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SecTION 1

Introduction. The classical occupancy problem is concerned with the random
distribution of a specified number of objects (r) in a given number of cells (V).
No restriction is placed on the number of objects in any cell other than that
the total number of objects equals r. The problem of finding exactly m cells
empty for the case with 7 and N finite, and with all arrangements of r objects
having equal probability can be expressed in closed form [1]. However, for
large N, use of this formula for computation becomes exceedingly tedious.
Several authors, [2] and [3] have stated without proof that under suitable re-
strictions on N, r the limiting distribution of the number of unoccupied cells
as N, r approach infinity is normal.

By imposing the restriction & = r/N, a > 0, it will be shown that in the
above occupancy problem the asymptotic distribution of the number of unoe-
cupied cells is normal.

A modification of the above occupancy problem is the following: ¢ objects
are randomly distributed among N cells such that no more than one object is
in any cell. The procedure is repeated w times. For example, with w = k, the
maximum number of objects in any cell is k, one for each of k& trials. It can be
shown that by restricting gw = oV, @ > 0, the normal asymptotic result given
above holds. Also, by imposing the restriction gw = N log N/A the number of
unoccupied cells has asymptotically a Poisson distribution. This is an exten-
sion of the same results listed by Feller [1] for the classical occupancy problem.
Proofs for the modified occupancy problem have been given by the author [7]
and will not be given in this paper.

2. Outline of proof. In showing asymptotic normality our method will em-
ploy moments. We show that the moments converge to the moments of the
normal distribution. From this it follows (by a theorem in Uspensky [4]) that
the distribution of our random variable converges uniformly to the normal
distribution.

3. Main results. With « = r/N, a > 0, we define a random variable X; as
follows:

X; = 1 if cell j is unoccupied after r tosses.

= 0 otherwise.
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Assuming all N events are equally likely and that the r trials are independent
of each other:

. s\’
EXi, - Xy, -+, X:) = (1 "N) :

Let X equal the number of unoccupied cells

N
X = ZXi
i=1
E(X) =N (1 - l>' - N (1 — l)m
by N
_B(X) -
lm ==

As N becomes infinite, E(X) becomes infinite but E(X)/N approaches a finite
limit.

We will prove that the random variable X has an asymptotically normal
distribution by showing that

,{Hn@')'ﬁz"l -3--+(k—1) fork even

=0 fork odd

The general kth moment, u; , is
& k
w = B - B0 = 3 (-1 () B @y

As shown in Theorem 1 of Section II, by using Stirling numbers of the first
and second kind, u; can be expressed as follows:

£ E S e (e (- 2) (- )"

r=0 p=1 j=1

It can be shown (see [5]) that
aN aNr t+1
L _P I A alr +p )]
( N) (1 N) = exp [ a(p+r)]exp[ E o
Now
alr + p“)] & art---an 1
P [ 2 ES Yl P> ,,,,..,E:E:,.,,,F,,, mal-mal N*

N 1
= nE-O Kn(ra 8) N‘,‘,
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where
=@+ ™
.+ 1
Substituting above and noting that 8 = $i_, = 0 we have

- 52 e () sz S K0k

r=0 g=r v=r

a; =

where
ptr=s
j+r=v
Collecting like powers of N
ur = Z N° [E € “Dy00 + Z be,o1,1 + 00 F e—akbb.i.b—o]

v=k 8=y 8=v+1

(1) - [E e (Z b,.,+n.”>]

o=k 3=v n=0

k

- 5 v [Eean ]+ rem

v=k 8=v

where
bussnn = 22 (=1 (f) SIS Ky )
= % o (1) st -
= A"(0)
and
[k/2] = k/2 for k even
k—1

=—5— for k odd

As shown in [6] bs,p4n,» is the kth. difference of f(0). By Lemma 1,
bu,u-{-u,n =0 for v > k/2
= ck! for v =Fk/2

where c is the product of the coefficients of the highest degree terms in r of
Svtr=r 8i7r and K,(r, s).

For a given k, R(r, N) is a bounded function of r and N. This is an immediate
consequence of the analyticity of w:. From (1), the highest power of N in
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R(r, N) is N%**~', Therefore
R(r, N) = O(N™371),

Incorporating these results in (1) for k& even

1
s = Nk/2 Z/z e_‘"a,(lc) + O(Nkl2—l)

8=k

where
s—k/2 s—k/2
as(k) = Z ba,k/2+n,n = Z Ck!
n=0 n=0

Using Lemma 1, it follows that
at) = Duno(~ D' + 1 (*17)

where
Dijgo=13+--(k— 1)
h=38-k/2
Substituting above
mo= N — (a + 167 Dipso + OWN™™)
Noting that ¢* = up, forming the ratio

M _ D"/2,0Nk/2(e—a - (a + l)e—h)km + O(Nk/z_l)
(a?)*? N*E(g= — (o + 1)e-22)2 - O(N*2-1)

dividing numerator and denominator by N** and then letting N — o,

lim = Dy for k =2,4,---.

L
Noco (02)*12
For k an odd positive integer,

. Me
fim s = 0

This follows from the fact that b, ,4n,n = 0 for v = k/2 as » being a positive
integer cannot equal k/2. Therefore,

we = O
while
(0_2),6/2 = O(Nk/2).
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Secrion II

THEOREM 1.

By = in ,ir i (=17 (k) Nj'HSipSf_,( _ 1%>“N (1 B 1%>am

=0 p=1 j=1 r
where S) and SE_, are Stirling numbers of the first and second kind respectively.

Proor.
k - T k k—r r
@ m = EX - EX)" = 2, (-1) (T) EX*)EX)).

By the multinomial expansion with
Asi) =1 for >0

=0 for s =0

and

I\

N
SAs)=p 1=p<s

=1

X% =X  asX;=0orl
we have

3 ' N
X. - Si ( ) X)\(:l') .. ‘X)"(.N)
”Z:‘ se:E?E(u)-p sil---sw! \p l "
{ 2 e }

From Jordan [5]

_ s 1
¢ p! 85:8;>0 81!' . ‘Sp!
(seem)

Substituting above to eliminate the second summation and taking expectations,

E(X') = E p! (g) SfE(X){(") .. .X}\V(SN))
=1

s, (1-2)"s

1l

From Jordan [5]
p . .
(N), = 2 8, N’
=
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Substituting above in (2) with
. . 1 aNr
Beor = v (1- 1)
yields the desired result.

TueorEM 2. The degree of K.(r, s) defined in equation (1), considered as a poly-
nomial in r, is obtained from the term of the summation in which m1 = n and
”l2=m3=-oo=m”=0.

Proor. The highest power of r in a; is ¢ + 1. For a given » we have to de-
termine m; , - - - , m, which will maximize the highest power of r subject to the

restriction that
iZ:; im; = n.
Maximizing the power of r is equivalent to maximizing
2my + 3me + -+ + (0 4 Dm, =n+§”1mi
Maximizing > 7 m; subject to the above restraint yields
gm;=n—§(i—l)m.~

The maximum is attained when m; = 0; ¢ = 2, --- , n. Therefore, the power
of r is maximized when m; = n. From the definition of a; , it is readily seen that
the degree of r in Ka(r, s) is 2n and that the coefficient of this highest degree

term is (—a)"/2™n .
LemMA 1. Let b, 54,1 be defined as above. Then
Dypinn =0 for v>k/2
=ck!  for v=1FK/2

where
— C(s—k/?—-n).o . D(k—c).o . (—a)n
2(s — k/2 — )]t [2(k — s)]! ml20 °

Proor. From Jordan (5], S2~™ and 82" are polynomials in n of degree 2m,
ie.:

[+

(n)2m

©@m)! + terms in n of degrees less than 2m

S:—m = Cm.o

(n) 2m

.0 @m)! -+ terms in n of degrees less than 2m
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where

Cm,O = (—'l)mDm,o
As the product of a finite number of polynomials is also a polynomial,

8 ST K A(r 8)
is also a polynomial. Its degree in r for fixed v, s, n is

28 ~v—n)+ 2k —s)+ 2n =2k — v)
It follows from elementary properties from the calculus of finite differences that
bso4nm = 0 for v>k/2
= ck! for v="Fk/2

where ¢ is the coefficient of 7* in the product polynomial. That ¢ is the product
of the above three factors is apparent from the polynomial expansion of Stirling
numbers and from Theorem 2.
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