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A NOTE ON CONFIDENCE INTERVALS IN REGRESSION PROBLEMS

By JoHN MANDEL

National Bureau of Standards

This note deals with the construction of confidence intervals for arbitrary real
functions of multiple regression coefficients.
Consider the usual model

(1) Ya = Zi:ﬁixm + e

in which the e, are independently and normally distributed with mean zero, and
common variance o’

It is customary to construct confidence intervals for the 8;, using Student’s
¢ distribution. Alternatively, a joint confidence region can be constructed for the
ﬁ’, using critical values of the F distribution. In both cases the usual statistic
s, based on N — k degrees of freedom, is used as an estimate of o

Durand [1] has discussed the use of the joint confidence region of the 8;, an
ellipsoid in a k-dimensional space, for the construction of confidence intervals
for linear functions, @ = D_: h:8; of the regression coefficients. He points out
that the chosen confidence coefficient (corresponding to the ellipsoid) is a lower
bound for the joint confidence of any set of intervals thus derived.

Our first objective is to generalize this procedure by removing the restriction
of linearity. Let

(2) z=f(ﬂlyﬁ2’°'°7ﬁk)

be any real function of the coefficients 8; . The form of the function is arbitrary

but known.
For any arbitrarily selected value of 2, say 2z, equation (2) represents a
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hypersurface in the k-dimensional parameter space of the 8;. Denote by M[z]
the set of all values of 2z, for which the corresponding hypersurfaces “cut’’ the
ellipsoid, i.e., for which the equation:

zo:f(ﬁl)1327"'7ﬁk)

and the quadratic equation representing the ellipsoid have at least one common
real solution in the 8; .

The set M[z] is, in general, a closed interval, bounded by those two values of z
for which the corresponding hypersurfaces are tangent to the ellipsoid. Further-
more, the event that the point corrresponding to the ‘“true” values of the §;
is inside the ellipsoid implies that the z-value corresponding to these true values
is an element of M|[z], but the converse is not necessarily true. Consequently,
since the probability of the former event is equal to the confidence coefficient
1 — a, the probability of the latter event is at least 1 — . If other functions

u = oB1,B2, " ,0k), v = ¥(B1, P2, -, Bu), etc.,, are considered simul-
taneously with z, it follows that the confidence intervals constructed by the
above procedure for z, u, v, - - - are all jointly valid with a joint confidence for

which 1 — « is a lower bound.

Our next objective is to discuss, in the light of the above procedure, a regres-
sion problem often encountered in practice.

Consider the straight line regression

(3) ya=30+ﬁl(xu~x~)+ea a=172)°"7N

where £ = (1/N)D_« #. . Having obtained least squares estimates for 8 and
B1, say bo and by , consider p “future’’ observations of y and let it be required to
find confidence intervals for the corresponding p values of z.

This problem involves, in addition to the random errors of the original N
values of y, as reflected in the random fluctuations of the least squares estimates
bo and b, , also the random errors of the p “future” y values. Denote the “future”
observations by Y41, Yvi2, -, Yn+n, and their expected values by nyi1,
N4z, *** , Nn+p - Consider the p + 2 dimensional space with coordinates S, ,
Bi, Mn+1, Mv+2, *** , Mn+p - Lhe joint confidence ellipsoid for these p 4+ 2 values,
for any given confidence coefficient, will be centered on bo , by , Yn+1 , Yn+2 , Y¥+s »
and can be found as follows by a generalization of a method used by Working

and Hotelling [8]:
The quantity
@) &= (Bo - bo)’ + (B - b)’ + D (e — Ywed’
Oby Ob, ‘72

has the chi-square distribution with p + 2 degrees of freedom. o3, and o3, are of
course known functions of ¢°, o3, = ¢°/N and o3, = o/ 1= (z: — &)’
On the other hand, we have

(5) X5 = W =25 ;2)3

a quantity distributed as chi-square with (N — 2) degrees of freedom.
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Since xi and x; are mutually independent, it follows from (4) and (5) that a
joint confidence region, with coefficient 1 — « for 8y, 81, and the expected
values of Y1, - , Yn+p 1S given by

B — b)* (B: — b))’ 3 2 _ 2
(6) 1/N + 1/2(:1: — 2_;)2 + ; (vgi — Yngs) = (p + 2)F,s

where F, is the critical value of the F distribution with p 4+ 2.and N — 2 de-
grees of freedom, at the « level of significance.
Consider now the function

7 — Bo
B

where 7’ is the expected value of one of the p “future” observations, and z’
the corresponding true z-value. By the method previously outlined, confidence
limits for z’ are obtained by determining the two values of z’ for which the

hyperplane
(7) 7 — Bo = Bz’ — &)

is tangent to the ellipsoid, provided that the set of values of z' for which the
hyperplane (7) intersects the ellipsoid is a closed interval.

Denoting these limits by z7, and Ty , it is found that the quantities u, = Ty — &
and uy = zy — & are the roots of the equation

K’ N+1
8 b2———)’—-2b "~ [’—b2— K2]=0
(8) ( TS — o u 1(y ou + | (y 0) ~
where K* = (p + 2)F.s.

The condition for equation (8) to have distinct real roots is

@ — b)) N+1[2_ K’ ]

© SGoat T W n Se-2l" 0

Condition (9) is necessary but not sufficient for obtaining a confidence interval
for z’. This is apparent from the fact that when 2’ is made =, equation (7)
represents the hyperplane 81 = 0. Consequently, if the hyperplane 8, = 0
intersects the ellipsoid, the parameter 2z’ will have a discontinuity when (7)
becomes B; = 0, and the roots z;, and zy , though distinct and real, will then
not be the limits of a confidence interval for z'.

The condition for 8; = 0 not to intersect the ellipsoid is

(10) Y (x — i) > K
It can be proved that condition (10), which implies (9), is both necessary and

sufficient in order that the roots of (8) yield the limits of a confidence interval

for 2.

If equation (10) is satisfied, the procedure leading to equation (8) can also
be carried out for the remaining p — 1 “future” measuremen};s, y': , ¥, ete. In
this manner one will obtain a set of confidence intervals (zz , zv), (&7 , Zp),

' =+
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(z2', zv'), ete., all of which are jointly valid with a confidence coefficient for
which 1—« isa lower bound. Furthermore, thislower bound will still apply if con-
fidence intervals are also derived for any number of real functions of 8, 8, and
the p values ny41, w42, =+ * 5 Mtp -

Equation (8) should be compared to the relation obtained by the use of
Fieller’s theorem [3, 4]. This theorem leads to a confidence interval for 2’ — &
by considering it as the ratio of the two normally distributed variables y' — bo
and b, , whose variances are (N + 1)o*/N and ¢°/3>_(z — %) and whose co-
variance is zero. The confidence interval, with coefficient 1 — «, thus found is
given by the roots of the equation

2 2
(11) (b"{ ——"’s——z) u? — 2bu(y’ — bo)u + [(y’ S O 82] =0
2z — 2 N
where i, is the critical value of Student’s #, at the two-sided « level, and u is

defined as above.

The only difference between equations (8) and (11) is the substitution of K*
for £’s%, i.e., the substitution of [(p + 2)F.]* for ¢, . This substitution results in
a widening of the confidence interval, caused by the joint consideration of p 4 2
parameters instead of the single parameter »/, (or its corresponding z’). It is of
interest to observe that the relation between [(p + 2)F.)* and ¢, is precisely
that found by Scheffé [6] in establishing simultaneous confidence statements for
all means in an analysis of variance, as contrasted with individual confidence
statements based on Student’s 2.

In deciding whether in a particular application, joint or single confidence
intervals should be used, one may be guided by the following plausible rule.
Joint confidence intervals are indicated in situations involving two or more
quantities that are determined as so many phases of a single problem. On the
other hand, quantities involved in unrelated problems, even though they are
derived from the same basic data, should not be treated jointly in deriving confi-
dence intervals. It appears advisable, in view of this rule, to partition all the
quantities derived from a single set of data into groups such that the quantities
within a group—inasmuch as they correspond to the same problem, are treated
jointly for the derivation of confidence intervals; while the groups themselves
are treated independently of each other:

Groups involving single predictions should be treated by Fieller’s theorem,
since there appears to be no justification, in such cases, for widening the confi-
dence interval through inclusion of confidence statements about the slope and
the intercept.

It is of interest to note that the confidence interval based on equation (8) may
be obtained by drawing hyperbolic confidence limits [2] for the straight line rep-
resented by equation (3), in accordance with the relations

a2 2
(12) y=b+ bz — 2 K [N]_V‘- 1 + Z(azx _x:)i)z]

and by determining the z-interval defined by the intersection of the line y = y’
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with the two branches of this hyperbola. It is readily seen that the condition
that such an z-interval exists and be of finite length is equivalent to the condi-
tion that the two asymptotes of the hyperbola have slopes of equal sign. Since
these slopes are b, — K/[D_(z — %)’ and b, + K/D_(z — %)}, the condition
in question is b} — K*/(Q_(x — £)*) > 0. This is condition (10) obtained previ-
ously by a different line of reasoning.

It may be observed, finally, that the inverse problem, viz, to determine un-
certainty intervals for observed y values corresponding to given z values [2] is
not a classical case of interval estimation, since it is concerned with bracketing
a random variable, not a population parameter, by means of two statistics.
Intervals of this type are discussed by Weiss [7].

Applications of the procedure outlined in this note to a problem in chemistry
are discussed elsewhere [5].
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A NOTE ON INCOMPLETE BLOCK DESIGNS

By A. M. KSHIRSAGAR

Unaversity of Bombay

1. Introduction. Kempthorne [1] has shown the efficiency factor of an incomplete
block design to be a quantity proportional to the harmonic mean of the non-
zero latent roots of the matrix of coefficients of the reduced normal equations
for the intra-block estimates of treatment effects. He has further stated that the
geometric mean in a certain sense corresponds to the generalized variance but
has not explicitly explained it. The present note is intended to clear this point
and to prove that the design with highest efficiency factor (in any case, whether
the harmonic mean or the geometric mean is taken as a measure of efficiency) is

(a) a balanced incomplete block design, if such a design exists; and
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