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and
a" | Ax | = ail(ah — a3)* — (a0 — ax)’al] ™.

It may be mentioned here that Ulf Gernander and Murray Rosenblatt ([2],
pp. 238-239) have considered asymptotic properties of Ay as N tends to in-
finity. They, however, do not attempt to determine the k* elements standing
in the first k& rows and the first k columns of A%, although they sug-
gest a method of orthogonalization of the vector Xy .
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A PROBLEM OF BERKSON, AND MINIMUM VARIANCE
ORDERLY ESTIMATORS!

By Joun W. Tukey

Princeton University

1. Summary. The distinction between efficiency in the asymptotic sense origi-
nally introduced by Fisher ([2], 1925, p. 703), and the finite sample sense some-
times used by others has been recently stressed by various writers (e.g., Berkson
[1]). The technique of proof used below was originally developed to provide a
simple example where the maximum likelihood estimate of location, though
asymptotically efficient, was not of minimum variance for any finite sample
size whatever. The (symmetrical) double exponental distribution with known
scale, where the sample median is the maximum likelihood estimator of location,
could easily be shown to be such an example. (While this result is useful in de-
flating unwarranted views about minimum variance properties of maximum
likelihood estimates, Fisher’s ([2], p. 716) results about intrinsic accuracy in the
same situation are of more basic interest.)

On examination, however, the technique used to provide this rather isolated
and special result was found capable of showing, for a class of distributions with
suitable monotony properties (in particular all distributions for which f'(y)/f(y)
is monotone decreasing, and all normal, exponential, gamma and beta distribu-
tions), that the covariances of the order statistics in a sample of any chosen size
are monotone in either index separately.
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2. Complete regression. We shall say the distribution of z given y shows
complete negative regression on y if the cumulative distribution F(z|y) satisfies

Flz|y") = F(z|y") for y” < o/,

provided the equality does not always hold. We define complete positive re-
gression analogously. We notice that:
(A1) If the distribution of z given y shows complete negative regression y, and
21 18 an order statistic from a random sample of 2’s, then the distribution
- of 2 given y shows complete negative regression on y.
(As) If the distribution of w given z shows complete negative regression on z,
and the distribution of z given y shows complete positive regression on x,
and the distribution of w given z is unaffected by giving y, then the dis-
tribution of w given y shows complete negative regression on y.
(As) If the distribution of z given y shows complete negative regression on y
then cov {z, y} < 0. ’
The first result follows from the beta-function formula for an order statistic
cumulative,

Ginlw) = k(Z) for(w) £ - )t

which follows from the interpretation of Gij.(w) as the probability of k¥ or more
out of » falling in an interval of probability F(w), and which shows that the
cumulative of 2z, is a monotone function of the cumulative of z. The second
follows easily by introducing the monotone representing function [3] z,(u) corre-
sponding to F(z|y) such that if w is uniformly distributed on [0, 1], then z,(u)
is distributed according to F(z|y). The hypothesis of complete positive re-
gression is equivalent to z,(u) = 2zp(u) for ¥y’ = y”, and we have

Hwl|y) = fG(w|z,,'(u)) du £ fG(wz,,n(u)) du = Hw|y”) fory £y
which we desired to show. The third result follows from the fact that

ave {z|y'} = ave {z|y"}
which follows directly from the inequality for the representing functions.

3. Subexponential distributions. We shall say that a cumulative distribution
is subexponential to the right if

F(z+h)—F(h)__l_l-—F(z+h)
1 — F@) - 1 — F(h)

is monotonically decreasing for fixed z > 0 as h increases. We notice that t}}is
is equivalent to stating that, referred to the point of truncation, the distribution
of z after truncation on the left shows complete negative regression on the
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point of truncation. We define subexponential on the left, or in both directions,
analogously. We are now prepared to demonstrate:
(By) If F(g) = F(y — 0) is subexponential on the right, and y; = y» =
<+« £ y, are an ordered sampleof y’s(and ¢ = q = -+ = ¢, are
an ordered sample of ¢’s), then for any j < k we have

cov {yx — ¥i, ¥i} = cov {@ — ¢;, q;} <O.

(The analogs for “on the left” or “in both directions” clearly follow by sym-
metry.) The proof rests on Wald’s principle ([4], p. 536) according to which the
distribution of ¢, given g¢; is that of the (k — j — 1)st order statistic from a
sample of n — j from the result of truncating the original distribution at g; .
The distribution of g, — g¢; for ¢, fixed is that of a similar order statistic from
the truncated distribution referred to its point of truncation as origin—and as
remarked above this latter distribution shows complete negative regression on
¢; - By (A;) the same is true of any distribution of an- order statistic, and hence
for the distribution of ¢ — ¢;. The negativity of the covariance follows from
(As).
This result (and its analogs) can easily be extended to
(B;) Under the hypotheses of (By), if h < j < k, then

cov {yx — yi, un} = cov {@ — ¢;, ¢} <O.

For, since the distribution of ¢ given g; is not affected by giving g, , and the
distribution of ¢; given ¢, shows complete positive regression on g, we may
apply (Az) to complete the proof.
As a corollary we have the curiously simple results:
(Bs) If the distribution of q is subexponential in both directions, then the
covariance of any two order statistics is less than the variance of either.
(Bs) If the distribution of q is subexponential in both directions, the covari-
ance between order statistics q;, qv 1S monotone in j and k separately,
decreasing as j and k separate from one another.
The interest of these results is enhanced when we observe normal, expo-
nential, gamma and beta distributions, pristine or truncated, are all subex-
ponential in both directions.

4. Monotone location-scores. By definition, a distribution F(g) is subexponen-
tial to the right if

Fy+h —Fh) _, _1-Fy+h
1 — F(h) 1 — F(h)

is monotone decreasing as h increases for every y. This is equivalent to
log {1 — F(y + h)} — log {1 — F(h)}
being monotone increasing, or, granting differentiability, to

O OR)
I—Fh) 1-Fy+h

Gly|h) =

>0,
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where y > 0, and hence to

L0 a0 0
1 —Fu T 18 (1 = F(w) = m

being monotone decreasing. This will follow from the monotone decreasing
character of (logf(w))’ = f'(u)/f(u) since f(u) = 0. It is thus sufficient, but
not necessary, for subexponentiality on the right that f’(u)/f(x), which is the
location score associated with the specification consisting of all translations of
F(u), be monotone decreasing.

The class of distributions with monotone scores for location is immediately
seen to be closed under formal multiplication of densities, so that if

(1) F(u), G(u) have monotone scores for location,

(i) P = [ ) du, 6) = [ () au,

(iii) H(uw) = (constant) f(u)g(u) du,
then H (u) also has a monotone score for location. The class is also closed under
truncation at one or both ends. It is immediately seen to include all distributions
whose shapes are single exponential, double exponential (balanced or not),
normal, (incomplete) gamma, (incomplete) beta, and their formal products
and truncations. (It does nof include distributions of Cauchy shape.)

Since the large-sample optimum weight to be assigned to an order statistic
is the negative of the derivative of the score for location at the typical point
of distribution, it seems both peculiarly appropriate and highly reasonable
that the minimum variance orderly estimator of location will actually have
all its coefficients positive for any distribution with monotone score for loca-
tion.

6. Orderly estimates. We now turn to a location specification F(y|6) =
F(y — 0) and to orderly estimates of 6, by which we mean linear combinations
of order statistics of total weight 1, i.e.,

37=Zw,~yi+c, Ew,-=l.

(Notice that the variance and bias of § as an estimator of 8 are exactly the
variance and average value of §, where § = Y w.q, are order statistics in a
sample from F(g).) We begin with a general result, applicable to any convex
(i.e., closed under at’ + (1 — a)t” for 0 < a < 1) class of estimates of « which
contains all order statistics (and thus surely contains all orderly estimates).
(C) If t is the minimum variance estimate in any convex class containing the
order statistics, and yi is any order statistic (or any linear combination of
order statistics of total weight one)

cov {yr — &, ¢} = 0.

This follows easily by considering the variance of { + A(yx — f), where, in par-
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ticular, if cov {yx — ¢, ¢} < 0, a value of A\ > 0 will provide lesser variance
than for A = 0.
From the result it is easy to show that:

(D) If F(q) s subexponential to the right, then no single order statistic, ex-
cept possibly the righthandmost, is of minimum variance among orderly
estimates of location.

(Again, the analogs with “to the left ... the lefthandmost” or “in both direc-
tions . .. statistic,” follow by symmetry.) For if y; were of minimum variance,
and y, the righthandmost, then by

(By) cov (Yn — Yi, Yi) = cov (¢a— ¢j, q;) <O,

and by (C) y; is not of minimum variance. It is reasonable to anticipate that,
actually, all coefficients must be positive (particularly for distributions with
monotone scores), but the elementary methods used here do not seem to show
this easily.
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AN ELEMENTARY THEOREM CONCERNING STATIONARY
ERGODIC PROCESSES
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1. Introduction. The purpose of this note is to state and prove a theorem
concerning strictly stationary, ergodic processes and to give some of its applica-
tions. Although the theorem itself is a simple consequence of the ergodic theorem,
its applications include a proof of the consistency of the maximum likelihood
estimates for stationary distributions and'an extension of the zero-one law for
symmetric sets given by Hewitt and Savage [1].

TuEOREM 1. Let -+ 2y, %o, 1, - - - be a strictly stationary process such that
every set invariant under shifis has measure zero or one. Let {¢.} be a sequence of
real-valued functions, ¢, being a measurable function of n + 1 variables. Then if
the sequence ¢n(xo, « -+, Tn) and the sequence ¢u(T—_n, -+, Zo) both converge in
probability, their limits are almost surely constant and equal.
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