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Using 1.6 and the linear independence of the B’s, 2.1 yields
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If C has m* distinct non-zero characteristic roots, e;, €2, + -+ , ems , then we
may write

C = e,E(e1) + e:E(ex) + -+ + emsE(ems).

Now using Theorem 2 we have
TuroREM 3. The C mairiz of a P.B.L.B. (m) may be expressed as a linear func-
tion of the m + 1 commutative and linearly independent matrices By ,By, -+« , Bm .
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ON A FACTORIZATION THEOREM IN THE THEORY OF ANALYTIC

CHARACTERISTIC FUNCTIONS!
Dedicated to Paul Lévy on the occasion of his seventieth birthday

By R. G. Lana
The Catholic University of America

1. Introduction. Let F(z) be a distribution function, that is, a non-decreasing
right-continuous function such that F(—») = 0 and F(+4 ») = 1. The char-
acteristic function

L) o0 = [ : & dF (z)

of the distribution function F(z) is defined for all real ¢£. A characteristic function
is said to be an analytic characteristic function if it coincides with a regular ana-
lytic function ¢(z) in some neighborhood of the origin in the complex z-plane.
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Then it follows from a theorem due to Boas [1] that the analytic characteristic
function ¢(z) is also regular in a horizontal strip —a < Im z < +8 of the com-
plex z-plane containing the real axis. It is also well known that the analyticity
of the characteristic function ¢(2) in the horizontal strip | Im z| = R(R > 0)
is equivalent to the condition that (a) the corresponding distribution function
F(z) has moments u; of all orders k and further (b) lim SUPkorool /K 1M* is finite
and equal to 1/R. In other words, the analytic characteristic function ¢(2) has
the power series expansion

_ ) 'ikﬂlc A
(1.2) o(2) = g re

about the origin z = 0 in the circle | 2| = R (2 complex) where B > 0 is the
radius of convergence of the series. The characteristic function ¢(2) is said to be
an eniire characteristic function if its strip of regularity comprises the whole
complex z-plane. A summary of most of the important properties of analytic
characteristic functions is given in a recent paper by Lukacs [6].

In the present paper we shall discuss some results concerning the decomposi-
tion properties of analytic characteristic functions. In this direction a very
interesting theorem has been recently obtained by Linnik [5], [7] which may be
considered as an analytical extension of Cramér’s theorem [2] on the normal law.
The theorem is as follows:

TuEoREM OF LINNIK. Let ¢1(t), ¢2(t), - - - , #a(t) denote.the characteristic func-
tions of some non-degenerate distributions and let oy , az, - -+ , an be some positive
numbers. Let the functions ¢;(t) satisfy the equation

(1.3) ,Iill {¢;,()}* = exp {iut — 3ot}

for all real t in a certain neighborhood | t| < 8(8 > 0) of the origin, where @ >0
and p are real numbers. Then each factor ¢;(t) is the characteristic function of a
normal distribution.

In the following section we shall deal with some related factorization theorems:
(Theorems 2.1 and 2.2) for analytic characteristic functions. These theorems
may be considered as generalizations of the theorem of Linnik stated above.

2. The Theorems. We now consider the following theorems:
TuroreM 2.1. Let ¢:1(), ¢2(t), -+ - , ¢a(t) denote the characteristic functions of
some non-degenerate distributions. Let further ¢(z) denote an analytic characteristic

function and oy, @z, -+- , an be some positive numbers. Lel the Sunctions ¢;(t)
satisfy the equation
(2.1) IT {¢,0}% = )

i=

for all real t in a certain neighborhood |t| < 8(8 > 0) of the origin. Then each
of the factors $;(2) is also an analytic characteristic function which is reqular at
least in the strip of regularity of ¢(z).

This theorem has already been obtained by Dugué and stated without proof
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in [3]. The author has also independently obtained a proof of this theorem, fol-
lowing a method closely similar to that used by Linnik in [7]. Proceeding along
the same lines as the proof of the theorem of Linnik [7], we can show that each
of the corresponding distribution functions has finite moments of all orders and
then finally each ¢;(2) is an analytic characteristic function having a power series
expansion about z = 0 with a positive radius of convergence. Since Linnik’s
method of proof has been already presented by the author in [4], the proof of
Theorem 2.1 is omitted. It is understood that the reader may easily construct
a proof of Theorem 2.1, following the procedure indicated in [4]. We shall next
prove a related theorem on the entire characteristic function.

TureorEM 2.2. Under the same conditions as in Theorem 2.1, let ¢(2) be an entire
characteristic function of some finite order p. Then each of the factors ¢;(2) is also
an entire characteristic function of finite order not exceeding p.

Proor. First of all, we give a precise definition of the order of an entire charac-
teristic function. Let f(2) be an entire characteristic function of some finite order
p. We denote by

(2.2) M(r,f) = max | £(2) |

the maximum modulus of the function f(z) in the circle |z| = r (z complex).
This value is evidently assumed on the perimeter of this circle. Then using the
well known property of the positive definite functions

(2.3) max |fGt 4+ w)| = f(w) (t and v real)

0t S+
we can easily deduce from (2.2) that
(2.4) M(r, f) = max [f(ir), f(—1r)].
The order p of an entire characteristic function f(z) is then defined as
(2.5) p = lirrrlwsoup L%M
We now turn to the proof of Theorem 2.2. Without any loss of generality in

the proof, we introduce the symmetrized characteristic functions

0;(t) = ¢i()ei(—1),

(2.6) ’ e i=1,2-.m,
0(t) = o()p(—12).

Then it is easy to verify from (2.1) that the characteristic functions 0;(¢) satisfy

the equation

@7) I_I (6,0} = 0(9)

for all real ¢ in a certain neighborhood of the origin. We can see easily that un-
der the conditions of the theorem the symmetric characteristic function
0(z) = ¢(2)p(—=2) is also an entire characteristic function of the same order p as
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¢(2). It then follows at once from Theorem 2.1 that each of the factors 6,(z) in
Eq. (2.7) is also an entire characteristic function when 6(z) is an entire function.
Thus we have the equation

2.8) III {6;(2)} = 6(2)
7
holding for all complex z.
We now consider the behavior of each of the functions 6;(2) for purely imagi-
nary values of z. For this purpose, we substitute z = 7 (v real) in Eq. (2.8),
thus obtaining

(2.9) III {0,(iv)}* = o).
3=
Now we note that the distribution function corresponding to each 6;(2) is
symmetric about the origin and hence has all moments of odd order equal to
zero. Let us denote by ug,;-the moment of even order 2k of the distribution
function corresponding to the characteristic function 6,(z), 7 = 1, 2, -+, n.
Then we have

= ”Zk ’ 7 3 e oo
(2.10) 0;(v) Z (%)' > 1, j=1,2--,n.
Using (2.10) in Eq. (2.9), we have, for every j, the inequality
(2.11) {6;()}* = 6(iw).

We denote by M(r, 6;) and M(r, 6) the maximum moduli of the characteristic
functions 6,(z) and 6(z) respectively in the circle | z | = r (2 complex) as in (2.4).
Then noting the consequence of symmetrization of 6;(z) and 6(z), we can easily
verify
M(r, 0;) = 0;Gir) = 0;(—1r),
(2.12) ’ ’ " j=1,2 -,
M(ry 0) = 6@r) = 6(—7r).
Then substituting the relations obtained in (2.12) in the inequality (2.11),-we
get for every j

(213) {M(T, 0],)}“:‘ = M(T, 0)1 j = 17 27 R (4

Then using the definition of the order of an entire characteristic function as
given in (2.5), it follows easily from (2.13) that each of the factors 6;(2) is an
entire function of order not exceeding p. This at once establishes that each of
the factors ¢;(z) is also an entire characteristic function of order not exceeding
p, thus completing the theorem.

3. Applications. We now apply the theorems in the preceding section to give a
simple proof of the theorem of Linnik.

In this case it is given that ¢(f) = €%, where Q(#) is a quadratic polynomial
in #. Thus it is known that ¢(z) is an entire characteristic function of order two
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and without any zeros. Hence applying Theorems 2.1 and 2.2, it follows at- once
that each of the factors ¢;(z) is also an entire characteristic function of order
not exceeding two and without any zeros in the complex plane. Then the proof
follows at once, using the factorization theorem of Hadamard to each of the

factors ¢;(2).
In conclusion the author wishes to express his thanks to Professor Eugene

Lukacs for calling his attention to the paper by Dugué [3].

REFERENCES

{1] R. P. Boas, “Sur les séries et intégrales de Fourier & coefficients positifs,” C.E. Acad-
Sct. Paris, Vol. 228 (1949), pp. 1837-1838.

[2] H. CramERr, “Uber eine Eigenschaft der normalen Verteilungsfunktion,” Math. Zeit.,
Vol. 41 (1936), pp. 405-414.

3] D. Duau#, “Résultats sur les fonctions absolument monotones et applications & ’arith-
métique de fonctions de type positif,”” C.R. Acad. Sci. Paris, Vol. 244 (1957),
pp. 715-717.

[4] R. G. Lana, “On a characterization of the normal distribution from properties of suit-
able linear statistics,” Ann. Math. Stat., Vol. 28 (1957), pp. 126-139.

[5] Yu. V. LINNIE, ‘A problem on characteristic functions of probability distributions
(Russian),”” Uspehi Matem. Nauk., Vol. 10 (1955), pp. 137-138.

(6] E. Luracs “Les fonctions caractéristiques analytiques,” Ann. Inst.. Hen. Poincaré
Vol. 15 (1957), pp. 217-251.

[7] A. A. ZINGER aND YU. V. LINNIE, “On an analytical extension of a theorem of Cramér
and its application,” (Russian), Vestnik Leningrad Univ., Vol. 10 (1955), pp.
51-56.

e

BOUNDS FOR MILLS’ RATIO FOR THE TYPE III POPULATION
By A. V. Boyp
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1. Introduction and summary. Cohen [1] and Des Raj [2] have shown that in
estimating the parameters of truncated type III populations, it is necessary to
calculate for several values of z the Mills ratio of the ordinate of the standard-
ized type III curve at z to the area under the curve from z to «. Des Raj [3]
has also noted that for large values of z the existing tables of Salvosa [4] are
inadequate for this purpose and he has found lower and upper bounds for the
ratio. The object of this note is to improve these bounds, by obtaining mono-
tonic sequences of lower and upper bounds through the use of continued frac-
tions.

2. Approximations to the ratio. Taking the type III population in the stand-
ardized form

IIA
R
IIA

Cf(x)dr, —2/az= o, 0 2,
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