INTERSECTION REGION CONFIDENCE PROCEDURES WITH AN
APPLICATION TO THE LOCATION OF THE MAXIMUM IN QUADRATIC
REGRESSION

By Davip L. WALLACE
Unaversity of Chicago

1. Summary. Confidence region procedures for multidimensional quantities
sometimes require prohibitive amounts of computation and the regions are
difficult to represent in a useful way. Some approximate procedures are con-
structed by using regions obtained as the intersection of several regions, each
much easier to construct. The procedures are applicable to the solution of si-
multaneous equations, whose coefficients are subject to random error. Approxi-
mations by convex polyhedra and by parallelepipeds are proposed. The pro-
cedures are illustrated for setting a confidence region for the location of the
vertex of a quadratic regression surface.

2. Confidence regions. In this section, I give a subjective evaluation of the
requirements for a useful confidence region procedure.

Suppose that A is a (multidimensional) quantity defined as a function of the
parameters of the distribution sampled. The problem of constructing confidence
regions for the true value(s) of A will be considered.

A confidence region and a point estimate for A are often used to summarize
the information about A in the observed sample. Their use is an attempt to
convey in a comprehensible way some idea of the extent and character of the
determination of A, taking account of the inaccuracies of measurement. Any use
of the confidence region in making decisions about further experimentation,
process operations, ete., will be informal. The exact confidence level is not im-
portant and even the frequency interpretation of the procedure is not essential,
both serving principally as ‘“‘benchmarks’” for purposes of comparison and
familiarity. What is important is that the region be represented geometrically
or analytically so that the user can comprehend its size, shape and location.
Approximations to the region which simplify this representation will be valuable
as long as they do not greatly change the confidence level.

The theoretical specification of confidence procedures and the investigation of
their statistical properties (level, power, etc.) are usually accomplished through
an associated family of tests of hypotheses. The condition that the true quantity
have the particular value \ is a condition on the parameters and hence a statistical
hypothesis. Denote it by Hy . Then, given a level o test of H) for each value
of )\, the confidence procedure defined by B = {\: H) not rejected} is an error
level « confidence procedure. The “error level” (= 1 — ‘“confidence level’’)
of a confidence procedure is usually more convenient than the confidence level
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and coincides with usage in the related testing procedures. (Strictly, there should
be a notational distinction between a confidence procedure R as a set-valued
random variable and a confidence region R as the realization for a particular
sample. However, the meaning of the symbol B should be clear from the context
or the verbal distinction between confidence procedure and confidence region.)

This method does not necessarily give usable confidence regions, even when
the test of each H, separately is satisfactory. In order that the tests need not
actually be carried out for each A, some continuity in A must be required of the
family of.tests. Any (non-randomized) test of H) can be represented (not
uniquely) by a statistic A(\) where, for any sample z, H, is rejected if and only
if h(\, 2) > 0. If there is a choice of A which is, for a fixed sample z, continuous
in )\, then the confidence region R is a closed set with boundary equa-
tion h(A, z2) = 0.

However, continuity of A(\) is not generally encugh. If \ is one dimensional;
a useful confidence region is usually an interval. A solution providing the limits
of the interval is satisfactory, but one providing only a complex equation A(A) = 0
for the limits may not be.

When X is multidimensional, the problems of computation and representation
are greatly magnified. The boundary equation will likely increase in complexity
rapidly with increasing dimension. But more serious is the difficulty of repre-
senting the region even when h()) is given explicitly in terms of simple functions.
The boundary can be plotted in two dimensions, as can cross sections in more
than two dimensions, though with effectiveness decreasing with increasing di-
mension. A principal difficulty is that few shapes are readily visualized in more
than two dimensions, or, what is more essential, that comprehension of a region
from the equation of its boundary is restricted to very simple surfaces.

The simplest regions are the parallelepipeds which can be completely de-
seribed by giving limits on each coordinate of a coordinate system related by an
affine transformation to the original coordinate system, or equivalently, by giving
p linear double inequalities on the coordinates of \.

The next simplest regions would seem to be the convex polyhedra. When the
number of faces is small, the region is simply described by giving the linear
inequalities corresponding to each face and is only slightly more complex than
the parallelepiped. As an approximate representation of a region with corners,
the number of faces is likely too large to permit use of the inequalities and the
region must be thought of, with greater difficulty and less adequately, in terms
of the corners (vertices). '

Ellipsoidal confidence regions are imporfant, largely because they occur natu-
rally in the classical normal theory of means and regression coefficients and also
in the general large sample confidence theory. They are probably visualized as
rounded boxes and their description by a center and lengths and directions of
principal axes corresponds closely to the parallelepiped description.

3. Geometrical idea of intersection confidence regions. In many multidi-
mensional confidence problems, interest centers more on the separate coordinates



INTERSECTION REGION CONFIDENCE PROCEDURES 457

a b c

F1g. 1. (a) An ellipse as intersection of straight strips. (b) A standard region and a
curved strip. (¢c) A standard region as intersection of curved strips.

or on linear combinations of them than on the multidimensional quantity (e.g.,
the means in an analysis of variance). The usual ellipsoidal confidence region is of
little value. Scheffé’s [12] multiple comparisons procedure amounts to repre-
senting the ellipsoid as the intersection of all the slabs between parallel pairs of
tangent hyperplanes (see figure 1a). Each slab gives a confidence interval for a
single linear combination of eoordinates. The totality of such intervals has the
same joint error level as does the ellipsoidal region. The procedure permits
making as many confidence statements on linear combinations as desired and
permits the posterior selection of “most interesting” statements.

The same representation by slabs is valid and useful for any convex region
and this is the basis for the multiple comparisons procedure given by Tukey
[13], Roy and Bose [11] and others.

Even in problems in which the multidimensional quantity is of principal
interest, the multiple comparison methods provide a means for approximating
convex confidence regions by convex polyhedra, regions more easily described
and visualized. Often, the linear inequalities defining the polyhedron are much
more easily obtained (computationally) than is the boundary equation of the
exact region.

In the small sample theory of more complicated problems (such as the location
of a regression surface maximum), the standard confidence regions are not
ellipsoids and may not even be convex, connected, or bounded. There is no
practical way to determine from a particular boundary equation if the region is
convex. The intersection region procedures developed here are an attempt
to construct some usable approximate representations for some of these problems.

The idea is to approximate a standard region as the intersection of several
regions each of which is fairly easy to represent and to compute. They are typi-
cally (in two dimensions) curved strips rather than straight strips (Figures
1b and lc). The regions are determined essentially by applying the multiple
comparisons theory at an earlier stage in the confidence region construction.
The approximation is carried one stage further in which the curved strips are
approximated by straight strips and their intersections by convex polyhedra.
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4. Intersection region procedures for families of general linear hypotheses.
The most important class of quantities amenable to intersection region pro-
cedures arise from general linear hypotheses in general linear models (cf. Wilks
[14], Chap. 8). An n dimensional vector z = XB + ¢ is observed in which X is a
known n X m matrix of rank m, 3 the unknown m-dimensional vector of ‘re-
gression’ coefficients and the n components of & are independently and normally
distributed each with zero mean and variance o°. Least squares estimates of
8 and o° are

b = X'X)"'(X'2)
& = 1 zz — 2'X)(X'X)"'(X'z)],

n—m

distributed independently as a normal with mean § and covariance matrix
SX'X)" and as o’x*/(n — m) on » = n — m degrees of freedom.

Many quantities of interest can be represented as the roots of sets of simul-
taneous linear equations in the regression coefficients; as the root in A of the
equations

?:ﬁf 550N = a(M); G=1-,p)

linear in the regression coefficients, but of arbitrary though specified form in X.

Linear combinations of means or regression coefficients are included by choosing
all §;;(\) to be constants and taking §,(A) = \; . Two one-dimensional quantities
typical of the more complicated problems motivating the intersection procedures
are:
(1) B1/B2: 6u = 1, 12 = —MA;, other §;; and 8, zero.

(ii) location of vertex of regression curve 8o + Bz + B’ + Bsz’: by = 1
b2 = 2\;, 83 = 3\I, other 8,; and 8 zero.

If A is the true value of the quantity, it satisfies the equations:

Hy: 20 B:5:5(\) = 80(\); G=1,--+,p)
or written in vector form (with natural definitions):
Hy : A8 = da

and is a “general linear hypothesis.” Any procedure for testing H, for every \
leads to a confidence region procedure for A. Several procedures will be used.

Let 8:0) = 2 8:8:;(A) — 8o(A) and 8 = [B(), «+ -, ,\)]" = A\ — o
For each A, the least squares estimate of 3, is dx = Ayb — 8n . d) is normally
distributed with E(d\) = & and Cov (d) = A\(X'X)"'Ax = ¢'Vy. (Note
that dy and V) will generally depend on X\ except when A, is a matrix of con-
stants—as it is for the usual simple problems).

In all that follows, the observations are used only to compute d) and V, and
the sample variance s’. Vy 4s assumed nonsingular (and hence positive definite)
for every .
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The likelihood ratio test of the hypothesis H) : 8, = OQis:reject Hhif ) = A
with test statistic

d Vi'dy

o= 20

When H, is true, T\ has an F distribution with p and v degrees of freedom.
In general, T has a noncentral F distribution with noncentrality parameter
5.Vx'8,/a". The test with critical value F, . (the upper 100 a percent point of
the F distribution) is a similar level o test and is the uniformly most powerful
invariant level « test of Hy . Throughout the paper, this test will be called the
“standard” test of the general linear hypothesis.

The corresponding confidence procedure for A is the “standard’ level o pro-
cedure: R = {\: T\ £ F,,.} which can be written as

R,s = {)\: g 0}
or

4.1) Ry = {)\: Z dri dri Vaig — pSFpna | V2| S 0}
L 1% .

PSZF Piv,e d
d\ A4

in which V); is the cofactor of the element »\;; in V) . This confidence procedure
has been constructed and used by Box and Hunter [2].

The confidence procedure can be difficult to use especially when the elements
of V) depend on A. For then the boundary equation and sometimes the region
itself can be very complicated and the necessary computation messy.

The intersection region procedure is based on working separately with the p
single equations 8;(A) = O composing Hy or, more conveniently, with linear
combinations of these equations. When §;(A\) = B8; — A, so that the quantity
of interest is the vector of regression coefficients, the procedure reduces to the
multiple comparisons procedure of setting confidence limits on some or all linear
combinations of the {8;}.

Let k;, --- ,’k, be any r prescribed p-dimensional vectors, and let H); denote
the hypothesis ki8, = 0. Every Hy, is true when H, is, and if the vectors {k;}
span p-space, the truth of all » “component” hypotheses implies that H) is true.

Suppose each hypothesis H; were tested according to: reject Hy, if Th: > 4.
A natural joint test of H, is to reject H) if any H); is rejected, i.e. if

(4.2) Uy = max T\; > A.
1Sigr M

Corresponding to each component set of tests is a confidence region R; such
that

R.’ = {)\’ TM’ < A}
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and the intersection region R; is defined as the intersection of the r regions {R.},
or equivalently as the region defined by the joint test:

R;=ﬂR.‘={>\:U>‘<A}.

i=1
Each H,;is a linear hypothesis with standard test statistic (which will be used)

_ (k; dy)*
Sk k)

i

The component region R; is given by
Ri = {x: (kid))* — AS(KiV\k:) < 0)

and is usually much simpler, computationally and geometrically, than the
standard region Rs. When H, is true, each T\, is distributed as F;,, . The joint
distribution of the T follows, in principle, from the-fact that

k; dy .
= o LR’ t
(k; Va k) (

are distributed as a multivariate normal with zero means, (when H, is true),
variances o°, and correlations depending on the {k;} and on A.

The choice of the critical value A must be a compromise between control of
the error level of procedure, ease of computation, and simplicity of the resulting
boundary equation. In order that the intersection region procedure have a
constant error level @, A must be the 100 « percent point of the distribution
of U, , the studentized maximum of the squares of correlated normal deviates.
But except for a few special cases, these percent points cannot now be obtained
without major computation. And since they would likely depend on A through
the correlations, the boundary equations of the intersection region would be
complicated by the presence of the function A(\). The use of the exact percent
point, if obtainable, for some single ‘“‘compromise” value of A might be an ex-
cellent choice. I assume throughout that a constant (in A) critical value is used.
Attention here will mainly be restricted to two approximate choices, each
“conservative’” in the sense that the error level of the intersection region pro-
cedure does not exceed the nominal level a.

TreEOREM 4.1. For any set of prescribed k, , - - - , k., the confidence region pro-
cedure R using critical value A = Fy,.q) has error level not exceeding a.

Since U, exceeds A if and only if at least one T exceeds 4,

(4.3) X;

P(Uy > A) < Z; P(T\; > A).

(This holds generally, without regard for the meaning of T\; and leads to an
immediate generalization of the theorem for joint tests and intersection pro-
cedures based on any separate tests of any set of component hypotheses.) When
H, is true, every Th; has an F, distribution so with A = Fy .4/, the right hand
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side is exactly o and the joint test of Hy has error level not exceeding «. This
holds for every A, so the error level of the intersection region procedure is also
80 bounded.

The actual error level using A = F,, - will depend on A through the correla-
tions of the {kid}. When these correlations are small, the error level will be
quite close to a. Some results on the closeness of the bound « are given in section
eight.

As the number r of linear combinations is increased, the correlations increase
and the bound gets worse. The behavior of the intersection region is best studied
in the limiting case where all linear combinations are used. The distribution
theory is exactly that used by Scheffé [12] and is based on an algebraic lemma.

LemMa (Scheffé). If d is any p-vector, V any symmetric positive definite p X p
matrix, then

ank (K'Vk)

TurEoREM 4.2. The intersection region procedure using all linear combinations,

each with critical value A = pFyp,.«, ts tdentical to the level o standard region

procedure.
COROLLARY. Any intersection region based on r prescribed combinations {k;}
and critical value Ao always contains the standard region with error level

P{Fp,, > Ao/p}.

Applying the lemma to d) and its covariance matrix o'V and studentizing
with &,

= dVvd. .

sup (K'dy)’ — dx Vx_ldx.
ank s2(k'Vi k) §

But the left-hand side is the test statistic associated with the intersection pro-

cedure (over all k) and the right-hand side is p times the standard test statistic.

Any intersection procedure can be treated as an approximation to some
standard procedure. The intersection region will always contain the standard
region and will converge to it as more linear combinations.are used. The gain
in simplicity of the component regions may more than compensate for the large
number of regions and the imperfect approximation.

The use of A = pF,,,.. has one advantage over all other choices, approximate
or exact, for a finite r. The distribution, theory of the {T\:} and related statistics
is valid only if the vectors {k,} are chosen independently of d\ and s*. But
Theorem 4.2 is based on all linear combinations and thus can be used for {k;}
selected after studying the data. A useful a posteriori choice of linear combina-
tions will be illustrated in the application in section seven. (This advantage is
a primary motivation of Scheffé’s [12] multiple comparison procedure.)

When the equations defining A are homogeneous linear functions of the re-
gression coefficients, confidence regions for A can have shapes and behavior not
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occurring in classical confidence regions. Several such properties follow from
Theorem 4.3.

TrEOREM 4.3. If for all N, each component of 8\ is a homogeneous linear func-
tion of the regression coefficients of the linear model, then for any sample there is a
nonzero o* which will depend on the sample but not on \, such that the standard
confidence region for \ is the enlire space for any error level less than o*.

CoROLLARY. The theorem holds, with a possibly different o*, for the inlersection
confidence region.

The theorem follows easily from the well-known interpretation of the test
statistic 7\ of the general linear hypothesis, that
_ Su - So . 14

T 5 »

where Sy = »s® is the sum of squares of residuals after the least squares fit of
the linear model to the data, while Sy is the sum of squares of residuals after
the best least squares fit subject to the restriction of the hypothesis Hy:8, = 0
(cf. Wilks [14]). One of the possible fits satisfying the homogeneous restrictions
8, = 0 is that with all regression coefficients estimated to be zero, leaving a
residual sum of squares Y, 2°, the original sum of squares. Consequently, Sn< > 2*
for all A and for any sample, T is bounded by a constant depending on the
sample but not on A. Since F,.. approaches infinity as a approaches zero, for
the sample 2z there is a nonzero «*(2) for which H) will be accepted for all X at
any significance level o < a*(2), and the corresponding confidence region will be
the entire space. The corollary follows using the corollary to Theorem 4.2.

The theorem shows that the confidence regions need not be bounded. Since
the value(s) of A for which 7' is maximum will generally be finite, the confidence
region as a function of the error level will close in around the maximizing point(s),
and the resulting region will be neither convex nor simply connected and per-
haps not even connected. (In the usual problems with means and regression
coefficients, the hypotheses are not homogeneous and, what is essential, the
constant term depends on \.)

b. Geometry of intersection regions for a class of equations linear in \. Further
study -of intersection regions requires specifying the form in A of the defining
equations. An interesting class of equations is suggested by the problem of
locating the maximum of a quadratic regression surface (section seven). Sup-
pose that \ is a p-dimensional vector A and that the equation & = O is linear
and homogeneous in the regression coefficients and linear in A. Introduce the
notation 8 = vy + I'A in which the elements of the p-vector ¥ and the p X p
matrix I’ are homogeneous linear functions of the regression coefficients. Let ¢
and C be the corresponding least squares estimates of ¥ and I" and let d\ =
¢ 4+ CA. The covariance matrix o'V, of d is an inhomogeneous quadratic func-
tion of A. The particular forms of ¥ and I are of no interest except for the evalu-
ation of dy and V, (a tedious but straightforward task) and to verify the two
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assumptions: Assume that Vy is nonsingular for all A. Assume that the (random)
matriz C 1s nonsingular with probability one.

Then a unique solution & (the maximum likelihood estimate of &) of dx = 0
will exist. I' may be singular for a particular set of population regression co-
efficients, so that the “population value of 3’ need not be unique or even exist.
(If no solution of 8 = 0 exists, the confidence problem is vacuous.)

The development of this section concerns geometric properties of intersection
regions. Throughout, the observed sample will be held fixed, arbitrarily, except
for the above mentioned set of probability zero.

The component region R; based on the combination ks is {&: hi(2) = 0}
with quadratic boundary equation h:(d) = (kid))? — As’(kiVok;) = 0. Since Vi
is positive definite for all &, all points on the hyperplane kidx = 0 (call it M;)
lie in the interior of R;. The two parts (if they exist) of the exterior
(complement) of R; on either side of M; are each convex (Theorem 9.1).

Thus, R; is the region between the sheets of a two-sheeted hyperboloid, the
exterior of an ellipsoid, or limiting and transitional forms of these. The boundary
(call it F;) can never be-one of the one-sheeted hyperboloids.

Considered as a function of the critical value A (or of the significance level),
R; is the hyperplane M,; when A = 0 and expands monotonically with A, first
as a ‘“‘curvilinear slab’ between the two sheets of a hyperboloid of small curva-
ture, then widening and curving until it eventually becomes the outside of an
ellipsoid and finally fills the entire space. By Theorem 4.3, this last will occur
for a finite 4.

The component region will be most easily described and comprehended when
it is a “curvilinear slab,” being almost a confidence interval for the linear com-
bination kid, . In any case, the computations involved in using R; are relatively
simple.

The component regions are studied as a preliminary to forming intersection
regions. In this section, restrict attention to p linearly independent combinations.
The intersection of p slabs is a parallelepiped. At best, the component regions
are bounded by hyperboloids of small curvature, and the intersection of p such
regions is a ‘‘curvilinear parallelepiped.” The 2p “faces’” become concave and
the 27 corners are moved at least enough that the 2°~' corners on any “face”
are not coplanar.

Let R; = NR; be the intersection region determined by k;, - - - , k, and let
J = NF; be the intersection of the boundaries. The points of J—the “corners”
of R; —are the solutions of the p simultaneous quadratic equations

{hi(l)':()"i: 1,"‘,17}.

Except with probability zero, J will contain not more than 27 points. Let R'
be the convex closure of J. R is a convex polyhedron, all of whose vertices are
points of J (not necessarily conversely).

In the intuitive discussion above, R; would be contained in R' so that R'
would be a conservative and perhaps close approximation to R;. But the ap-
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proximation depends critically on R; being a ‘‘curvilinear parallelepiped.” If
R; is unbounded, disconnected, or otherwise misshaped, the formal calculation
of R' will usually lead to a clearly bad approximation, but it can lead to an
apparently good but erroneous approximation. Complex shaped intersection
regions may arise because of poor choices of components (e.g., too highly cor-
related) or because of the inadequacy of the sample data in accurately deter-
mining \. The R' approximation can be so bad that it has no points in common
with R; except the corners. This will occur if all the corners lie on the part of
one boundary (say F) on one side of its hyperplane M ; , as will necessarily occur
if any R; is an ellipsoid (Theorem 9.2).

A positive result, representing the behavior understood in the intuitive dis-
cussion is that R' contains R; if there are exactly 2” corners, one in each of the
27 parts of p-space formed by the p hyperplanes {M;} (Theorem 9.3).

To use R, one must find all corners of R;. There is need for some simpler
‘approximations, to provide a first approximation for the complicated calcula-
tions of the corners of R, , and also to be easier to describe and use than is B, .
Two simple polyhedral approximations R’ and R® are suggested, both based on
the idea that the boundaries {F;} are hyperboloids of small curvature, at least
in the region of interest.

R’ is obtained by replacing each hyperboloid JF; by a pair of tangent hyper-
planes and taking the convex polyhedron formed by these 2p hyperplanes. R?
is the parallelepiped formed by approximating each F; by a pair of hyperplanes,
both parallel to the corresponding M . These approximations are easily deter-
mined once the point of tangency or intersection on each boundary is chosen.
The suggested choice is the pair of points lying also on every M;,j # 7. If,
for each ¢, the two points lie on opposite sides of M (the reverse is a sure indi-
cation that R; is not a “curvilinear parallelepiped’”), R® is always contained in
R; (Theorem 9.4). If the hyperboloids are nearly flat, the approximation is good.
By dilating the region until all corners are outside R;, a ‘“‘conservative”’ ap-
proximation of the same convenient shape could be obtained. R* or a dilation is
probably the most useful of all the suggested regions. R® is a much rougher approxi-
mation whose virtue is simplicity of shape and computation.

6. On the computation of intersection regions and approximations for equa-
tions linear in 2. The computations needed in the approximations of section
five are simplified by a change of coordinates. For a particular choice of
ki, ---, k,, and a particular sample, define new (oblique) coordinates for
the space of & by

£i=k£d)\; (7:=1""’p-)

The inverse transformation must be obtained, requiring the solution of p simul-
taneous linear equations in {A;}. (The unique solution is guaranteed by the
assumed linear independence of the {k:} and nonsingularity of C.)

The coordinate hyperplane £; = 0 is M, and the maximum likelihood estimate
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% is at the origin £ = 0. Each h;(3) can be written in ¥ coordinates as
R(3) = gi(®) = £ — A (kiViki)

and is a quadratic function of the {¢;}.

The computation of R* and R’ is immensely simplified. The pair of points
lying on F; and every M;, j # ¢ have all { coordinates but the ¢th zero, and-
that given by the roots (e; < €7 ) of the quadratic g:(0, - -+ , 0, £,0, ---,0) = 0.
If they have the same sign, the intersection region, at least for the particular
choice of components, is dangerously complicated. If e; < 0 < ¢! , then the
equation of the tangent hyperplane approximation to the part of F; with £ > 0
(say) is

R o agi(i)] o .[ag;(i)]
0= =1 E’[ 0% | £=(0,- 10700 4,0) + & =) 0t; fg=(0,- 100100,

I#

and is easily written down when g;(£) is given explicitly. R® is defined by the
2p corresponding inequalities, each chosen so that § = 0 satisfies it. R’ is given
as {£:6; < & < e€i;46=1,---, p}. The inequalities for R’ or R® are easily
changed back to linear inequalities in & if desired.

The R', R’ and R? constructions have no unique or natural extensions to more
than p component regions (in p dimensions). One possible procedure would be
to repeat the R’ construction for another set of p components (perhaps with
some overlaps), using a new set of coordinates, then converting both sets of in-
equalities to some one convenient coordinate system. The approximate region
would then be the convex polyhedron defined by all of the inequalities. Some
dilation of the R’ region as discussed in section five would be desirable to prevent
serious underapproximation of the confidence region.

7. An application to the location of the maximum of a quadratic regression
surface. Many aspects of the problem of determining the values of the input
variables of a process to yield a maximum response have been studied by Box
and colleagues ([1], [2], (3], [4], [5]). Here we use the simple model in which each
observed response z is distributed normally and independently with variance o
and mean

(7.1) E@) = v+ ¥y + 3yTy
with input variables y/ = (y1, * - -, ¥») and regression coefficients
Yo, =, 7)), o= [yl

with vi; = v;:. n sets of (2, y) comprise the observed data and the model is a
“general linear model” of section four with m = 1 + p 4+ p(p+1)/2 regression
coefficients. Denote by ¢y, ¢, C and s* the least squares estimates of vo, v, T
and o°. The fitted surface is

(7.2) 2= ¢ + c'y + 3yCy.
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The estimates and their variances and covariances can be computed from the
formulas of section four or from those given by Box and Wilson [4].

If the surface (7.1) has a maximum at y = A, X will satisfy the stationarity
equation H) : ¥ + I'dA = 0. This equation will be satisfied by any vertex—
maximum, minimum or saddle point—of the surface and all confidence regions
are for the location of a vertex, type unspecified. Box and Hunter [2] construct
the standard confidence region and show that if the region is bounded, then the
region can be said to represent one particular type of vertex in the sense that
for every 2 in the region and for each fitted surface with vertex & that does not
give a “significantly poor fit,” the vertex is of the same type. Their argument ex-
tends to intersection regions based on joint tests of the form of equation (4.2.).

From the structure of dy = ¢ + Ci it follows that even with the maximum
of balance and symmetry in the design, each diagonal element of the covariance
matrix Vi of d) has at least a constant term and all p square terms. Each off-
diagonal element has at least a term in A;\; . Consequently, in the equation (4.1)
for the standard confidence region Rs, each term will generally be a polynomial
in the {\:} of degree 2p. Even for p = 2, the equation is already unwieldly.
Box and Hunter [3] show that with a rotatable design, the equation can be
reduced to a quartic for any p.

H, is exactly of the form studied in section five and the nonsingularity as-
sumptions for V) and C are met. Intersection region procedures are applicable.
The simplest choice of linear combinations is the direct use of the p components
of d) . With this choice, the critical value A = Fi,,.4/» could be used to give an
error level bounded by a.

A better choice is suggested by a canonical analysis of the fitted surface such
as is obtained by introducing new coordinates {z;} with origin at the center and
with axes the principal axes of the fitted surface (7.2). If {m;} and {b;:} are the
eigenvectors and corresponding eigenvalues of C and if b; = mic, then
z; = miy + b;/bs, and the fitted surface becomes # = constant + % > 2.bszi.
(Box and Wilson [4] and Box [1] give more details and interpretations.)

The suggested choice for k; is m;/b;; which corresponds to using the separate
stationarity equations found by equating to zero the partial derivatives of the
true surface in the directions of the principal axes of the fitted surface. This set
being dependent on the data, the only simple valid critical value is 4 = pF, ,;a
(with which arbitrarily many more combinations can be used without increasing
the error level of the intersection region). With k; = m;/b;;, the linear form
defining ¢; and used for the component region R; is

£ = kidy = mid\/bi; = mic/bi; + miC\/by

(7.3)
= bi/bi + mi.

Thus, the transformation to the £ coordinate system, useful in the computation
of intersection region approximations, is here identical to the transformation to
the principal coordinates {z;} useful in understanding the shape of the regression
surface.
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The intersection region R; and the approximation R, R’ and R’ will be illus-
trated on the numerical example given by Box and Hunter [2] to illustrate Rs .
For the fitted surface ¢ = 77.95, & = 1.07, » = 9,

3.76 —5.74 3.84
c = C =
—1.57 384 —5.28

with covariance matrix given by equation (27) of [2]. The fitted surface has a
maximum & = (.889, .349). The surface in the principal coordinates z is:
3 = 79.35 — 1(9.357 2} + 1.663 z7) and the transformation of coordinates is

x = .7279 y, — .6857 y, — 4076

(74)
Lo = 6857 W + 7279 Y2 — .8631.

The transformation consists of a translation of the point & to the origin and a
rotation through —43°17.2". :

Using the second set of recommended {k;} and the critical value
A = 2Fs4 05 = 8.52, the transformation (7.3) from the A& to & coordinates is
identical with the transformation (7.4) from y to x coordinates. The boundary
equations in the & coordinates of the two component regions R, and R; are:

qi(f) = —.035 — 014 & — 054 & + .929 & — .045 £ + .035 fife
g2(E) = —.433 + 048 £ — 468 £ — 1.414 £ + 514 £ + 709 &t

The corners of the intersectionregion R; are (— .88, 3.10), (.43, 1.31), (—.12,—.55),
(.16, —.66) of which one lies in each quadrant, satisfying the hypothesis of Theo-
rem 9.3, so that R is contained in the quadrilateral R' formed as convex closure
of these points. The parallelepiped approximation R’ is given by the inequalities
(=19 £ & =< .20), (—.57 = & = 1.48) and the polyhedral approximation R
is the intersection of the four tangent half spaces:

Ty = {¢&: 067 + .360 & + .061 & = O}
TH = {§: 073 — 360 & + .047 & 2 0}
Ty = {t&: 599 + .355 & + 1.053 & = 0}
Ty = {£:1.558 — 1.097 & — 1.053 & = 0}

The regions Ry , R:, R , R, R’, R, and R; (the latter taken from [2], p. 198)
are illustrated in Figure 2. (In two dimensions, the approximations to R; are
unnecessary except for simple analytic description and are shown principally to
illustrate the different approximations.)

8. Bounds on the error level of intersection procedures. A lower bound on the
error-level can be obtained that gives some indication of the closeness of the
bound in Theorem 4.1.

Fix A, let u; = x;/s with z; defined by equation (4.3) and let p;; = correlation
(z; , ;). The joint distribution under H) of the {u;} is an r-variate generalization
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Component Intersection Polyhedral
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v R? ~ R, Ry R!
Paralielepiped Component
U Approximation { Region
R3

. Standard
R2

\ ; Region
. Rs
Fie. 2. Various approximate confidence regions for the location of the maximum of
~ the quadratic regression example of section seven.

of the ¢ distribution (cf. Dunnett and Sobel [6]) with » degrees of freedom and
‘correlation matrix [p;;] of the associated r-variate normal distribution. Denote
the bivariate distribution integrals by

dv(ay by pii) = P(ui > a, u; > b)
f'(a: b, Pii) = P(Iuil > q, |u1'| > b)
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K. Pearson [10, Table VIII and IX] gives d«(a, b, p) for a selection of a, b, p
and Dunnett and Sobel [6] give something simply related to d,(a, @, &= 0.5) for
a selection of ¢ and », and formulas for computing other values. The marginal
f»(a, 0, p) is the double-tail probability of Student’s ¢ distribution and is inde-
pendent of p.
The error level of the joint test is
P(U)‘ > A) = P(max |u.| ;'\/Z

1<igr

Bounds on this probability are given in Theorem 8.1.

TaEOREM 8.1.
) P (max |w| 2 a) £ 1f,(a, 0, —)
1<i<r
2 P (max |u,] 2 a) 2 0, —) — Z f(a, a, pij)
1Z4iZr i<J

P (max |ug| =a) 2 va(a: 0, —)

1ZiZr

@ ~([(-2)re a0 +246am]
in which po = max [ pi;| and py = ; |p‘j|/<;).

Equality occurs in (1) if r = 1 and in (2) and (3) of r = 2.

Inequalities (1) and (2) are direct applications of Bonferroni’s inequalities
(cf. Feller [7]) to the events {|u | = a}. The inequality (3) follows on combining
with inequality (2) the symmetry and convexity of f.(a, a, p) proved in the
lemma below. For since 0 < |pi;| = po,

fv(ay a, Pij) = f (a, a, I Pij I) é ( I p;o, I) (a’y a) 0) + I Pi I f (a') a, PO)

Srean s(5)[(1-2)r0a0 +(2)seam].

LemMA. f, (a, a, p) s a symmetric, convex function of p.

Use f,(a, a, p) = 2d,(a, a, p) + 2d,(a, a, —p). Write each d, as the double
integral of the bivariate f-density, change to ‘‘elliptical polar coordinates”
([6], p. 154), and integrate out the angle. Straightforward calculation of 9°f,/dp®
shows convexity.

Table 8.1 gives the upper bound (1) and lower bound (3) for a selection of
values of a, 7, v, po, p1 chosen to give upper bound near .05 or .01. The upper
bound would seem to be sufficiently accurate for most uses provided the corre-
lations and 7 are not very large.

and
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TABLE 8.1
Bounds on P (lmax | us| > a) from Theorem 8.1
Sisr
Lower Bound (3)
Upper
r v e B(?\};:d I =5 o0 =8
=0
pL=.2 pL=.5 pr=.2 pL=.5 p=.38

2 © 2.2 .056 .055* — .052* — — .045*
3 © 2.4 .049 .048* .046 .043 — .038 .031
5 © 2.6 .047 .046* .043 .038 .038 .027 .016
8 o 2.7 .055 .054* .048 .039 .039 .016 <0
10 © 2.8 .051 .050* .043 .033 .033 .007 <0
2 © 2.8 .0102 .0102* — .0098* — — .0080*
3 © 2.9 .0112 .0112* .0109 .0104 — .0092 .0080
5 © 3.1 .0097 .0096* .0092 .0086 | .0084 .0065 .0046
8 © 3.2 .0110 .0109* .0102 .0092 .0086 .0050 .0014
10 © 3.3 .0097 .0096* .0089 .0079 .0071 .0033 <0
2 14 2.5 .051 .049* — .046*

5 14 3.0 .048 .044 .039 .033

3 8 3.0 .051 .047 .044 .040

2 6 3.0 .048 .045* — .042*

5 7 3.5 .050 .041 .036 .029

* Exact value.
—Impossible po , p1 combination.

9. Mathematical results for the geometry of section five. The notation of
sections five and six will be used, and all results are for a fixed sample. For
terminological convenience, all work will be done in terms of a Euclidean p-srace
E, with rectangular coordinates §. The affine transformation of the space does
not affect the properties of interest.

Let Var £ = o°(k:Vak;) be the variance of the linear form defining £; , trans-
formed for the particular sample to a function of & If S; is any set in E, indexed
by <, let

ST = SN{E: & > 0}, S7 = SN{E: & < 0}, 8! = SN{E: & = 0).

Let S* = E, — S, and S = closure of S.

TueoreM 9.1. Rt and RY™ are conver.

To prove R¥* convex, it is sufficient to show that for any two points & and
% in RYT and any constant 6 such that 0 < 6 < 1, § = 6§ + (1 — f)&:isin
R¥*. But

EeR¥ & {gi(¥) >0 and & > 0}

£ > 0 is immediate. Expanding g«(¥), using the Cauchy inequality for co-
variance, g:(¢;) > 0 for j = 1, 2 and &uéss > 0,
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gi(to) = Ol — (4s"/0") Var &

+ (1 — 0)’[t2 — (AS"/0") Var &)

+ 2001 — O)[uks — (45°/0") Cov (b, £a2)]

z 0'g:(8) + (1 — 0)g:(&2)

+ 201 — 0)[trita — (A8°/0™)V/ (Var &) (Var £)]
> 20(1 — Ok — (B1:£2:)"] = 0.

CoroLLARY. Ri* and R}~ are convex.

TuEOREM 9.2. If for some i and some sign (say +), J N Ff = J,
then R; N R' C FY.

By hypothesis, / < Ff < R¥*. By the corollary to Theorem 9.1, R¥* is
convex and closed so that R' C R¥+.

RINR cRNE*cCRN(RITUF)c R NFcFT.

CoroLLARY. If any boundary F; is an ellipsoid, R N R' C F,.

The entire ellipsoid must be on one side of the plane £ = 0.

TueoreM 9.3. If J contains exactly 27 points, with one point in each of the 2°
open orthants formed by the p coordinate hyperplanes My , --- , M, , then R; C R.

Three lemmas will be proved, from which the theorem follows immediately.

By hypothesis, J contains 2” points, one in each open orthant defined by the
p coordinate planes {£ = 0}. Denote the 2” points (‘“‘corners’) by

{et’t: (euly"'yeup);u=07""2p_ 1}

with the subscript u assigned so that if {u;, - - - , u,] is the binary expansion of
u, then e,; > 0 (e, ¢ M;") if u; = 1 and e,; < 0(e, £ M;7) if u; = 0. The
point e, is in the diagonally opposite orthant from ex_;_. . The “diagonal line”
D(u, 2° — 1 — u) through e, and e»_;_, can be parametrized as

{£: 8 = e, + (1 — 60)ew_1-u}

and is the union of three disjoint parts: the “diagonal segment” D%(u, 2° — 1 — u)
with 0 < ¢ < 1, and two “outer diagonals” D(u) with § > 1 and D(2° — 1 — w)
with 6§ < 0. D(u) is contained in the same open orthant as e, . Define

Qf = convexhullof U D(u)
{utug=1}

Q7 = convex hullof U D(w)
{u:us=0)

e=0U@ua.

LemMma 1. Under the tonditions of Theorem 9.3, B; C Q*.
For each value of u and 7, the diagonal D(u, 2° — 1 — w) intersects the bound-
ary F; in the two points e, and ew_;_.. The diagonal segment crosses each
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coordinate hyperplane M; . Since the boundary equation of R; is quadratic, the
segment D°(u, 2° — 1 — w) is in R; and the outer diagonal D, is in R}. Then
U D.cRf and U D,cR¥.
(wug=1) {uzug=0)
By Theorem 9.1, R¥* and R¥™ are convex, so QF ¢ Rf* < Rf andQ; c R¥
RY¥ for every ¢. Then Q < UZ,Rf = R} and R; C Q*.

LemMma 2. Under the conditions of Theorem 9.3, R' contains a cube with the
origin in the interior.

By induction on the dimension p, the cube with faces |&| = a = min,, j|e.;|
will be shown to be in R'. Let £ be any point with || < a forall . If p = 1,
then ey £ —a = & = a = ey for the one coordinate and £ is in the convex
closure of e and e; .

For arbitrary p, let e, be an arbitrary corner. Suppose that e., > 0. Let
e, be the corner with sign e, ; = sign e,; for j < pand e, < 0. Then e, =
—a £ £ = a £ ey, and there is a convex linear combination d, = 6.e, +
(1 — 6,)e. with 0 < 6, < 1 such that dy, = £ . For the other coordinates,
|d.;] = min (Jeu;], |ew;]) = a and sign d.; = sign e,;. There are 2°* points d.
with v = (w1, -+, Up-1, 1), satisfying the conditions of the theorem on the
p — 1 dimensional hyperplane £, = £, with restricted min, ;|d.;| = a. By the
induction hypothesis, the point £ lies in the convex closure of the {d,} but
since each of these d, is in the convex closure of R', so also is £, completing
the proof of the lemma.

LemMA 3. Under the conditions of Theorem 9.3, R' D Q*.

The lemma will be proved by defining an expansion of R' to the entire space
using only points of Q.

By Lemma 2, R' contains a cube P with corners (=a, - - - , #4=a). Denote the
corners of P by {c,} with c, in the same orthant as e, . The cube P can be de-
composed into disjoint open simplexes of dimension p and less, all vertices being
corners of P and every face of every simplex in the collection. A simplex S of
dimension q and with vertices Cu) , - * * , Cu(g+n is defined as

g+1 g+1
S = {Eti = El 0u(i)Cuch ;Zl bunp = 1, all bucy > 0}-
= i=

Taking 6, = 0 for all v > u(j) for any j, the {6,, v = 0, ---, 2° — 1} are
the barycentric coordinates of the point ¥ with respect to the simplicial de-
composition. The barycentric coordinates are continuous functions over each
closed simplex S and uniquely defined over P and so are continuous over P.
(Cf. Lefschetz [9], p. 97.)

One such decomposition of the cube consists of the p! p-dimensional simplexes
Si= {8 —a<é&, <+ <&, <a}inwhichs = (4, ---, 7p) is any permu-
tation of the integers (1, - - - , p), and of all faces of the {.S;}. S; can be written
as

p+1 p+1
S = {Eif = Zlﬂuu,ﬁcua,j); Zl Ouii,p = 1, 0uii,y > 0}
j= =
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in which ¢, ; is that corner of P whose 7;th coordinate is —a for ¥ < j and
+a for k = j. The correspondence between the two representations of S; is
given by:

1 .
Ouii,py = 3a (Ei,- — &), G=1-,p+1):

(Eio = —a, Eip+1 = +a)'

Any simplex lies entirely in a face, say {£; = +a}, of P or else does not inter-
sect a face. For if all vertices of S lie in {#; = a} then so does S, and if one
or more vertices do not lie in {£ = a} then the sth coordinate of each point
in S is less than +4-a. Let § be the collection of all simplexes lying in the face
F of P. 8 is a disjoint simplicial decomposition of F and the barycentric co-
ordinates are continuous over F. Each simplex in § lies in some single face of
the cube. Let S with corners c.a), -+, Cuxy be an arbitrary member of 8.
Suppose that S lies in the face {£; = a} and hence in MF+.

Define a deformation of F as follows. For £ ¢ S with &€ = > 0.jCucs ;
Z Ouiiy = 1; Ouiiy > 0; define

k k
(5 = tzl Oucieucny + (1 — 0) Eoumcucf), 0<t=1
i= =
k k
f(8) = tzl bupeuiy + (1 —¢) z: Ou(ir€2_1—u(i)
1= 1=
t>1

If

k
-21 Oui (teucny + (1 — £)emw_1uii)-
-

Let F(¢) be the image of F' under f, . The deformation consists in moving each
corner of the cube to the corresponding corner of R;, then out the diagonals.

For each ¢, f is a continuous mapping of F into E, since the barycentric co-
ordinates are continuous over F. Further, the family of mappings is jointly
continuous in ¢ and . fo is the identity mapping on F and f; is homotopic to fo
for all ¢. Write f,/F ~ fo/F; /F to indicate the domain of the mapping and ~ for
the homotopy equivalence relation (cf. Lefschetz [9], p. 42).

For0 < ¢t =< 1, F(t) C R' by Lemma 2 and the convexity of R*. For ¢ > 1,
teun + (1 — f)ew 1y lies on the outer diagonal D(u(7)). Since the corners of
S all lie in M*, so do the {e.;}. Therefore f,(S) C Q7, the convex hull of
all outer diagonals in M7*. Finally then, F(f)  Q for all £ > 1 and

Pu (U F() c R'u Q.
>0

The proof of the lemma will be completed if any point not in P can be shown
to lie in F(¢) for some ¢ > 0.

The distance from the origin to the image S(f) of any simplex S of the face
of the cube is never less than a and increases to infinity. For, if S lies in M7 ™,
then cu(j),i = @, eu(j),s = a and ew_1ucj,i = —a. Then for any point £ in S(¢),
&i2aift=landé = (28— Daift > 1.
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If x is any point in E,, denote by =, the mapping of £, — x onto the unit
sphere centered at the origin, which maps £ into the projection from the origin
of ¥ — x (vector subtraction). Denote by =,/B the mapping , with domain
restricted to the set B. The following topological theorem is needed:'

Tueorem (Hurewicz and Wallman [8], Theorem VI-10). Let B be a closed
bounded subset of E, . Two points X, y neither contained in B are separated by C,
if and only if the mapping w./B and m,/B are not homotopic: w./B ~ m,/B.

Assume there is a point x not contained in P u (U F(t)). Since the distance
0, F(t)) — =, choose # , such that dist. (0, F(¢)) > dist. (0, x). Since x does
not lie in the cube P, the points 0 and x are separated by the cube boundary F
according to the Jordan separation theorem. Applying the topological theorem
with B = F, m/F ~ =,/F. Then for any ¢

7o/F(t) = nof/F ~ wofo/F = mo/F * w./F = wfo/F ~ wof/F = m/F (),

since (a) fo/F is the identity mapping, (b) fo/F ~ f./F by construction, (c)
¢fo/F ~ ¢f./F by composition for any mapping ¢ with correct domain ([9],
p. 42). Since homotopy is an equivalence relation, mo/F () ~ =./F(f). Applying
the topological theorem again with B = F(#,), it follows that the points 0 and
x are separated by F(f1). The line segment [0, x] being connected, must intersect
F(t) which is impossible since dist. (0, x) < dist. (0, F(#)). Therefore
Pu(UsoF(t)) = E,, completing the proof of the lemma and Theorem 9.3.

TuroreM 9.4. If for each i, e; < 0 < ¢; then R* C R, .

The line L; = N ;..M; intersects F¥ at £&; = e > 0and F; at & = e; < 0.
Approximate F? and F7 by their tangent hyperplanes at these points. If Tt and
T denote the closed half-spaces bounded by these tangent hyperplanes with
halves chosen to contain the origin, approximate R; by T+ n T7 and R; by
R® = N24(T7n T7). Since RY* is open and convex and contains the line L; for
& > e:, then R¥" does not intersect the tangent hyperplane or the half-space
T¥. Similarly, R¥* n T7 = 0so that T{ n T; C R:and R’ C R;.
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