ON THE ESTIMATION OF PARAMETERS RESTRICTED
BY INEQUALITIES!

By H. D. Brunk
Unaversity of Missours

1. Summary. There are collected in this paper several observations and
results more or less loosely related by their connections with the subject men-
tioned in the title. The discussion moves from the general to the specific, be-
ginning with some remarks on minimization of convex functions subject to side
conditions, and ending with a discussion of uniform consistency of estimators of
linearly ordered parameters.

Section 2 deals with one aspect of the problem of minimizing a function of
several variables, subject to side conditions which specify that the variables
must satisfy certain inequalities. It is frequently true in such problems that
information as to which of the restricting sets contain the minimizing point on
their boundaries is of great assistance in finding this point. Theorem 2.1 provides
the basis for a stepwise procedure leading to this information when both the
function to be minimized and the restricting sets are convex. It makes no con-
tribution, however, to the problem of finding the minimizing point on a given
boundary or intersection of boundaries.

Brief mention is made in Section 3 of some examples of estimation problems
for which the remark to which Section 2 is devoted is appropriate.

Section 4 is concerned with a situation in which samples are taken from k
populations, each known to belong to a given one-parameter “exponential
family”. The problem is the maximum likelihood estimation of the k parameters
determining the populations, subject to certain restrictions. Methods are dis-
cussed of finding the minimizing point on a given intersection of boundaries of
restricting sets. In the particular case when all populations belong to the same
exponential family and when the restrictions on the parameters are order re-
strictions, it is observed that the maximum likelihood estimators (MLE’s) of
the means are independent of the particular exponential family.

In Section 5 is discussed a property, related to sufficiency, of the MLE’s dis-
cussed in Section 4. Let y denote a vector representing a set of possible values
of the MLE’s, E a Borel subset of the sample space, 7 a parameter point, S, the
intersection of the restricting sets. If S, is bounded by hyperplanes, there is a
determination of the conditional probability pr(E | y) which is independent of
r when y is interior to Sy, and, when y lies on a face, edge, or vertex of S,
is independent of = on the closure of that face, edge, or vertex. This result may
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438 H. D. BRUNK

be regarded as a generalization of a remark ([16], p. 77) to the effect that if X
and Y are normally distributed random variables with unit standard deviation
and means £ and 75 respectively, and if £ and 5 are known to satisfy a linear
equation, then the foot of the perpendicular from the observation point (z, y)
to the line is a sufficient estimator.

Section 6 is devoted to the same problem as are Sections 4 and 5, except that
the parameters are linearly ordered, and that the populations need not belong
to exponential families. Conditions are obtained for the strong uniform con-
sistency of an estimator which is the MLE when the populations do belong to
the same exponential family. An asymptotic lower bound is given for the proba-
bility of achieving a given precision uniformly.

2. Minimizing a convex function on the intersection of closed convex sets.
(The ‘author’s thanks are due the referee, whose suggestions have materially
improved the exposition in this section.) Let ¥y = (y1, ¥, : -~ , ¥&) denote the
generic point of R, Euclidean space of k¥ dimensions, and let G(y) be a lower
semi-continuous function such that {y : G(y) = a} isbounded for each a, satis-

fying
(2.1) G\ + (1 — Ny"] = max [G(Y), G(y")]

for 0 = A £ 1, and for all %/, ¥” in its (convex) domain of definition. (This
form of condition (2.1) is due to the referee.) In particular, G satisfies (2.1) if
G is convex.

For an arbitrary set A C Ry, let 8(A) denote its boundary. We write A — B
if A is properly contained in B or if A = B. Let ¢ denote the empty set. Let
there be given a finite number of intersecting closed convex sets A;

(i =12 ---,N). We assume G defined on a convex set containing Ui_,4; .
We define @; to be the set on which G(y) achieves its minimum value fory ¢ 4,
1=1,2, -.-,N.Foraset,z, -, t, of distinct positive integers not greater

than N we define Q;, s,.....s, t0 be the set on which G(y) achieves its minimum
value for y ¢ 4;,44,... 45,

TueoreM 2.1. Let A;, A, be intersecting closed sets, Ay convex. Then either
Qi C Q1 or Qu®(4:2) < ¢. )

Proor. If Q,4: > ¢ then obviously @; D Q. It remains to consider the
situation in which Q,4; = ¢. Let p £ @1, ¢ £ Q12. Since A, is convex, the segment
pq lies in A, . Since p £ A2, q € A., there is a point r on pg such that r £ 4,8(4.).
By property (2.1), G(r) < G(q), hence r € ;. This completesthe proof of Theorem
2.1.

CoroLLARY 2.1. If G(y) ts lower semi-continuous, ¢f {y : G(y) Za } is bounded
for each a and if G salisfies

(2:2) G + (1 — Ny"] < max [G(Y), G(y")]

for 0 < N < 1, and for all i, y” in its (convex) domain of definition, and if A, ,
A are intersecting closed convex sets in its domain of definition, then Q1 and Qi
consist of single points, q and qi ; either ¢ = g2 or g2 € ®(A2). We note that
a strictly convex function G satisfies (2.2).
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Corollary 2.1 justifies the procedure outlined in the following paragraph for
minimizing G subject to the condition y ¢ A1 4;, -+, Ay, where 4,, 4, -+ -,
Ay are given intersecting closed convex sets. In many particular instances of
this problem, one of the chief difficulties is that of determining which of the sets
A; contain the solution (a point minimizing G) on their boundaries, when the
point at which G attains its unrestricted minimum is not in A;4,, ---, Ay.
The procedure described below can be used to determine those sets among 4, ,
A, -+, Ay on whose boundaries the solution lies. We remark that G need not
be convex in order for the method to apply, provided it is lower semi-continuous
and satisfies (2.2).

The first step is to determine the point at which G' assumes its unrestricted
minimum. If this point lies in 414;, ---, Ay, it is the solution. If not, one of
the sets is selected in which it does not lie, and designated as A, (relabelling, if
necessary). Now consider the problem of minimizing G subject to y ¢ 4, . Apply-
ing Corollary 2.1, with A, there replaced by the whole space in this application,
and A, there by A, in this application, we find that the solution, ¢, lies on
®(A1). It may be that ¢ lies in A;4,, - -+, Ay, in which case it is the solution.
If not, we designate as A, (relabelling, if necessary) one of the sets which does
not contain ¢; . We now consider the problem of minimizing @ subject toy & A;4, .
By Corollary 2.1, the solution g, lies on ®(Az). We find first the point ¢, where
G is minimized subject to y ¢ A;. If ¢ € A;4,, then ¢ = g1 is the solution
of the present limited problem. Otherwise, by another application of Corollary
2.1, Q12 € (B(Al)(B(Az), ete.

This stepwise procedure was introduced in situations involving certain func-
tions G and convex sets A; described by inequalities of the form y; < . by
van Eeden ([13], Theorem I, p. 445; [14], Theorem II, p. 134). The stepwise pro-
cedure outlined above makes no contribution to the problem of finding the point
where G is minimized on a given “extended hyperface” ®(4:,) --- B(4;,).
Further, in special cases it may even occur that one will determine the mini-
mizing point on each of the 2"-1 “extended hyperfaces” before finding a mini-
mizing point in 4,4, , --- , Ax . Usually, however, one will expect the procedure
to terminate with the solution long before all “‘extended hyperfaces” have been
examined.

Non-linear programming methods have been developed for solving certain
problems of this class (see, for example, [3]). Problems arising from some of the
applications discussed below are such that it is relatively easy to find the mini-
mizing point on a given “‘extended hyperface”’, and some trial calculations with
such problems using the above stepwise procedure resulted in far less lengthy
calculations than did those using general nonlinear programming methods.

3. Examples.
(1) In the bioassay type of problem, one is required to minimize a convex
function of the form

N
(3.1) "Z; la: log y: + b log (1 — y.)],
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where the a; and b; are given numbers, and the y; are subject to the restriction

0§y1§yz§---§y}vsl.

Even if one is not willing to assume a particular form for the distribution func-
tion and is thus led to this nonparametric formulation, he may feel that, for
example, the distribution function should not rise too rapidly, and be led to
impose further conditions of the form

32 Yitr — Yi = € OF Yir2 — 2Yipn + ¥ < ds

where the ¢; and d; are prescribed numbers. The problem remains in the class
discussed in Section 2; however, the minimizing point on the boundary of a set
described by inequalities of the form (3.2) is not in general so easily found as is
that on a boundary y; = y;y1 . The fact that the partial derivatives of the func-
tion (3.1) are so readily determined suggests that the method of Lagrange’s
multipliers, together with Newton’s (multivariate) method for solution of
simultaneous equations may prove appropriate.

A similar but simpler problem might conceivably arise in connection with
ordinary random sampling. Let z,, --- , z. be sample values of a sample of
size n from a population with unknown distribution function F, and let
D1, D2, *** , Dn be the salti or jumps of F at the sample values. The MLE’s of
D1, D2, * - , P» Maximize []7= p; or minimize —Y iy log p; subject to the re-
striction Z.'-'_l pi = 1, and are given by p; = 1/n,7 = 1, 2, - - - , n, furnishing
the empiric distribution function. But now if we suppose further conditions put
on F, perhaps of the form F(z.41) — F(z:) = ¢(xiy1 — ) or ps = c(Tiy1 — 23),
t=1,2,---,n — 1, the remark of Section 2 may prove useful.

(i) In the example on page 833 in [6], one is given {a;}, {n:;}, and requived
to choose {p;;} so as to minimize

n k

—Zl El [as; log pi; + (ni; — i) log (1 — i)l
t=1 j=
Here p;; = 1 — F(z;, y;), where z;,2 = 1,2, --- ,n,and y;,7=1,2, --- , k

are given, and where F(z, y) is an unknown bivariate distribution function, so
that not only is it required to be monotone in the two variables separately, but
also second differences are to be positive.

(iii) Let a person chosen at random from a group have a probability U of
contracting a certain disease in unit time; U is to be considered a random varia-
ble, with distribution function F. If a particular person has probability u, , then
the probability that he will be infected for the first time during a second unit of
time is (1 — wuo)uo , infected for the first time during a third is (1 — wo)*ue , ete.
Thus the probability that a person chosen at random will become infected
during the first unit of time is

P = fol u dF (w) = j: 1 — €% da@),
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where G(t) = F(1 — ¢”%); the probability that he will first become infected during
the jth unit of time is p; = [o(1 —w T wdF(u) = [7eV(1 — ") dG(2),
j = 172: 'Ifweset’qf = fsoe—]th(t)yJ = 07 1727 e ’t’henpf = gj—1— ¢;5,
i=1,2---,andq; =1— > iapi,j=1,2, ---. Since @ is a distribution
function, we have

A4 = ginn — ¢ = —pinn =0,

Ajg = givz = 2¢511 + ¢ = — (P2 — Pir1) 2 0, ete.
Suppose that of n persons initially chosen at random, z; first become infected
during the jth unit of time, j = 1,2, - - , k, and that 2,41 = n — Y5y z; fail
to become infected during the first £ units of time. The MLE’s of the probabili-
tiesp; (j = 1,2, ---,k)and 1 — > _j_; p; are the solutions g1, ¥z, - - - , Yk , Yes1
of the following problem: to minimize

k+1

-2 a; log y;,
J=1
subject to
k+1
(3.3) 2 v =1,
=
and
0=y, =1,7=1,2,---,k+ 1,
(34) yi+1_yi§0yj=1727”';k-—1;

yj+2—22/j+1+.?/:‘%0,j= 1’2)"',k_2,etc-

The problem may be made to fit precisely the pattern of Section 2 if we replace
(3.3) by

k+1

2y s

j=1
the altered problem clearly has the same solution.

4. Exponential families. The remark to which Section 2 is devoted is especially
appropriate for the problem of estimating parameters using samples from
populations belonging to exponential families (cf. |2]; |4]; |17], pp. 64, 68; |24]);
more particularly, when the restrictions on the parameter point are expressed
by inequalities which are linear in its coordinates.

Let F(z) be a distribution function. The integral

o) = [ & arG),

giving its moment-generating function, converges to 1 for » = 0; we shall suppose
its interval of convergence contains the origin as an interior point. It then con-
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verges in a vertical strip of the complex = plane containing the origin to an
analytic function which is positive on the real axis. We set

B(r) = log ¢(7),

using the principal value of the logarithm (which is real when ¢(r) > 0, hence
when 7 is real); ©(7) is analytic for real r in the interval of convergence.

DeriniTiON. The distribution functions F(z; 7) form an exponential family,
the family of exponential type determined by F(x) or by O(r), if, for = in the
interval of convergence,

4.1) Flz; ) = f

(—o0,z

) exp [ur — O(7)] dF (u).

It was shown by Koopman [20] and by Pitman [23] that, except for change in
variable or change in parameter, a (sufficiently regular) one-parameter family
of distributions over a common, fixed (possibly infinite) interval admits a suffi-
cient statistic only if the parameter enters as does the parameter 7 in (4.1).
Further, it is clear from the derivation in [11] of the Cramer-Rao inequality that
in the above statement the term ‘“sufficient’’ may be replaced by ‘efficient”
(as defined in [11]).

If X, is a random variable whose distribution function F(z; r) is given by (4.1),
then its expectation and variance are given by

(4.2) E(X,) = 6(r), V(X;) = 0(r),
where
(4.3) b(r) = O'(r).

Since V(X,) = 0 it follows that 6(r) is increasing and ©(7) convex; indeed,
0(7) is strictly increasing, and ©(7) strictly convex unless F(x) is degenerate, a
possibility we shall rule out from further consideration.

We define 7(6) as the inverse function of 8(r), and T(6) by

T() = fo () db,

where 6, = 6(0). Evidently 7'(6) is convex, and assumes its minimum value, 0,
at 6. According to an inequality of W. H. Young ([18], p. 111), we have

(4.4) T(z) + ©(y) —2y 2 0,

with equality holding if and only if y = 7(z) (x = 6(y)). This becomes geo-
metrically obvious on interpreting T and © relative to the graph of y = 7(x)
or x = 6(y) in the zy plane.

We note that (i) a normal distribution with variable mean and fixed standard
deviation, (ii) a Poisson distribution with variable mean, (iii) the distribution
of the square of a normally distributed random variable having zero mean and
variable variance, (iv) a binomial distribution with variable mean, and (v) a
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negative binomial distribution with variable parameter p, are examples of ex-
ponential families. If X, is any random variable whose moment generating
function exists on an open interval containing the origin, there is an exponential
family of distributions admitting the distribution of X, as a member for one
parameter value. In random sampling from a population of this family, the
sample mean is the MLE of E(X,) (cf. discussion of (4.6) below); it is also the
least squares estimator; it is unbiased, consistent, sufficient, and efficient.

Let us now consider an estimation problem. Let & be a positive integer. For
1=1,2, ..., k, consider a population whose distribution belongs to the expo-
nential family determined by a given distribution function F;(z) for a particular
parameter value 7;, regarded as unknown. Let z; = (21,i, %2, **+ , Zn;,i) de-
note the set of sample values of a sample of size n; from the 7th population, and
set z = (21, -+, %). Let Z; denote the sample mean (7 = 1, 2, --- , k), and
let £ denote the point (%, &, --- , &) in the Euclidean space R; of ¥ dimen-
sions. If E is an event in the sample space, its probability is given by

(4.5) P, r(E) = L exp {é nilEiri — 91‘(74)]} dPy(2),
where

k ny
Py(E) = | I11I dFi(z;.).

E =l jm=l
Set 7= (r1,+-, ),y = (¥1, -+, yr). The MLE of 7 is that point y = +*
which maximizes D i1 nidEy: — O:(y:)]; or equivalently, which minimizes

k

(4.6) Gly) = .z_;: nTi(Z:) + 0:(ys) — &:ysl.
This function is convex in y. It is clear from inequality (4.4) and the remark
following it that the unrestricted minimum is afforded by 7* = (+1, 73, -+ , 70),
where 7§ = 7.(Z;) (the special case k = 1 was mentioned above). Suppose that
restrictions on 7 may be expressed by 7 ¢ A14; - -+ Ay., where A; is the closure
of an open convex subset of Bx(z = 1, 2, ---, N). We consider now the sub-
problem of minimizing G on a given intersection of boundaries of some of the
sets A;. Assuming the boundaries of the sets 4, sufficiently regular, if the un-
restricted minimum of @ isattained outside 4; , then the point 7* = (71, - -« , r2)
at which G assumes its minimum on ®(4 ;) satisfies

k
4.7) >allmler — &) = 0,r=1,2,---,k — 1,
yum]l
where, forr = 1,2, -+ , k — 1, &' (+*) = [ai(7*), -+, ai(r*)] isone of k — 1

independent vectors tangent at 7* to ®(4;), and where 67 = 6,(+7). Similarly,
the condition that G assume its minimum on an “edge” ®(4:,)®(4;,) -+ - B(4s,)
is (4.7) forr = 1,2, ---, k — n, where a'(+*) is one of ¥ — n independent
vectors tangent at 7* to ®(4:,)®(4,) - - - ®(As,). Thus the point minimizing G
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on a given boundary or intersection of boundaries is a solution of equations of
form (4.7). If, in particular, the boundaries B(4;) are all hyperplanes, then the
a; are constant on a given intersection of boundaries, and values 67 of the means
corresponding to the coordinates 77 of the minimizing point are solutions of
linear equations of the form

k
_Z; ai nd8f — 2] = 0.

If the restricting conditions require that 6 = (6, ---, 6), rather than .z,
belong to the intersection of closed convex sets, their maps in the r-space need
not in general be convex, and the above discussion need not apply. There are a
number of situations of interest, however, in which the above technique for
finding the minimizing point on a given intersection of boundaries will still be
applicable.

(i) The function of 6, G[(6)], obtained by replacing ¥ in (4.6) by 7(6), may
be convex in 6. ‘For example, this will be the case if each population is normal
with known variance, or binomial, or Poisson. Since the transformation from
6-space to r-space is 1-1 and analytic, the above discussion for finding the
minimizing point in 7-¢pace will apply even though the restricting sets in r-space
may not be convex.

(ii) All populations belong to the same exponential family, and only order
restrictions are made on the parameters; that is, the regions A; are defined by
inequalities of the form 6. < 6, . In this case @(r) = ©;(r) is independent of 7,
and 7. £ 7, if and only if 6, = 6(r;) = 6(r.) = 6, ; since 6(7) and 7(6) are
strictly increasing. The independent vectors o« for a given “edge’” in this case
are determined by the indices 7 of the boundaries intersecting in the edge, inde-
.pendently of the particular function. The MLE (cf. Section 6 for a specific
description in a special case) of 6 7s therefore independent of the particular expe-
nential family to which the populations belong, provided they all belong to the same
exponential family, and provided only order restrictions are made on the parameters
6;,7=1,2,---, k. In particular, for the purpose of determining the MLE’s
of the means, one could in such a situation assume without loss of generality
that the populations are all normal with standard deviation 1, but with possibly
different means, satisfying the specified order restrictions. (In the special case
where the order restrictions specify a simple ordering of the means, the failure
of the MLE’s to depend on the particular exponential family was noted in [6]
and in [7]). Thus in this situation the problem of finding the MLE reduces to
that of minimizing the function

k

Zl ni(&: — 6,)°
subject to specified restrictions of the form 6, < 6,. With an obvious linear
change of variable, it can be expressed as the problem of finding the foot of the

segment of smallest length from a given point onto a set bounded by hyperplanes
passing through the origin.
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b. A sufficiency property. Let us consider for a moment the simplest case of
estimating a restricted parameter. We sample from a single population, belonging
to an exponential family. The parameter 6 is known to lie in a proper subinterval
of its natural range. The MLE, Z, of the unrestricted parameter is known to be
consistent, efficient, sufficient, and unbiased. It seems to the author that a
“reasonable” estimator of the restricted parameter is &, appropriately truncated,
which is also the MLE. This estimator is not sufficient (nor unbiased). Likewise,
in the more general situation discussed in Section 4, the MLE is not sufficient.
However, it does possess a certain ‘“sufficiency-like” property, expressed in
Theorem 5.1. Referring to the general problem formulated in Section 4, we
suppose that the parameter point 7 = (71, ---, ;) is subject to the restriction
T&8 = A142, -+, Ax, where now each 4 ; is a closed set bounded by a hyper-
plane. (In the event that all populations are normal with the same standard
deviation, or that all populations belong to the same exponential family and the
equation of the boundary of each A; is of the form 7, < r, ; the corresponding
sets in @-space will also be bounded by hyperplanes.) Let z denote a point of
the sample space, and let Y (2) = [Yi(z), Ya(2), - -+, Yi(2)] denote the corre-
sponding MLE of 7, subject to 7 € So. For a Borel set E in the sample space,
let p,(E | y) denote the conditional probability of E for a given value y (in S,)
of Y(z). That is, p.(E | y) is to be defined so that for each Borel set B < S,
we have

.1) P.(En Y(B)) = fB p(E|y) dP, Y(y),

where P,(E) is given by (4.5) for each event E in the sample space, where Y (B)
denotes the inverse image of B under the map Y from the sample space into
Sy, and where P,YY(B) = P,[Y"(B)].

TueoreM 5.1. Let Sy be bounded by hyperplanes. There is a determination of
pAE | y) which is independent of T when y is interior to Sy, and, when y lies interior
to a (k — 1)-dimensional face or (k — j)-dimensional (j = 2, 3, -- -, k) edge or
vertex of Sy, is independent of T on the closure of that face, edge, or vertex.

Proor. For z in #-space, define y(z) by y(x) = (ri(zy), ro(x2), « -+ , m(xr)).
For z in the sample space, define V(2) = y(£). We have Y (2) = V(2) if y(£) € So .
Define q(E | y) to be the conditional probability of E given a value y of V(2);
this conditional probability may be taken to be independent of 7, since V(z) is
a sufficient estimator of r. For y interior to S,, we define

p‘r(E I y) = Q(E I y)) forall 7 £ Sp.

Then if B is interior to Sy, and if 7 € So, we have

P.(EnY'(B)) = P.(EnV7(B) = f q(E|y) dP, V'(y)

- [ p(®19) P, 7).
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Now suppose y is on a (k — 1)-dimensional face or (k¥ — j)-dimensional (j =
2,3, -, k) edge, W, of Sy, which is open in its relative topology. For r not on
the closure, W°, of W, let p,(E | y) denote any determination of the conditional
probability satisfying (5.1). Choose a fixed 8 ¢ W, and let ps(E | y) denote any
determination of the conditional probability satisfying (5.1). For = on W*', define
p-(E | y) to be equal to ps(E | y). We now wish to verify that p so defined sat-
isfies (5.1) when B is a Borel subset of W. For such B we have, by definition,

PJEn Y'(B)] = f exp {;‘_:l nilZ: B — ®i(Bi)]} dPy(2)

ENnY~1(B)
= [ n®1y) aPs ).
Also

PIEn VB = [

enr-1csy P {g n; Ti(ri — i) —;n;[(”),-(-r,-) - @,-(Bi)]}.
exp {g il B — ("')«(Bi)]} dPo(z).
If the MLE, Y, of 7 is in W, then, by (4.7),
f‘:i ain & = );"1 a; n; 0:(Y5),

where the o are independent vectors spanning W. If + ¢ W, then + — Bis a
linear combination of the a”; hence

:;1 ni Zi(rs — Bi) = é n: 0:;(Y3) (ri — B2),
a function of Y for fixed 7, 8. So also, then, is
exp {g ni Bi(ri — B:) — [0i(r) — @;(ﬂi)]}
a function, ¢[Y (2)], of Y (z). We have then

PIEY'®] = [ | ¥e)] P
= [ vwpsElv) aPs T@)

= [ w®ly) aP. T'),

since
dP,Y7\(y) = ¥(y) dPsY ' (y).
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One now verifies from the appropriate definitions above that (5.1) holds for
arbitrary 7eSo , and Borel set B < S, . This completes the proof of Theorem 5.1.

Theorem 5.1 may be regarded as a generalization of a remark ([16), p. 77)
to the effect that if X and Y are normally distributed random variables with
unit standard deviation and means £ and 7 respectively, and if £ and # are known
to satisfy a linear equation, then the foot of the perpendicular from the observa-
tion point (z, y) is a sufficient estimator.

Theorem 5.1 may be interpreted somewhat as follows. Given the value of
Y (2), the exact knowledge of the observed sample point would imply no ad-
ditional information as to how to select = on the face (or edge) on which Y (2)
lies, since the conditional distribution, given Y(z), is independent of r on this
face.

6. Uniform consistency of a class of estimators. In Section 4, an estimation
problem of the following kind was considered. Let k£ be a positive integer. To
each positive integer ¢ < k corresponds a population whose distribution is known
except for the unknown value of its mean, 6; . The means 6; are known to satisfy
certain inequalities. The problem of estimating a distribution function from all-
or-none data (bioassay) is of this kind, in which the populations are binomial and
the inequalities are of the form 6, < 6. < --- = 6, (¢f. Section 3; also [1], [12]).
Even if the populations are not binomial, but all belong to a common exponential
family, the MLE’s subject to 6 = 6; < --- < 6, are very easily determined,
as follows (cf [1], [7]). Let &; denote the sample mean of a sample of size n; from
the ¢-th population, whose mean is 6;,¢ = 1,2, -+ k. If §; S & < --- £ &,
these are the MLE’s of the parameters 6;,¢ = 1, 2, --- , k. If for some ¢ we
have %; > &1, these two means are replaced by the single ratio
mZ; + niafipa) / (ni + miqa) , obtaining an ordered set of only k. — 1 ratios
(k — 2 of which are sample means). This procedure is repeated until an ordered
set of ratios is obtained which are monotone non-decreasing. Then for each ¢,
the MLE, 8;, of 6; is equal to that one of the final set of ratios to which the
original ratio &; contributed.

If the number, k, of observation points is held fixed, while the number of ob-
servations at each point increases indefinitely, classical theory assures the strong
consistency of the 4, and yields their asymptotic distribution ; the 8 will asymptoti-
cally coincide with the sample means. We shall be interested here chiefly in
situations in which there are a large number of observation points, but only a
few observations, perhaps only one, at each. In [1] and in [7] the local consistency
of the MLE’s is proved. It is assumed that there is an unknown function 6(¢)
(as in bioassay, for example), known to be non-decreasing and continuous,
such that 6; = 6(¢;) ,72 = 1,2, --- , k. Then if ¢ is held fixed, one can achieve an
arbitrarily high probability of an arbitrarily great precision at ¢ by selecting
enough observation points in the neighborhood of ¢, even if only one observation
is made at each. In [1] and [7] it was assumed that the populations all belonged
to the same exponential family ; but it is clear that the estimators 8 can be formed
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without regard to the distributions of the & populations; they are determined
by the sample means alone (of course, they will not in general be MLE’s).
Indeed, the proof of the local consistency of the estimators § does not require
an assumption that the populations belong to an exponential family.

Theorem 6.2 below gives conditions sufficient for the strong uniform consistency
of the estimators 8, without assuming the populations belong to an exponential
family. The proof requires a somewhat strengthened form of the strong law of
large numbers, which is presented in Theorem 6.1.

THEOREM 6.1. Let r be a fized positive number. Let Y1, Y, , - -+ , be independent
random variables with E(Y;) = 0, E(|Y{|") < «, and

(6.1) 2LE(Y T < .

Corresponding to each positive integer n = 2, let t1,n, t2,n, *** , in,n D€ @ Permuta-
tion of the positive integers 1,2, - - - | n, obtained by assigning a place to the integer
n between some two successive integers, or at the beginning, or at the end, of the
permutation corresponding to the integer n — 1. Define Sjn = Y 91 Vi,
=12, ,n. Then

Pr {lim max 1|S,~,,‘ |.= O} = 1.
n-»wo §=1,2,++0,n N

INDICATION OF PROOF OF THEOREM 6.1. The situation is more complicated
than that of the classical strong law, but familiar arguments suffice. For v = 0,
1, ---, arrange the terms Y; having indices ¢ such that 2" < ¢ < 2" in the
order given by the permutation for 2’; and let 3(») denote the family of partial
sums containing the first of these terms, the sum of the first two, the sum of the
first three, etc. Now consider partial sums S;,, , 7 =<n. For eachn, choosek = k(n)
so that 2™ < n < 2*. To avoid complicated subscripts, let p = p(n) = 27
Let Zy, Zy, -+, Zyp—n denote the random variables Vo1, Yapo, -+, Yap
written in the order given by the permutation for 2p = 2°. Let U(n) denote
the family of partial sums: {Z,, Zy + Zy, -+, Z1 + Z2 + -+ + Zsp_a} . For
fixed 7, n, and for v = 0, 1,2, --- , k — 1,let T, = T,(j, n) denote the sum of
terms Y; which appear in the sum S;, and which have indices ¢ such that
1< i< 2. ThenT,e3(») fory =0,1,2, ---, k — 1. Let Ty = T«(j, n) denote
the minimal member of 3(k) containing all terms appearing in S;,» whose indices ¢
satisfy 27! < ¢ < 2" (minimal in the sense of containing the fewest possible
terms). Let U = U(j, n) be the sum of terms appearing in T} of index greater
than n; then U e U(n), and S;, = D.s0T, — U. Let O(k) denote the family
of all sums of the form Y s_o W,, where W, e3(»), » = 0, 1, 2, ---, k. Let
V =V3Gn) =2 eoT,. Then V & V(k) and

Sin=V —="T.

Let e be positive. Let A4, denote the event: {maxog;<a/S;a| > 2°"'¢}, B, the
event: {maxo<j<n | U| £ 2%}, and Cy the event: {maxvepw | V| > 2%}. Then

(6.2) A.B, C C; (k = k(n)).
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It follows from Chung’s inequality ([10], p. 348) and the generalized Kolmogorov
inequality ([21], p. 265), that

P(B) >1—4 [:;:1 B(| Y 12')] / @9

where 4 is a constant depending only on r. From hypothesis (6.1), using
Kronecker’s lemma, we conclude that

lim[ > E(Y. \*")} / @™ =0,

ko0 i=p+1

hence there is a positive integer ko such that P(B,) > % forn > py = 2"
Further, A,,11 and B,41 are independent, and if A° denotes the complement of
A, then forn = po+ 2, p0+ 3, --- , wehavethat A5 ;1 n 45420 - 45104,
and B, are independent. It follows from the “Lemma for Events”, [21], p. 246,
that

P(Us_p,1d.Ba) Z 3P(Us_p 1140),
so that from (6.2) we have
P(U3oppnda) = 2P(USL,C),
hence
P(lim sup 4,) < 2 P(lim sup C,),

n-»0 (=3
or

Pr{max |S;.| > 2*"'¢ for infinitely many n}
05isn

< 2Pr{max | V| > 2% for infinitely many »}.
Ve (»)
Kolmogorov’s method ([19], cf. also [25], p. 202), with Chung’s inequality and
the generalized Kolmogorov inequality can be used to show that the right hand
member is 0. Since 2™ < 4n(k = k(n), 2 < n < 2°), we have

Pr{max L Sin

0sisn M

> 4¢ for infinitely many n} =0.

A standard argument completes the proof.

We return now to the estimation problem. For ¢ = 1, 2, .-, k, Z; is the
sample mean of a sample of size n; from a population whose mean is 6(¢;) . It
is known that 6(f) is non-decreasing. We are concerned with the estimator
() obtained as described above. It is given ([1], [7]) by

ré(t) = Itngﬁtc fng (':Zr nyf.) / (g ny)‘

8 8
= min max (Z Ny i,) / (Z n,) .
t,=t t, St Vamr Vamr

6.3)
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THEOREM 6.2. Let 0(t) be continuous and non-decreasing on (a, b). Let {s,}
be a sequence of observation points dense in (a, b). Let one observation be made at
each point (the observation points need not be distinct). Let the variances of the ob-
served random variables be bounded. Let 8,(¢) denote the estimate of 6(t) based on ob
servations made at the first n observation points, defined to be constant between ob-
servation points, and continuous from the left. If ¢ > a,d < b, then

Pr{lim max |8.() —6() | =0} = I.

nsw c<t<d

Proor. The original proof used Theorem 6.1 and a geometrical interpretation
of 6 due to W. T. Reid [5] which is also used in the proof of Theorem 6.3. It
required as additional hypothesis that the norm (maximum distance between
adjacent points of subdivision) of the subdivision of (a, b) formed by the first n
observation points be O(1/n), and required the less restrictive hypothesis (6.1)
on the variances of the observable random variables. The present proof uses an
approach suggested by the referee. This proof also could be modified to use the
hypothesis (6.1) on the variances instead of boundedness, together with a uni-
formity condition on the distribution of the observation points, but the above
formulation appears more natural and useful.

We observe first that if 8,(u:;) — 6(u;) — 0 for each u; of a sequence {u;}
dense in (a, b), then it follows from the monotonicity of 8, and the continuity
of 8 that max.<:<aq |6.(f) — 8(£)] — 0. Consequently it suffices to show that, for
each individual { ¢ (a, b), Pr{.({) — 6(t) — 0} = 1, since it then follows that
Pr{6,(u;) — 68(u;) — 0 for all u;} = 1,if {u;} is any countable sequence of points
in (a, ).

We now prove that for fixed ¢ ¢ (a, b), Pr{f,(t) — 6(f) — 0} = 1. It suffices
to prove that for every ¢ > 0 we have

(6.4) Pr{lim inf 6,() — 6(f) = —e} =1
and
(6.5) Pr{lim sup 6,(f) — 6(t) < ¢} = 1.

n->0

We prove the first; the proof of the second is similar.

We suppose the sequence {s;} of observation points chosen, not necessarily
distinct nor ordered according to increasing index, and an observation Z; made
at each, so that E(Z,) = 6(s;). Let oi = V(Z,), the variance of the random
variable Z; observable at s; . For fixed n, let &y, £, - - - , 4 denote the &k = k(n)
distinct observation points among s;, Sz, -+ -, Sa, arranged in increasing order,
and let n; denote the number of observations made at #; , so that > sy n; = n.

Let ¢ ¢ (a, b). Given € > 0, choose n sufficiently large that there is a #, < ¢
such that |0(t,) — 6(¢)] < e. By (6.3),

0.(9) — 0) 2 min 2 2B = O _ gy gy

ty2t S n
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Since 6 is non-decreasing, we have 6(f,) < 6(,) for » = r, hence

(3.6) én(t) —_ 0(t) > min E:-=rnv[fv - 0(tr)] —

8
tszt z :v=r ny

Forp = 1,2, ---, let s;, denotc the pth of the members of the sequence {s.}
which lie at, or to the right of, ¢, . Consider the sequence of observable random
variables, centered at means, Z;, — 6(s;,) . The sums Y . n,[& — 6(%)] are
not successive partial sums of this sequence or of any sequence, since as p in-
creases new observation points are interspersed among the old. However, in
applying Theorem 6.1 with Y, = Z;, — 6(s;), we find that the ratios
S nlE, — 6t,)] / D s—+m, are just such ratios S;./n as are considered
there. We conclude from (6.6) that Pr{lim infn.. 8.(f) — 0(f) = —¢} = 1. A
similar argument shows that for e > 0,

Pr{lim sup 8,(t) — 6(t) < ¢} = 1,

n->00

whence

Pr{lim 4,({) — () = 0} = 1.

Together with the earlier remarks, this completes the proof of Theorem 6.2.

Theorem 6.3, below, gives an asymptotic lower bound for the probability of
achieving a given uniform precision on a closed subinterval of (a, b).

THEOREM 6.3. For a fized positive integer n, let n observations be made at 0b-
servation points ty =< fp S -+ = 4 in (a, b), n: observations being made at ¢; ,
7= 1, 2, crcy k, so that n = ZI:-I n;. Let A = ma,x;.:o,l,z,...,k(t,-ﬂ - t,')jto = a,
t+1 = b. Let the populations be such as to permit the application of the Central Limit
Theorem as required in [15] (cf. also [9]; for an appropriate Lindeberg condition,
see |22], p. 127). Let 0(t) have a bounded derivative, |0'(£)] < K, K > 0, for ¢ ¢ (a,
b), and let ¢* = Z’L; nio; , where o3 is the variance of an observation made at ¢, ,
i=1,2-,kForz>0le¢h=1[2208/KP,¢c=a+hd=>b— h. Then

Pr{ max [00) — 00) | < 2 v/3Kzo) 2 45 (2

= ; t m eXp [""'(2” + 1)272/822].

The symbol “Z” is to be interpreted as “asymptotically (as n — ©) at least
as large as”. The estimate is most nearly accurate if only one observation is
mafe at each point, if the observation points are distributed uniformly over
(a, b), and if & (¢) is constant.

Proor. Order the observations according to increasing ¢, ordering in an arbi-
trary way those occurring at the same observation point. Let Z,, denote the
vth observation, » = 1, 2, --. | ny its mean is 6(¢;) and its variance o} if it is
made at the observation point ;. For positive integers j < k, define
Ni= 2t<im,s(N;) = Z,,g,i n,0(%,) , and s*(N;) = Zt.su n,%, . We have
s*(N ;) as one of the partial sums of the sequence Z, , , and s(N;) as its expecta-
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tion. If S,,,» denotes the »th partial sum, and s its Variance, then it is known that

2+1

(strictly speaking, we require that the theorem as developed in [15] and [9]
be generalized so as to apply to sums of the form Y . X,.,., where the X, n
are independent for distinct », rather than to sums of the form > ,—; X, ; but
only trivial modifications are required in the proofs). Define s(u) and s*(u) to
be linear between successive integers; then

exp [— (20 + 1)*x°/87

lim Pr{max |S,, — E(S,.) | < zs,} = : Z
™ =0

n->0 vEn

0

(6.7) Pr{max |s*(u) — s(u)| < 20} Z
0susn

- 245 + 1 exp[—(22 + 1)*°/82%.
We observe that s(u) is a convex function whose graph consists of line segments:
for N..y < u < N;we have s'(u) = 0(,),7 =1, 2, , k. The graph of s*(u)
also consists of line segments, but it need not be convex since Z; need not in-
crease with .

Let g(u) denote the greatest convex function not greater than s*(u); the graph
of this function consists of line segments. We denote by ¢’ (u) (s'()) the derivative
of g(u) (s(w)) where it is defined, and the left-hand limit of the derivative at a
corner. One verifies from formulas (6.3) that 8(¢,) = ¢'(NJ), 7 = 1, 2, , k.
Now let «’ be fixed, so that u’ < . <am, Suppose maxo<w.<n |s*(u) — s(u)l <
zo. Then for v = «' we have

gu) = s*() < s(u) + zo.

Since the point (¥, g(w’)) is on a line segment whose endpoints are at vertical
distance less than z¢ from the graph of s (or else it is itself such an endpoint),
and since s is convex, we have also

giw’) > s(w') — za.
Hence g(u) — g(u’) < s(u) — s(u') + 2z0. Therefore

Jw) < g(u) — g,(u’) < s(u) — s(/u') 220 N
U —u U — Uu U —u

Choose %, j so that N,y < v = N;, N, < v = N;. We have
[s(w) — s(w)] / (u — W) = &'(u) = 6(t;) = 6(t) + K(@t; — 1) = §(w) +
K@t —t)Butt; — 6, = Njma — N) A+ A S (u— o + 1)A, so that
gW) <&@W)+ Ku — v + 1)A+ 220 / (u — o)

foru' < u £ n. We choose u = u + [220 / KA}}, and find that ¢’ (W) — §'(v') <
212Kz0Al! + KA = 2[2KzoAl' . Similarly, ¢ (u’) — §(w) > —2@2KzeAl, if
W = X<y . Since 8(t) = ¢'(N,) and 0(;) = §'(No), ¢ = 1, 2,---, k, we
have

max |6(t) — 6(t) | < 2[2KzeAl*
egtsd
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max |s*(w) — s(u) | < zo.
0susn
The conclusion of the theorem follows from (6.7).
If K = 0, or if we wish a lower bound on the probability for uniform precision
over a larger subinterval [¢, d], we must simply take » in the above discussion
equal tow' + h/ A, where h = max [b — d, ¢ — a], obtaining

W) — &) < K(h + A) + 220A / b,

or
max lo(t) —6()| = K(h 4+ &) + 2z0A/h.

To get an idea of the rate of convergence guaranteed with at least a certain
probability, suppose 6(¢) = ¢ on (0, 1), and that A = 1 / (n 4+ 1), one binomial
observation being made at each observation point</(n + 1),7 = 1,2, ... , n.
Wefindo* =n/6, K = 1,h = (22 / 3n), and

_ 3 1 o [ 177]
Pr{crgf.;cd 16 — 6() | < 2(22%/3n)%} - § T [ o ,
which suggests that the minimum precision (reciprocal of error) assured with a
given probability increases like n!. On the other hand, if the observations are
concentrated near a given point, Theorem 3.1 of [1] suggests that the precision
at that point increases like nt.
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