ABSTRACTS OF PAPERS

(Abstracts of papers presented at the Ames, Iowa Meeting of the Institute,
April 3-5, 1958.)

11. Bias and Confidence in Not-quite Large Samples. (Preliminary Report)
Joun W. TukEey, Princeton University, (By Title).

The linear combination of estimates based on all the data with estimates based on parts
thereof seems to have been first treated in print as a means of reducing bias by Jones (J.
Amer. Stat. Assn., Vol. 51 (1956), pp. 54-83). Let y(.) be the estimate based on all the data,
Y that based on all but the 7th piece, 7, the average of the y) . Quenouille (Biometrika,
Vol. 43 (1956), pp. 353-560) has pointed out some of the advantages of ny(y — (n — 1)7)
as such an estimate of much reduced bias. Actually, the individual expressions ny() —
(n — 1)y may, to a good approximation, be treated as though they were n independent
estimates. Not only is each nearly unbiased, but their average'sum of squares of deviations
is nearly n(n — 1) times the variance of their mean, etc. In a wide class of situations they
behave rather like projections from a non-linear situation on to a tangent linear situation.
They may thus be used in connection with standard confidence procedures to set closely
approximate confidence limits on the estimand. (Received December 26, 1957.)

12. Limiting Distributions of k-sample Test Criteria of Kolmogorov-Smirnov-v.
Mises Type. J. Kierer, Cornell University, (By Title).

Let S; be the sample d.f. of n; independent, indentically distributed random variables
with common unknown continuous d.f. F; (1 £ j £ k), the S; being independent. For test-
ing the hypothesis H:F, = --. = F; , several criteria were suggested by the author in Ann.
Math. Stat., Vol. 26 (1955), p. 775. Among these are T = sup, X;ni[S;(z) — S(z)]? and

W = f ZnilSi(z) — 8(z)1dS*(z),
where § = ¥n,;S8;/Zn; and 8* = X;a;8; with X,a; = 1. It is proved by the method

indicated in the above reference that, under H, the limit of P{T < a?} as all n; — ,is

Q6—2)/2g1~k  ® a';—“ exp [— o /2a?]

r((k — 1)/2) a=1 [ gepyralen)z

where a > 0 and a, is the nth positive zero of the Bessel function J (—3)2; alternative ex-
pressions are also given. When k = 4 or k = 2 the summand above reduces to an elementary
function; the latter case gives the Kolmogorov-Smirnov distribution, since 7'/? is the
Smirnov statistic when k = 2. The limiting d.f. of W is expressible in a series involving
Hermite polynomials when k is odd and Bessel functions when % is.even. For k = 2, W is
the test suggested by Lehmann and Rosenblatt, and the above d.f. is the limiting w? d.f.
in the form given by Anderson and Darling. (Received January 6, 1958.)

13. A Rule for Action Based on Percentage Changes in the Sample Mean. D.
B. Owen, Sandia Corporation, (By Title).

A random selection is made of n items from a normal population X, each item is measured
once, and the sample mean  is computed. The sample items are identified by some means
and the sample and the remaining population are mixed at random. They are then sub-
jected to some condition, such as storage, after which the same items that were first sam-
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pled are measured again, giving a new mean 7. Some action is taken only if the new mean
¢ differs from the old mean Z by more than pZ, where p > 0. The probability of taking action
using the above rule is shown to be expressible in terms of the bivariate normal cumulative
probability function. If there is no change in the mean (from X to Y), the probability for
action increases monotonically with an increase in the standard deviation. If there is no
increase in the standard deviation (from X to Y), the probability for action increases mono-
tonically with any increase in the mean. However, for a fixed (relatively large) increase in
the mean, the probability for action drops with increasing standard deviation and then
increases. (Received February 5, 1958.)

14. On a Multivariate Gamma Distribution. P. R. Krisunaiau and M. M. Rao,
University of Minnesota.

From the relation between the univariate Gamma and Gaussian distributions one natu-
rally considers the corresponding p-variate cases. Some writers in the past implied this in
their approach to this problem. But the properties of the latter distribution are not well
utilized. The derivation of a p-variate Gamma distribution by Krishnamoorthv and Par-
thasarathy (these Annals, 1951) and later used by Gurland (these Annals, 1955) was not
too direct. In this paper a simple derivation using the too familiar properties of the Normal
and Wishart distributions is given. Also some interesting connections between the Gamma,
and Gaussian distributions are discussed. A special case for p = 2 (for correlations) has
been given in Cramér’s book (p. 317). But that property is shown to be true for p > 2.
Next the “Arithmetical Character’’ of this distribution in the sense of P. Lévy (Proc. Cam-
bridge Philos. Soc. (1948), p. 295) is considered. Some small and large sample propertics are
also discussed. (Received February 6, 1958.)

15. An Expression for the Cumulative Distribution Function of the Noncentral
t-Distribution. D. B. Owgn, Sandia Corporation, (By Title).

The cumulative distribution function of the noncentral {-distribution may be expressed
in terms of the univariate normal integral and elementary functions for an even number of
degrees of freedom and for an odd number of degrees of freedom in terms of the univariate
normal integral, elementary functions, and the 7'(k, a) function. The 7'(h, a) function was
tabulated by the present author in Ann. Math. Stat., Vol. 27 (1956), pp. 1075-1090. The
above results were obtained by repeated integration by parts. For example, with one degree
of freedom Pr(T = t) = G(—8/ /1 + ) + 2T (6/~/1 + 2, t), where G(z) is the univariate
normal integral from minus infinity to z, and § is the noncentrality parameter. This ex-
pression is especially useful since the noncentral ¢-distribution has not been tabulated for
one degree of freedom. (Received February 6, 1958.)

16. The Fourth Product Moment of a Binary Random Process. J. A. McFADDEN,
Purdue University, (introduced by Judah Rosenblatt) (By Title).

Let z(t) describe a stationary random procesé, and let y(¢) = 1 whenz(t) =2 0 and y(¢) =
—1 when z(t) < 0. Let s(r; , 72 , 73) denote the fourth product moment,

Ely@®)yt + m)y(t + w2yt + 73)],

where 0 < 71 £ 7, £ 73 . If z(¢) is a Gaussian process, then s is related to the quadrivariate
normal integral, which apparently cannot be expressed in closed form. For practical appli-
cations it seems advisable to make different assumptions about z(t) (or about y(¢). Let
E[y()] = 0 and let all product moments of odd degree in y(¢) be zero. Consider further-
more the zeros of the function z(¢). If the zeros obey the Poisson distribution, then a par-
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ticularly simple result follows for s and for all higher moments. Another assumption is the
following: Let unspecified events occur at times ¢ , t;, - -+, according to the Poisson dis-
tribution, the average number of events per unit time being denoted by «. If alternate
events (those at ¢, ,¢;, ---) are designated as zeros of z(t), then the autocorrelation func-
tion of y(¢) is E[y(t)y(t + 7)] = e~2 cos ar, and the desired fourth moment is

s = e~ Wwtw) cos 4 cos w — e~ wtWHw gin y sin w,

where u = ar1,v = a(rs — 71), and w = a(r3 — 72). (Received February 10, 1958.)

17. Approximate Sclutions for the Probability Density of Zero-Crossing Intervals
in a Gaussian Process. J. A. McFappeN, Purdue University, (introduced
by Judah Rosenblatt).

Let 2(t) be a stationary Gaussian process, and let Py(r) be the probability density of
the lengths of intervals between successive zeros in this process. Under the assumption that
the length of a given zero-crossing interval is independent of the sum of the previous
(2m + 2) interval lengths, where m takes on all values, m = 0; 1, 2, - - -, then the following
integral equation can be derived for Py(r): Po(r) = Qi(r) — SoQ:(D)Po(r — 1) dl, where
Q1(r) dr is the conditional probability of a zero with negative slope in the interval (¢t + 7,
t + = + dr), given a zero with positive slope at time ¢, and Q.(r) dr is the conditional prob-
ability of a zero with positive slope in (¢ + 7, ¢t + 7 + dr), given a zero with positive slope
at ¢. Using expressions for @:(r) and Q:(s) given by S. O. Rice, the integral equation has
been solved numerically for several choices of spectral density. The results compare favor-
ably with experiment, and the agreement is much better than can be obtained by the usual
renewal methods, i.e., assuming that all interval lengths are independent. (Received Febru-
ary 10, 1958.)

18. Minimal Complete Classes of Tests. D. L. BURKHOLDER, University of
Illinois.

Minimal complete classes of tests are found for a number of common testing problems
including, for example, those listed by Lehmann and Scheffé in Sankhya, Vol. 15 (1955),
p. 224, with respect to the exponential family of distributions. The proofs are based partly
on the theory of complete and sufficient statistics and partly on other ideas needed and de-
veloped for those cases in which the hypothesis set w and the alternative set @ — w are
separated by an indifference zone. The kinds of results obtained are illustrated in the fol-
lowing special case: Let X, and X, be independent random variables where X is binomial
(ni, p:), 0 < p; < 1,7 = 1,2. Let w be a subset of {(p1, p2) | p1 = p2}, @ — w be a subset
of {(p1, p2) | p1 < P2}, and suppose there are positive numbers m and M such that if

S = {(p1, p2) | m < p1/p2 < M}

then each of S N w and S N (2 — w) has the origin as a limit point. Let C be the class of
all tests ¢ of the form: o(z; , 2) = 1if 2, < c(z1'+ z2), = a(z1 + x2) if equality holds, = 0
otherwise. Then C is the minimal complete class of tests for the problem of testing (p: , p2) €
w against (p: , p2) € @ — w. Thus, both Fisher’s exact test and the classical test are admis-
sible since both are in C. (Received February 11, 1958.)

19. On the Fitting of Some Contagious Distributions, S. K. Karti and Jonn
GurLAND, Iowa State College.

A number of compound and generalized distributions are compared by using such char-
acteristics as skewness, kurtosis, and the ratio of the first two frequencies. A study has also
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been made of the limiting forms of the distributions. Some of these distributions have been
fitted to sampled data by estimating the parameters by various methods in order to gain
some empirical knowledge of the usefulness of these distributions and the relative merits
or demerits of the methods of estimation. (Received February 12, 1958.)

20. Notes on the Spearman-Karber Procedures in Bioassay. (Preliminary
Report) ByroN WM. BROWN, JR., University of Minnesota.

The maximum bias of the Spearman-Karber estimator of the L.D. 50 over possible choices
of dose levels is examined under various conditions on the distribution function, such as
unimodality and symmetry. The maximum mean square error of the estimator is examined
also. The results are compared with actual values for several distributions. The results are
also used to make some comparisons of the Spearman-Karber estimator with some com-
monly used parametric methods of estimating the L.D. 50. (Received February 12, 1958.)

21. Biases in Prediction by Regression for Certain Incompletely Specified
Models. HaroLp LarseN, Iowa State College, (transmitted by H. T.
David).

An experimenter doesn’t know whether to assume a ‘“full’’ population regression model
E(y;) = 3% Bz or 4 “partial”’ population regression model E(y;) = X7 B8izij, k = m.

He decides the matter by the natural preliminary F-test of the hypothesis that the last
(k — m)Bs’s are zero. He uses the full model for subsequent predictions if the hypothesis is
rejected, and uses the partial model for subsequent predictions if the hypothesis is not re-
jected. Call this predictor y*.

The full model is assumed to be true, the error terms being normally distributed with
zero mean. Under these assumptions the expected value of the estimator y* is derived. The
expected value of the estimated variance of y* is also derived if a certain sometimes-pool
procedure is used. (Received February 12, 1958.)

22. Independence of Statistics and Characterization of the Multivariate Normal
Distribution. S. G. Guuryg, University of Chicago and Ingram Olkin,
Michigan State University, (By Title).

Some of the results proved are: If z, y are independent p-dimensional random vectors
and A is a non-singular matrix such that z + y and z + Ay are independent, then z, y are
normal. If z,, -+, Z» are independent random vectors, Ay, -+, An, By, -+, B, are non-
singular commutative symmetric matrices such that ¥ A.z; and X Biz; are independent,
then the z; are normal. If f1(¢), - - -, f(¢) are c.f.’s and there exist positive numbers a; , - -,
an such that in some neighborhood of the origin I] f;*i(¢) agrees with an entire function
of finite order p, where p is larger than the exponent of convergence of the zeros of the
function, then p cannot exceed 2. This is applied to characterize the normal distribution
by the independence of a sum of independent r.v.’s (not all of which need be identically
distributed) and a polynomial of special, specified type.

Letz:, -+ , 2, beindependent p-variate normal random vectors. Let z; = (j1, - , Tjn).
NASC are given for the independence of (1) ¢fY = z:;4:;2; + z:a: + z;a; and ¢ = 2;Bijz; +
2t + 2305, (2) (gi;) and 2 Az, and (3) T Aixi and 3 Byzi . (Received February 4, 1958.)

23. Contributions to the Theory of Rank Order Statistics—The One-Sample
Case. 1. Ricuarp SavaGe, University of Minnesota.

The testing that a distribution has median zero against slippage is considered using the



618 ABSTRACTS

techniques developed earlier (these Annals, Vol. 27 (1956) pp. 590-615, and Vol. 28 (1957)
pp. 967-977). Let Z = (Z,, --- , Zy) be a random vector with Z; = 1(0) if the 7th largest
in absolute value in a sample of N from the density f(z) is positive (negative). Then

N
P(Z =2 = N f 1 [-4(—yf (0 dy)
0Zy1<---SYNSo

Conditions are found implying P(Z = z) > P(Z = z’') where z is derived from 2z’ by replac-
inga 0 by al, orinterchanging a 0 and 1 in z’ by moving the 1 to the left. These conditions
are met by the normal and other symmetric exponential distributions. (Received February
17, 1958.)

24. An Identity of Use in Non-Linear Least Squares. M. B. WiLk, Bell Tele-
phone Laboratories.

Under rather general conditions the identity f(z) = f(zo) + (z — o)f'[(x + z0)/2] is a
necessary and sufficient condition that f(z) be a quadratie function. The identity gener-
alizes immediately and in the same form to p variables. A procedure due to Gauss for iter-
ative non-linear least squares fitting of observations y: to a function f(z; ; 6), involves
essentially the repeated linear regression of [y; — f(z: ; 60)] on [3f (x: ; 6)/36]4mg, With the
regression coefficient § giving “improved”’ estimates of 6 by (6, + 5). The generalization
to p parameters is immediate.

This process can oscillate wildly (for example, out of computer range) and does not
necessarily converge. A modification of this ‘“Linear Gauss’ procedure, based on the
identity above, will approximate a ‘‘Quadratic Gauss’’ procedure while always solving
only sets of linear equations. Advantages are a damping of the oscillations of the Linear
Gauss, possible decrease in the extent of computing, and possible improvements in con-
vergence characteristics. (Received February 17, 1958.)

25. Unbiased Regression Estimators. W. H. WiLLiams, Iowa State College.

In sample surveys one desires unbiased estimators of population characteristics such as
the mean Y of a variate y, and that these estimates be made with good precision. There
are many ways of improving precision, one of which is the use of auxiliary information. In
particular, this information is sometimes used in a regression estimator obtained by evalu-
ating the line of best fit at the point X. The properties of this estimator are derived from
the stochastic model y; = A + Bz + e; where the e; are random errors which have expec-
tation zero, common variance and are uncorrelated with each other. The estimator #, of
the population mean Y is then of the form §, = § + b(X — %) where 7 and £ are sample
means and b is the least squares estimator of the regression slope. If the paired observa-
tions y.z; satisfy the above linear model then §, has expectation ¥. However, it is often
unrealistic to assume that such a model is satisfied by the data and in such an event 7, will
usually be biased. For large populations the expectation of § is given by ¥ — Cov(zb) so
that §, has a bias of —Cov(zb). Cov(#b) refers to the joint distribution of Z and b in ran-
dom samples of size n. An unbiased estimator of ¥ is obtained which has favorable effi-
ciency. This estimator is easily generalized to the multivariate situation. (Received Febru-
ary 20, 1958.)

26. Maximum Likelihood Estimation from Incomplete Data for Continuous
Distributions. Scort A. KRANE, Iowa State College.

A method is given for obtaining the maximum likelihood estimates of parameters of con-
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tinuous distributions from sample data which is “‘incomplete’’ due to truncation, censoring
or grouping. The method may be applied to any distribution for which the likelihood equa-
tions are soluble in the complete data case. No special functions are required.

The likelihood equations for incomplete samples contain two types of terms: (a) the
differentials of the likelihood evaluated at observed variate values z; , and (b) integrals of
the above differentials over intervals of missing variate values. The method presented re-
places the integrals in (b) by weighted sums of terms similar to (a) evaluated at variate
values, 2z, , ‘‘representative’’ of the intervals of missing values. The likelihood equations
for the incomplete sample are then identical with those for a complete sample of values z;
and zx. The zx values and weights required are functions of the parameters, so that an
iterative procedure is used to obtain the estimates. (Received February 26, 1958.)

27. Unbiased Ratio Estimators in Stratified Sampling. JosE N1ETO DE PAscUAL,
(transmitted by W. H. Williams).

The paper presents some theory of unbiased ratio estimators of the population mean Y,
in stratified sampling, computed from samples of £ drawn from each of L strata (k <« L).

Two unbiased ratio estimators and their exact variances, as well as unbiased estimates
of the latter, are given. The derivations follow the lines of an unbiased ratio estimator for
simple random sampling, y’, introduced by Hartley and Ross (Nature (174), August 7, 1954,
p- 270). The two estimators are (a) An unbiased ‘‘separate’’ ratio estimator formed by ob-
taining the y’ estimator for each stratum, and (b) An unbiased ‘‘combined’’ ratio estimator
computed by the y’ formulae from k pairs of ¥,:, #;¢ , where %, , Z,; are the familiar un-
biased estimators of ¥, X, computed from stratified samples of one unit drawn from each
of the L strata.

These two unbiased estimators are then compared with the ‘‘combined” ratio estimator
(Hansen, Hurwitz, and Gurney, J. Amer. Stat. Assn., Vol. 41 (1946), pp. 173-189), and con-
ditions on the population characteristics are described when the unbiased estimators are
more efficient. Generalizations and the special case k = 2 are discussed in detail. (Received
February 27, 1958.)

28. On the Laws of Cauchy and Gauss. R. G. Lana, The Catholic University of
America.

The following theorems are proved: THEOREM 1. Let = and y be two independently and
identically distributed random variables having a common distribution function F(x). Let
the quotient w = z/y follow the Cauchy law distributed symmetrically about the origin.
Then F(x) has the following general propeties: (1) it is symmetric about the origin, ab-
solutely continuous, and has a continuous probability density function f(z) = F'(z); (2) the
random variable z has an unbounded range; (3) the probability density function f(z) satis-
fies the equation ,/‘: f(@)f(wz)x dx = ¢y/(1 + »?) holding for all w, where ¢, is a constant.
TaHEOREM 2. In addition to the conditions of Theorem 1, let F(z) have finite moments of
all orders. Then F(z) is normal. (Received February 28, 1958.)

(Abstracts of papers presented at the Gatlinburg, Tennessee Meeting of the Institute,
April 10-12, 1958.)

29. On the Simple von Neumann Model of Dynamic Economic Equilibrium
as a Markov Chain. (Preliminary Report) Davip RoseENBLATT, American
University, (By Title).

The simple von Neumann model of dynamic economic equilibrium (the special case in
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which (i) there is the same number of “goods’’ as of basic “productive processes’ and (ii)
there is a single ‘““output’’ for each “productive process’’) is simply transformed and struc-
turally related to two stationary Markov chains. Results are obtained for aggregation and
consolidation in the simple von Neumann model and these are compared and contrasted
with analogous results for macro-statistical input-output formulations. (Received Febru-
ary 5, 1958.)

30. Tests on a Variance-Covariance Matrix. NaTaan ManteL, National Cancer
Institute.

A class of tests on the elements of the variance-covariance matrix is proposed. The class
includes as a special case Pitman’s Test for equality of two correlated variances. Depending
on the assumptions made the test may be one for uniformity, for equality of variances or
for equality of covariances. The test may be adapted so as to provide more specific con-
trasts. Tests on the corresponding correlation matrix through the use of either empirical
or population standardizing factors are also considered.

An interesting adaptation of the procedure is one which permits testing the interaction
in a two-day classification in the absence of replication.

The testing procedures depend on the fact that when the row sums of the variance-co-
variance matrix are equal the mean of a set of observations is uncorrelated with any of the
deviations from the mean. The test is primarily one on the significance of the multiple cor-
relation of the mean on the set of deviations. The power efficiency of the test for specific
alternatives may be increased by testing the correlation of the mean with a subtest of devi-
ations or linear combinations of deviations. Efficiency may also be increased by shifting
attention from the original variables to linear transforms. In someinstances a single change
in sign of some of the variables can increase efficiency. (Received February 10, 1958.)

31. An Upper Bound for the Variance of Certain Statistics. WassiLy HOEFFDING,
University of North Carolina.

It is shown that if X, , X, , X5 are independent and identically distributed random vari-
ables, if 0 = (X1, X») = f(X:, X1) £ 1, and Ef(X,, X,) = p, then Ef (X, , X2)f (X1, Xs) —
p* < H(p), where H(p) = p** — p2, § S p < L,and Hp) = (1 — p)¥* — (1 —p)?,0 =
p = %. The sign of equality holds if, with probability one, f(X:, X;) = g(X1)g(X:) (for
pZ3)orf(X:,X,) =1—gX1)g9(X,) (forp =< %), where g(X) takesthe values 0 and 1 only.
This inequality implies an upper bound for the variance of the statistic

U = 21gigisnf(Xi, Xj)n(n — 1)]7

in terms of its mean. This class of statistics includes M. G. Kendall’s rank correlation
coefficient ¢ and (except for a minor difference) the Cramér-von Mises statistic w?. In the
former case the inequality has been conjectured by Daniels and Kendall. (Received Febru-
ary 12, 1958.)

‘

32. On a Test for the Equality of Several Means. K. V. RAMAcCHANDRAN, Demo-
graphic Training and Research Centre, India, (By Title).

Let ;¢ =1,2,:-- ,k;j=1,2,--- ,n) be random samples of sizes n from % univariate
normal populations with means u; and variance ¢2(i = 1,2, - -+ , k). The hypothesis Ho:m =
up = -+ = u against H:Not H, is equivalent to the union of Hy;:u; = p (say) against
Hitwi #u (where pis unknown) forevery 7 = 1,2, --- , k. To test Hyi:u; = p against H;:p; #
w for any given 7 we have the test based on ¢; = [(z: — £)/8S][nk/(k — 1)]'/2 where n&; =
Srizi, ki = Dtz and k(n — 1)82 = Tty M (zi; — )2 We accept Ho: against
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H; for any given ¢ if | £; | < ta» Where tas is the upper /2 per cent point of Student’s ¢
distribution with k(n — 1) d.f. Hence we accept H, against H = H, iff (if and only if)
max; |t | = tan, i.e., iff max; | [(Z — 2)/8Sl[nk/(k — 1)]2 | S ta . This two-sided ver-
sion of the Nair Statistic provides an alternative test in the analysis of variance situation
and gives simultaneous confidence bounds on all p; — u(i = 1,2, --- , k) with a confidence
coefficient 1 — «. Power properties and multivariate and other generalizations of these
tests are being investigated. (Received February 14, 1958.)

33. On a Test for the Equality of Several Variances. K. V. RAMACHANDRAN,
Demographic Training and Research Centre, India, (By Title).

Letz;;(: = 1, 2, ,k;7=1,2,---,n) be random samples of sizes n from k univariate
normal populatlons Wlth means u; and variances o (3 = 1, 2, , k). The hypothesis
Hyol=0i= --. = o}f against H:Not H, is equivalent to the umon of Hyitor = a’ (say)
against H;: o‘. # o? (where ¢? is unknown) for every ¢ = 1, 2, , k. To test Hy;: a. = g2
against H;:o% # o2 for any given ¢ we have the test based on F. = S/3%, S; where
(n —18i=31, (x,, — %) #~ 1. We accept H,; against H; for any given ¢if F1 < F; <
F; where Pr{F; < F, | Hy} + Pr{F; = F3| Hy;} = « and F; has an F’ distribution with
(n -1,k —-1)n— 1) d.f. Hence we accept H, against H 5 Ho iff F1 £ Fain < Fruax <
Fz N where Fnun = Smln/zl—l l;‘(mnn) Sl and Fmax = anax/zl—l 1% (max) Sl ) i .., iff
gl = Siin/Zha 8 5 8Lk St < gé This two-sided version of Cochran’s statlstlc
provides an alternative test in the homogeneity of variances situation. The distribution
problem, power properties and multivariate and other generalizations of these tests are
being investigated. (Received February 14, 1958.)

34. An Optimum Property of Some Bechhofer-Type Non-Sequential Multiple-
Decision Rules. WM. JacksoN Hary, University of North Carolina.

R. E. Bechhofer has proposed a single-sample multiple-decision procedure for ranking
means of normal populations with known variances, and, with M. Sobel, a procedure for
ranking variances of normal populations (Ann. Math. Stat., Vol. 25 (1954), pp. 16-39 and
273-289). We assume that the sample sizes for the populations are equal, and, in the first
case, that the variances are equal. Their rules guarantee a correct ranking with prescribed
probability when the population parameters are sufficiently distinct (in a prescribed way).
This paper proves that no other rules can accomplish this with a smaller sample size; that
is, their rules are ‘“most economical”’. This is not true if the sample sizes are unequal, but
it is true for any analogous procedure for ranking populations according to a parameter
when, for each sample, there is a numerical sufficient statistic with a monotone likelihood
ratio and the parameter is a location or scale (but not range) parameter in the distribution
of the statistic. These results are obtained from application of “most economical decision
theory” (Ann. Math. Stat., Vol. 25 (1954), p. 814). (Received February 17, 1958.)

35. Second Order Rotatable Designs in Three or More Factors. R. C. Bose
and NorMAN R. DrAPER, University of North Carolina.

Previous attempts to obtain second-order rotatable designs for three factors made use
of the regular figures in three dimensions. A new method that has been successfully de-
veloped employs various sets of points which satisfy the conditions: X z? = 3 42 =
22, Tat=2yt= 2, T aty? = 3 y%? = 3 222, all odd moments up to and in-
cluding order four being zero. The basic sets may be combined in various ways to give a
number of infinite classes of rotatable designs, each class dependent on a parameter. This
parameter may take any value in a specified range, which depends only on the number of
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points in the design. By giving specific values to the parameters in the various classes, all
of the second-order designs suggested in the Institute of Statistics Mimeo Series No. 149
by D. A. Gardiner, A. H. E. Grandage, and R. J. Hader were derived as special cases. An
example of such a class is as follows. The N = 20 + n, points (+a, *a, +a); (£c1, 0, 0),
0, £c1,0), (0,0, £ec1); (Fe2, 0,0), (0, £c2, 0), (0,0, £cs); (0,0, 0) (ny times) where =
{N — 8a% = [N (16a% — N)]V/2}/12 (¢ = 1, 2) form a second-order rotatable design if .0738N =
a? 2 .0625N. When ¢, = 0, the well-known cube and octahedron design, with center points,
is obtained. The method has been used additionally to construct designs for both higher-
order rotatability and higher dimension (number of factors). (Received February 17, 1958.)

36. A Markov Chain Resulting From a Certain Sorting Problem. A. BruUcE
CLARKE, University of Michigan.

Consider the following sorting problem: Objects are chosen consecutively from an infi-

nite population consisting of r different categories in proportions p1,pz, ++- , pr 2 p1 = 1.
The objects chosen are sorted by category and placed in r piles. Periodically one of the
categories 1, 2, -+ , 7 is selected at random with probabilities ¢:, g2, -, ¢, 2 ¢q: = 1,

and the pile of elements of the selected category is removed from the system. Denoting the
number of elements in the ¢th pile immediately preceding the ¢{th pile removal by z.: , the
distribution of the random vector ; = (s, -+ , Z4) is studied as ¢ — . This forms a sta-
tionary Markov chain. The limiting distributions of the individual components x;; ,t — «,
are obtained explicitly, and a recursion formula is established which leads to the limiting
distribution of z: . One result is that the mean total number of individuals in the system at
any time, E[Zf.; zx], is minimized if the probabilities g; are chosen proportional to 1/p; .
(Received February 17, 1958.)

37. Fitting the Logistic by Maximum Likelihood. J. L. HopgEs, Jr., University
of California, (By Title).

A method is presented by means of which the maximum likelihood estimates of the
logistic response function may be quickly obtained to graphical accuracy, without the use
of a computing machine or special charts. The basic idea is to replace the observed response
numbers by equivalent ones for which the estimates are obvious. (Received February 19,
1958.)

38. Useful Bayes Solutions for Multiple Comparisons Problems. I. (Preliminary
Report) Davip B. Duncan, University of North Carolina.

A Bayes solution is developed for the common ¢-test problem of testing the hypothesis
6 < 0 against the alternative § > 0 given observed values of z and s where z is normally
distributed with 6 as mean and variance o? and s? is an independent estimate of ¢* dis-
tributed as x:az/ ». The ultimate objective is to solve many forms of multiple comparisons
problems generated by the restricted products (Lehmann, Ann. Math. Stat., 1957, pp. 1-25)
of problems of the given form, the Bayes solutions to be obtained as corresponding products
of solutions of the form developed. The loss function assumes losses proportional to | 6 | ,
the factor for type I errors being k times that for type II errors, k = 1. The Bayes function
is a normal density with mean 0 and variance y%2. These functions fit, at least to a satis-
factory degree of approximation, a wide variety of problems met in practice. The solution
(restricted to invariant procedures) has the critical region z/s > ¢ where ¢ is a function of
the degrees of freedom », loss ratio k and dispersion ratio 2. A brief table of ¢ with these
three arguments is presented. (Research jointly supported by the U.S. Public Health Serv-
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ice and by the U.S. Air Force through the Office of Scientific Research of the Air Research
and Development Command.) (Received February 20, 1958.)

(Abstracts of papers presented at the Cambridge, Massachusetts Meeting of the Institute,
August 25-30, 1958.)

39. Determining Bounds on Integrals with Applications to Cataloging Problems.
BEerRNARD HaARrRIs.

Assume that a random sample of size N has been drawn from a multinomial population
with an-unknown and perhaps countably infinite number of classes. The experimenter
wishes to predict d(a), the number of classes that will be observed in a second sample of
size aN, a > 1, (or when the sample size is increased by (« — 1)N additional observations);
and C(a), the coverage of a second sample (or augmented sample), where C(a) = X p;,
the sum is to be taken over those classes for which at least one representative has been
observed in the sample. It is shown that Ed(a) ~ d + miE{[1 — e~(«D=]/z}, and EC(a) ~
1 — (m/N) + (ni/N)E{1 — ez} where d is the number of classes observed, n, is the
number of classes occurring once in the sample, and the expectation is taken with respect to
a distribution function unknown to the experimenter, but estimates of the moments are
available. Hence a reasonable procedure is to compute upper and lower predietors of d(«)
and C(a) by determining the suprema and infima of the above expected values subject to
moment constraints.

Several results are given concerning bounds on integrals subject to moment constraints,
and a method of determining the sharpest bounds is shown. The explicit solutions are com-
puted for 0, 1, 2, 3 moment constraints and applied to several examples. (Received January
23, 1958.)

40. Single Server Queuing Processes with a Finite Number of Sources. GERALD
Harr1isoN, The Teleregister Corporation.

A service system is considered which consists of a single server and a finite number of
sources. The sources are assumed to be non-interacting and to have the same negative ex-
ponential idle time distribution. The service time is assumed to have an arbitrary distribu-
tion with a finite mean. There are no defections from the waiting line, and the service time
is independent of the length of the waiting line. The stationary behavior of this service
system is studied. The relations between load factor, mean delay, mean service time, mean
gource idle time, and proportion of calls delayed are obtained. The length of the waiting
line at instants of termination of service is a Markov chain and its stationary distribution
is thus reduced to solving a system of linear equations which, because of the form of the
transition matrix, reduces to a simple iterative procedure. Under the assumption of the
queuing discipline of service in the order of arrival the waiting time distribution is obtained.
These rezults are specialized to the cases of constant and negative exponential service time
distributions. (Received February 13, 1958.)



