 0. CIPINEEEIAD. CRE D, CF NNEERIND. CF R R Xk.‘x y 0 Xisa),
where the summation runs over all subscripts «, 8, § such that
l=a<ae< <oy, =m

1=6<B:< "'<Baz =n

1S6 <8 < - <8, <m

is called a generahesd U-statistic.

Let p1, p2, - -+ , px be k fixed numbers such that n; = Np; and D iy pi = 1.
Then Lehma,nn [9] has shown that /N[Uxy — EUj] is asymptotically normally
distributed with mean zero and asymptotic variance o° given by

2 2 2
8 8 Sk

0 =2 {1000 F = C010000 F 0 A = Foenntrs
P1 p2 Pk

where
$00-- 1000 = Epipp — [Eiol]z,
1 occurs at the zth place in {g...1.-.0,
or=¢Xn, -, X3 Xa, Xa, -, Xy ;)

and ¢z is obtained from ¢; by replacing all the X, by X7 excepting X , the
primes denoting a new set of independent random variables. This result is a
generalisation of the U-statistics considered by Hoeffding [10].

For the sake of simplicity, we shall restrict ourselves to the two sample prob-
lem only. The extension to 4 samples is straight forward.

DermNiTioN 2.2. As before, let Xy, -+, X and Yy, ---, Y, be two inde-
pendent samples drawn from populations with c.d.f.’s F(z — §) and G(x — n)
respectively. Further, let
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Xy, , X and 4(Yy, -+, Y,) be estimates of ¢

and 75, the two location parameters. Then the generalised U-statistic with the
observations centered at the respective location parameters and the modified
generalised U-statistic for the two sample problem are respectively,

-1 -1

$1 Se a,p

-1 -1
UN= m " ZQO(Xal_é,“‘,Xa,l_é;Yﬂl_"A]y"',yﬂ,—ﬁ)y
81 Sg aB ’

where o(u1, -+, Us;;01, -+, Us,) is & function symmetric in % and in v and the
summation runs over all subscripts «, 8 such that

1§a1<012<"‘<0£sl_—<;m,

128 <B < <By, Sn.

DEerNiTION 2.3. Let Wy be a test based on the statistic Uy . If the asymptotic
distribution of Uy is independent of the original populations from which the
X’s and the Y’s are drawn under the null hypothesis, the test Wy will be said
to be asymptotically distribution free.

Finally we define a quantity Ly required in the study of the asymptotic be-
havior of modified generalised U statistics.

DEeFmNITION 2.4.

=G

A

DasleXay — & -, Xay = & Vo — 4, oo, Y, — )
— A - &4 - ),
where
Al — &t — ) =Eo(Xi — b, -, Xoy — 3 Yi— b, -, Y5, — 1),
expectation being taken with respect to all the X’s and the Y’s.

3. The limiting distribution of Ly. In this section, we will prove theorems,
giving the conditions under which Ly and Uy have the same asymptotic normal
distribution. We will start with one sample problem and then extend the result
to two samples. In what follows, we write £(X,) — £(X) (read: the distribution
law of X, converges to the distribution law of X), or lim.. £(X,) = £(X) if
F.(a) — F(a) at every point a of continuity of F where F, and F are the c.d.f.’s
of X, and X, respectively.

Tueorem 3.1. Let Xy, Xz, ---, X, be n independent identically distributed
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random variables with c.d.f. F(x — £). Let o(uy , ua, ++ - , us) with s < n be a real
valued symmetric function of its arguments such that if

(3.0) W, 2o, %, 8) =@ — 8, -+« , 2 —8) — At — &),
where A(t — §) = Eo(X, — t, -+, X, — 1), the following conditions are satisfied.
- Wy, 22, -, 20, 8)] S My, and E|W(Xy, -+, X, 58+ h)

— WXy, -+, Xs;8)| S Msh, My and M, being fized constants

There exists a sequence {t;} such that for each set of x’s

sup IW(xh ’zuti) - W(xl’ e 1xa’0)l
0<t;<k

(By)
= suple(xx, e, By ) — Wy, o0, 2,,0) ]
<

0=t

Further, let §(Xy1, X, -+, Xa) be an estimate of & such that given Z, > 0, there
exists a number b such that yor n sufficiently large

(8.1)- P{Ié_flg\/iﬁ}ézl"
" Define
(3.2) U, = <?>_ Z¢(Xa1 —& - 1Xa, - S)r

the summation being taken over all subscripts a such that

1§a1<a2<~~-<a.,§n

and

-1

Ln = (?) Z[‘P(Xal - é, o ,Xa, — é) - A(é - E)]-
Then
lim (/7 L,) = lim &(/2[U, — EU.))
(3'3) n->00 n-»>0
= N(O’ s2§.1)’
where ‘
§ = E‘PZI,(XI - E) - E2¢(X1 - f; th 7X! - E),

(3.4)

‘Pl(xl_g)=E¢(x1_£)X2_£1"';Xa—£)'
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Proor. For the sake of simplicity we may, without loss of generality, assume
¢ = 0. However, before we proceed further, we shall first prove the following
lemma, which we shall use in the proof of the theorem.

LeEmMa 3.2. Let

Hr,n(xl, Xo, =y Xg,y t)

)
(3.5) = sup 4

W(Il) ".71:3,'2) - W(xly “.,x‘”—'\/_—;b

and

Sra(t)

(36) =WL(Z>_I;[W(%”"""”""I/%)_W xx%)]

Then,if r6 <t < (r + 1)d and n is sufficiently large,

(r + 8 M5
vn /T A
(r+1)8>

\Vn

_ <f_ir_1>§)
EHr.n(Xal, y Xay, v ]

. [H,,,, (Xﬁ“ X, j—/;)a)

x x, o+ 1)5)]1
_EHrn 1y "7 s ) -0 ®©,
) ( B 8 ’\/;I/ J asmn

(3.7) (i) EHr.n (Xal y T Xa. )

38) (i) E{[H (X ooy Xays

where
1fay<aee< - <a =07,
1S <Be< - <B =1
(39) (i) E|S.@® " = dit — r8)

- ‘\/;l- )

where d is a fixed constant and higher powers of 1/ A/n are neglected.
Proor. (i) and (ii) are easily obtained as consequences of conditions (Bi)
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and (B:) of Theorem 3.1. To prove (iii) we have
E| 8.0

R R S e St
[ (e T ) = (0 20 2

Consider a typical term; with ¢ integers common to the two terms. We then have

E{[W(XX%)—W(XX%)]
[z Xnr ) = (R 2 ) )
[ (e Xan ) =W (s 0 )|

IA

= 2M,E W(Xau te aXa,y \”}‘—‘) - W<Xa;: te yXa., ;‘r/s——->
n n
< oM, M, (t:/_"‘s).
n

The total contribution of such terms to
—2
m8.a0f 1 (3) (5" ) - €= /vm,
A being some fixed constant. It follows that
E| 8.0 "~ nic_} t — r9).
When ¢ = 0, the expectation of the product is zero. Retaining only powers of

1/4/n, the result now follows. Q.E.D.
Proor or THEOREM 3.1. Let

8 = \/‘( ) l;[w(xal, X\—j;) - W(Xq, ,X«,,O)].

Then it is easily seen that
Sa(t) = Sra(t) + So,n(r).
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Let ¢ > 0, 6§ = ¢/2M,, and ¢ be such that 6 < ¢ < (r + 1)5. Then it is seen
that

15000 | < V3 () Z Hew (X, - X )

A B )

o RN

(r+1)8)]
_..EH”' Xa”...’Xa”__

IA

+ \/;&EHT,R (Xal y Tty Xa' , (L-l.;)s)
- (n\ (r 4 1)8
§'\/;l(s) za: Hr,n(Xau'"’Xau \/;& )

- EHr,n (qu’ e yXa,’ (rj/'s)a) ) + M25

=D, + M26’

‘where '
R LRSS

(r + 1)8 ]
EH, , (X,,l, cooy Xa, —\/ﬁ ) .

Now
ED? = n(")_z > E [H (X N +-1)5)
1 s e~ r,n ajgy ’ agy \/n

(r 4+ 1)5
—EHr,n (Xau "',Xa,, ‘\/;L )]
[ (0 X0, O = B (X, 30, D) ]

the summation having the same meaning as before. Considering again a typical
term with ¢ integers common to the two terms, we find that the total contribu-
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tion of such terms to EDj] is

() (e [ (o 2)

_ r + 1o
EHr,n (Xal y " Xa,; ,\/ﬁ )]

) (r + 1)8 (r + 1)é
[Hr,n (Xpl, ,Xﬂc, \/;& ) - EHr,n <Xﬁl) Y ,Xﬁ., ‘\/7—)’ )]l
A | (r + 1)5 ( (r+ 1)8)]
nc—lE{[Hr'" (Xa” -, Xa,, Va )— EH, . (Xo, ), Xa,, Vo

i} + 1)5 + 1)8
[ (oo 00, B0 = e (- 0 502

which tends to zero by Lemma 3.2 for ¢ = 1. When ¢ = 0, the expectation of
the product is identically equal to zero.
Hence ED} — 0 as n — . It follows that
P{| sup \ S.a(t) | > ¢ —0.

r<tL (r+1)

’

for every r
Also E|So,n(r8)|* < 2MMyrs / \/n — 0 as n — =, therefore,

SO,n(Ta) _"P 0.
It follows that supi.c |S.(f)] — 0, C being some bounded set. Hence,

S.(vad) Lo,

that is,

Vi Ln — V/nlU. — EU] -2 0,

therefore,

bm o (vaLy) = B e(v/mlU, — BUL).

But by Hoeffding’s Theorem 7.1, page 305 of [10], U, is asymptotically normally
distributed, whence the required result follows. Q.E.D.

We complete this section by stating without proof the generalization of the
above result to the two sample problem., The proof goes more or less along the
same lines as that of Theorem 3.1.

TarorEM 3.3. Let X1, Xz, -+, Xmand Y1, Y,, -+, Y, be two independent
samples drawn from populations with c.d.f.’s F(x — £) and G(x — n) respectively.
Further, let o(uy, <+ ) Uay; V1, *** , Vs,) With 8 = m and s; = n be a real-valued
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function symmetric in u and in v separately such that if

W(xlyx2y"')xu,yl"")ysz’tl’t‘a’)

(3.10)
=¢($1—t1,"°,x,1 '—tl;yl—t‘li"'7yaa'—t2)_A(tl“syh_"))

the following conditions are satisfied:
[W(r, T2y o c s Toyy Y1s Y2 *** » Yogs b1, ba] S Mn
EWXy, X, Ya, oo, Yoy 1+ by 1)
— WXy, o, Xy Vi, oo Yoy, 11, )| S Muh
EWXy, - Xop, Y1, , Yo, o, 82 + k)
— WXy, o, Xy Y1, o Y, h, 1) S Mmk’

where My , Mu and M are certain fixed constants.
There exist sequences {t;} and {l;} such that for every set of x’s and y’s,

(By)

sup |W(zy, -y T3 Y15 * 00 Yags by 1)
0<t;sk
°§11§"2

- W(xl’xsl;yb "'1:’/52’0’0)[
= Ssup IW(xla"';xsl;yla"',yszyt)l)

0<t2ky
0<1Z4k

(By)

- W(xls."' y Togs Y1, 0 ° ’ySsz;O)I.

Further, let £( Xy, -+ Xm) and 4(Y1, - -+ , Y,) be estimates of & and n respectively
such that given & > 0 and e > 0, there exist numbers by and b, such that for m
and n sufficiently large

3.11) {Ié—sl \/—}Sel,

(3.12) {l i—nl 2 \/n} = e.
Define
-1 -1
(3.13) Uy = (;n) (,;) Z¢(Xa1 —& - m.1 - & YB; - yyﬁ., - ’7)’
1 2 af

the summation being taken over all subscripts a, B such that
lSa<a<-- <ay Sm,

(3.14)
1S <P < <Py Sn
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Then if m = Npandn = N(1 — p),

I (N L) = I o(V/N (Uy — EU)
= N(O’ '72))

where o is the asymptotic variance of Uy and is given by

(3.15)

2
(3.16) = _1 10 +

{01,

where {10 and o have the same meaning as in (2.1).

4. The asymptotic distribution of modified generalised U-statistics. We
are now in a position to consider the statistic Uy and obtain conditions under
which it has the same asymptotic normal distribution as the statistic Uy . This
result is contained in Theorem 4.1.

TureorEM 4.1. If in addition to the conditions of Theorem 3.1,

() vn(é — §) has a limiting distribution
and

(i) A@®) = Ele(X: — ¢, --- , X, — t) | £ = 0] has a derivalive continuous in
the neighbourhood of the origin, then

(8) If A'(0) = 0, where A'(f) = %A(t),

Bm o (Va (0, — BUL)) = B2 o(\/n[U. — EUL]) = N(O, &5).

(b) If A’(0) = 0, £ is asymptotically normally distributed and the joint dis-
tribution of £ and U, is asymptotically normal, then \/n(0, — EU,) is asymp-
totically normally distributed.

Proor. We have

But A(f — &) = A(0) + (£ — £)A’(h) where h = A(f — &), |A| < 1. There-
fore

VA0, — EU, = VU, — A(E — )l + Valf — 8 - A'(h).

Since v/n(f — £) has a limiting distribution and 4’(0) = 0, it follows from the
continuity considerations and Slutsky’s theorem that +/n[0U, — EU,] and
V[0, — A(§ — §)] have the same asymptotic distribution. But by Theorem
3.1, Vn[0. — A — £&)] and v/n[U, — EU,] have the same asymptotic nor-
mal dlstrlbutlon It follows that /n[0. — EU,] and \/n[U, — EU,] have the
same asymptotic normal distribution. This proves (a).

To prove (b), it is sufficient to remark that because of Theorem 3.1 and Slut-
sky’s Theorem, the joint distribution of V(@ — &) and V[0, — A — £}
is asymptotically normal. Q.E.D.
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In the preceding theorem we make the following observations.
(1) If A’(0) = 0, then ¢*(0,) = o*(U.).
(2) If A’(0) = 0, then ¢*(U,) = o*(U.,), if and only if

—20(U, ) _Q
a(§) "’
where (U, , £) is the a,symptotlc covariance between U, and £ and ¢*(f) is the
asymptotic variance of £.
For the sake of simplicity we will now consider the special case when s = 1,
£ is the sample median and f(z) is symmetric about the median which may be

taken to be the origin.
Now

4'0) =

A@®) = Ep(X — 1)

= f ez — f(x) dz

= [ + 0 dy.

If there exists an integrable function g(y) such that

f(y+t)—f(y+to)l

(41) .~

= 9@

and the derivative of f exists almost everywhere except for a set of measure
zero, then

(4.2) A4'0) = f e()f (y) dy.

Also it has been shown in [11] that the joint distribution of U, and £ is asymp-
totically normal and that

«3) O = g
and
@4 WU, §) = g5 [ lo@) = o(=2)]fCe) .
Hence o’(0,) = ¢*(U,) if and only if

f(@) =
«5) [ [0+ 2] 1o - ot~ & = .

We will now show that the condition (4.5) implies that ¢(x) — o(—z) = 0
almost everywhere. To show this, it is enough to consider the subfamily of
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probability densities given by

1 _
46 = _ ¢ 1"
(4) fla, 0) = o 6

We observe that the derivative of f exists everywhere except at the origin. Also,
we have

le—lﬁhllo — glele
| h/8
for h sufficiently small, ¢ being a fixed constant. Condition (4.1) is thus satisfied
for the family of distributions (4.6). On substitution, condition (4.5) becomes

«8) [ e le@) ~ o= da = 0,
0 0

—lz|/6
)

47 < ce

whence it follows from the unicity of the unilateral Laplace transform that
¢(x) — ¢(—z) = 0 almost everywhere, in which case A’(0) = 0 and condition

(2) reduces to condition (1).
It is now clear that 4’(0) = 0 is a necessary and sufficient condition that
U, and U, have the same asymptotic normal distribution.
We will now extend the results of Theorem 4.1 to the two-sample problem
TuEOREM 4.2. If in addition to the conditions of Theorem 3.3,

i) VN (¢ — £) and /N — 1) have lLimiting distributions
and

() Ath, ) = Ele(X1 —t,+, Xy —t1, Yi—to, -+, Yoy — b)) | £ =
7= 0]
z;zossesses first order partial derivatives continuous in the neighborhood of the origin,
then

(a) If
8A(t1, tZ) — aA(tly t2) — 0
at, frmtym0 oty ty=ty=0 ’
Im o(VF (O — EUL) = I o(v/F Uy — EUL)
= N(O, 02),

where o® 1s the asymptotic variance of Uy .

(b) If the above condition is not satisfied, £ and # are asymptotically nor-
mally distributed and the joint distribution of £, 4 and the U statistic is asymp-
totically normal, then /N[Uy — EUy,] is asymptotically normally distributed.

Proor. The proof of this theorem goes in exactly the same lines as that of
Theorem 4.1 and is fairly obvious. Q.E.D.
It may be remarked here that the results of Secs. 3 and 4 can be extended to
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random vectors as also to functions of several U-statistics. The proof follows
in exactly the same way as the theorem on the asymptotic distribution of a
function of moments follows from the fact of their asymptotic normality [12].
We shall content ourselves by stating an analogue of Theorem 4.2 as applied to
several U-statistics.

TaEOREM 4.3. With reference to the two sample problem, let

(U, Uz, <=+ ’ua('i);for’”l:v?’ cee 9”32(7))’ ry=1--,¢

with si1(y) = m and s;(y) < n be g real valued functions symmelric in w and in ve
Further, let

W (ay, -+, Tagiyys Yoy *** » YBoyiyyr 115 B2)
= @ (Tay, *++, Tagy(n)s Yb1s *** 5 YBoym) — AP, ty),
where
AP ) = Blo™(Xay — b, o+, Xaviry — b
Yo —ta, oo, Youp — ) | =9 =0

possess partial derivatives continuous in the neighborhood of the origin and W'
satisfy the conditions (B;) and (Bs) of Theorem 3.3 for vy = 1, ---, g. Also let
VN(E — &) and/N(# — 1) have limiting distributions where the estimates £
and 4 satisfy the conditions (3.11) and (3.12) of Theorem 3.3. Define

W = (817(';))-1 (-Sz?v) )

'azﬂﬁo(ﬂ(Xag — & .., Xa.l(.,) - & Yﬁ; . PR Yﬂu(y) - ’7)’
the summation having the same meaning as before. Then
(1) a necessary and sufficient condition that the joint asymptotic distribution of
VNOP - EUP), -, /NOP - EUP)

be the same as the joint asymptotic distribution of

VNUY - BUY), ---, ~/NUP - EUY)
1s that
AT (4, ) _AD M, t)

atl ty=tgml at? ty=tp=0

=0

fOT‘Y = 1727 "'.)g-
(ii) A necessary and sufficient condition that the asymplotic distribution of
VN 21 CI0S — BUSY] be the same as the asymptotic distribution of

VN 5= C (U — EUD)
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18 that
g aA(v)(tl tz)
C,—==* 0
.,; v A tremigm0d
and
g F) A(")(tl tz)
C, ————1= = 0.
7-21 i ab) t=tg=0

6. Consequences of Theorem 4.2. In this section, we will consider some of
the tests of a class {Wx} based on a class of statistics .{Ux} for testing the hy-
pothesis that two populations differ only in location and investigate whether

they are asymptotically distribution free.
Consider first the test statistic T proposed in [2] based on a sample of m X’s
and n ¥’s. The test statistics may be defined as

(5.1) r=L1 i Z K(z:, Y)),
mn i=1 j=1
where
either0 < X < 7,
(5.2) KX,Y)=1 if {or Y<X<0,

=0 otherwise.

A corresponding modified test is then based on the statistic

(53) P= L33k - 2,v,- ),

=1 j=1
X and ¥ being the sample medians. Let ¢ = » = 0. We then have
A(tl, tz) = EK(X - t]_, Y il t‘z)

54 ® 0 -
(54) = [ -6et+wlare+w+ [ 6a+wwrE -+,

AlsoW(z,y, b, t) = K(x — b,y — ta) — A(4, ty). It can then be shown that
E|W(X,Y,4,0) — W(X,Y,0,0)|

=3[ |Fe+ ) - F@ 6@ + 2| F6) — FO)|

= 5(1t1
if the distribution function F has a derivative F’ bounded in gbsolute value by
@. Similarly, it can be shown that
E|W(X; Y’ O, t2) - W(Xr Y’ 0) O)I = 5t )
provided the distribution function G has a derivative G’ bounded in absolute
value by b.
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Hence the condition (B;) of Theorem 3.3 is satisfied. Observing that K can be
expressed as a difference of two monotone functions, it is easy to see that con-
dition (B,) is also satisfied. Again, we have

6A(;;, ) _ —f(t)[2G(L) — 1] + f flz + t) dG(z + &)

~ [t + ) do +w),

aA(;;; W f 9@ + &) dF(z + t) + f 9z + t) dF(z + t,).

Clearly,

3A(t, t)

aA (tl T\, 2) t2) !
oh

b=t o=0 ‘]-52-0

if f(x) and g(x) are symmetric about the origin. Conditions (a) of Theorem 4.2
are satisfied. Hence 7' has the same asymptotic normal distribution as the
statistic 7. This consequence is stated in Theorem 5.1.

TueoreM 5.1. If the X’s and the Y's are distributed symmetrically about the
respective medians and have bounded density functions, the test of the hypothesis H
based on the statistic T is asymptotically. distribution free.

Consider now the test statistic suggested by Mood [3]. The test statistic may
be defined as

(5.5) a =3 (-2t 1y,

g1

where r; is the rank of Y; in the combined sample of (m 4+ n) observations.
Noting that

(55) ro= 1+ S e(X, Y0 + 2 elT, ¥,
where
etu,v) =1 if u<uv,
=0 otherwise,
it is easy to see that if m 4+ n = N, and
Y(u, v, w) =1 f u<w and » < w,

=0 otherwise,

(5.7) J]'—é = QU + CUP +CUP + P (%)

where, Cy, C2, C; are certain kndwn fixed constants, P(1/N) is a third-degree
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polynomial in 1/N and
Z ‘l’(XJ', Xln t‘)’

©9) o = (7) (3) 335 vx v, 1,

are three generalised U-statistics so that

-~

(5.9) -]4\,[—3 =CUP+CUOP +COP + P (%)

where U is obtained from US’ by centering the observations at the respective
sample medians. Consider the statistic 0. We have,

AW, ) = Bo(X — t,,Y — 1)
= fF(x + 1) dG(z + ),

WO, 9, h,0) = o@— b,y —t) — A%, 1)
It can then be shown that
EW®(X.Y,1.0) — WX, Y,0,0)| = 2a
and
EW®(X,7,0,t) — W¥(X, ¥,0,0)| < 2btz.

Condition (Bs) of Theorem 3.3 is thus satisfied. Exactly in the same manner,
it can be shown that the condition (B;) is also satisfied by the statistics oy
and 0%, Condition (By) is also easily seen to be satisfied. Also we have

A(2)(t17 tz) = E¢(Xs - tl) YJ' - b), Yk - t2)
= [ P + 6@ + 1) GG + 1),
APty 1) = EY(X; — 6, Xj — 4, Yi — 1)

= /.Fz(x + t) dG(z + t2),

@

%—-(?Lttll—’-@ ty==tge=0 =2 f F(x)f(x)g(x) dx’
2)

éi%:,—tz) ltl—u—o = ./G(x)f(x)g(x) dx’
949 (ty, ) l - f f@)g(@) da.

ty=to=0
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Clearly,

3 [¢2]

A" (1, 1)

‘YZ“']- 01 atl tye=tge=0 # 0.
Similarly, it is easy to see that

3 &)

Z Cy 8A (tl, tz) 7£ 0.

v=1 ity tymtg=0

Hence, it follows as a consequence of Theorem 4.3 that the statistics M and
M do not have the same asymptotic normal distribution. It follows that the
test based on the statistic M is not asymptotically distribution free.

6. Small sample behavior of the proposed test. It was shown in the previouS
section that the test statistic 7' is asymptotically distribution free. We will now
give some idea regarding the small sample behavior of this test by considering
the simplest possible case, namely m = n = 3. The computations involved even
in this relatively simple case are very extensive. We will consider the one sided
test of the hypothesis

H: =1,
A6 > 1.

We will consider some special alternatives and obtain the size and the relative
efficiency of the Test T with respect to the corresponding best test for each of
these alternatives. These results are presented in Table 1.

TaBLE 1
Relative efficiency of 7 test w. r. t. the
Population Size of T test corresponding best test for—
6=2 §d=3 d=4
Normal...................... 0.23 0.83 0.76
Uniform.........cc.covvnnn. 0.25 0.70 0.68 0.68
Double exponential.......... 0.25 0.92 0.81 0.81

From the above results we see that the size of the test remains more or less
constant. The test is highly efficient for exponential alternatives and moder-
ately so for normal and uniform alternatives.
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lem, suggested the topic and gave generous help and guidance during the course
of the entire work.

REFERENCES

[1] D. A. S. FraSER, ‘“Non-parametric theory: scale and location parameters,”” Can. J.
Math., Vol. 6 (1954), pp. 45-68.



78 BALKRISHNA V. SUKHATME

(2] BaLkRIsHNA V. SURHATME, ‘“‘On certain two sample nonparametric tests for compar-
ing variances,’’ Ann. Math. Stat., Vol. 28 (1957), pp. 189-194.
[3] A. Moop, “On the asymptotic efficiency of certain nonparametric two-sample tests,”
Ann. Math. Stat., Vol. 25 (1954), pp. 514-522.
[4] E. S. Prarson, “The analysis of variance in cases of non-normal variation,”” Biome-
trika, Vol. 23 (1931), pp. 114-134.
[5] R. C. GeaRry, ‘“Testing for normality,” Biometrika, Vol. 34 (1947), pp. 209-241.
(6] A. K. GayYeN, “The distribution of the variance ratio in random samples of any size
drawn from non-normal universes,”” Biometrika, Vol. 37 (1950), pp. 236-255.
[7]1 G. E. P. Box, ‘“Non-normality and tests on variances,”’ Biometrika, Vol. 40 (1953),
pp. 318-335.
[8] G. E. P. Box anp S. L. ANDERsON, ‘‘Robust tests for variances and effect on non-
normality and variance heterogeneity on standard tests,’’ Institute of Statistics,
North Carolina, Mimeographed Series No. 101 (1954).
[9] E. L. LEEMANN, unpublished.
[10] W. HoEFFDING, “A class of statistics with asymptotically normal distribution,”” Ann.
Math, Stat., Vol. 19 (1948), pp. 293-325.
[11] BALERISENA V. SUKHATME, “On the joint asymptotic distribution of the median and a
U-statistic,”’ J. Roy. Stat. Soc., B, Vol. 19 (1957), pp. 144-148.
[12] H. CraMER, Mathematical Methods of Statistics, Princeton University Press, 1946.



