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1. Summary. The decision problem considered here is that of deciding which
element of a finite parametric family of probability distributions p(z, u) repre-
sents the true distribution of the statistic X. It is assumed that p(z, u) satisfies
certain regularity conditions which essentially require that the parameter u be
integer-valued with known bounds and that p(z, m)/p(z, me) be.an increasing
function of z whenever uy < u1 . Complete classes are characterized for various
loss functions W(u, «) which are convex functions of the decision a for each
fixed value of u. Minimax proceduresare considered forthecase W(u, o) = | & — u |*.

2. Introduction. The problem of estimating an integer-valued parameter is
viewed as a special case of Wald’s general statistical decision problem. The
chance variable X is known to be distributed over the sample space M according
to a probability distribution p(z, u) depending upon a single unknown integer-
valued parameter u with the known bounds 0 = u = N. The statistician is
required to make one of N + 1 decisions, corresponding to the N 4 1 different
possible values of u, on the basis of a single observed value of X. A decision
function & therefore has the form

0 () = (%o(2), (), * - - , ow(@))

where 8q(z) = Ofora = 0,1, .-+, Nand 2 50 8.(z) = 1 for all z in M, with
the interpretation that when the procedure § is used and the observed value of X
is 2o then the decision that the true distribution of X is p(z, «) is to be made with
probability 8.(xe), « =0, 1, ---, N. The loss associated with the decision «
when the true value of the parameter is u is expressed by a loss function W(u, o)
which, for each fixed value of u, is a convex function of a with W(u, u) = 0 and,
for & between wx and 8, W(u, &) < W(u, 8).

The following regularity conditions are imposed upon the function p(x, u).

Condition 1. p(y, u)p(z, v) < p(x, w)p(y, v) if and only if p(y, w)p(x, v) and
o(z, u)p(y, v) are not both zero and x < y, p < v.

Condition 2. If p(z, v) = 0 for all x in M then p(z, u) = 0 for all z in M either
for every p = v or for every u = v.

Condition 3. If M = (xo, %1, +*+ , Zn), Tia < Ts, then for every 1, 0 < 7 = m,
there exists an integer u; such that p(xi-1, u:) > 0 and p(z;, p) > 0.

Conditions 1 and 2 are essentially a more precise way of saying that the likeli-
hood ratio p(z, v) / p(z, w) is a strictly increasing function of x whenever p < v.
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A simple but useful consequence of Condition 1 is the following

LemMa 1. If the distribution p(x, 1) satisfies Condition 1 and if p(y, @) = 0 and
if there exists a pair z, 8 such that p(z, @) > 0 and p(y, 8) > O then either

@) p(y,w) =0forallu < aand p(x,a) = 0 forallx = y, or

(i) p(y, w) = O0forallp = a and p(x, @) = 0 for all x ; y.

3. A Karlin-Rubin Complete Class Theorem. A general approach to decision
problems involving distributions with a monotone likelihood ratio has been
developed by H. Rubin [1] and S. Karlin and H. Rubin [2]. Since the finite action
problem posed here represents a special case of the Karlin-Rubin problem, a
direct application of their results concerning completeness of the class of mono-
tone decision procedures gives the following

TueoreM 1. Let C be the class of decision functions such that

(i) for every x in M there exists an integer a, such that 8,,(x) + a1 (x) =1

(ii) 8.(x) > O only if p(z,a) > 0

(iii) if # < y then & = @00,(x) + (@ + 1)8e,11(x) <
If p(x, u) satisfies Conditions 1 and 2 and if, for each fixed u, the loss function
W(u, @) is a convezx funciion of a with W(u, u) = 0 and, for o between u and 8,
W(n, o) < W(u, B) then the class C is complete.

The theorem remains valid under weaker conditions on the loss function?;
however, in what follows only convex loss functions are considered.

4. Admissible procedures when W(u, @) = | @ — u |* for large k. The class C
may, under the hypotheses of Theorem 1, contain inadmissible procedures.
This is effectively demonstrated by the special case where W(u, a) is a convex
function of | @ — pu| and increases very rapidly with |a — p|. Wk, «) =
| @ — u|*is one example of such a loss function and, clearly, any convex function
W(| & — u|) with W(0) = 0 can be dominated by K| a — u |* by choosing the
constants K and k sufficiently large. The most stringent requirements for admis-
sibility are then encountered when the range of x for which p(z, x) > 0 is inde-
pendent of u; in particular,

TuEOREM 2. If p(x, n) satisfies Condition 1 and p(x, p) > O for all integer pairs
(z,u) such that 0 Sz = n, 0= u =< N, and p(z, u) = ‘0 otherwise, then there
exists an integer k, > O such that if W(u, @) = | a — u|* and k = k, then every
admissible procedure is of the form

S.(x) =1forz <y
84!(3/) + 8a+l(y) =1
Sapa(z) = lforz > y

where0 = y = n,0 = a = N.

2 The author proved the theorem as it is stated and a referee pointed out that the Karlin-
Rubin theorem for the finite action problem includes this result.
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Proor or TueoreEM 2. The conclusion is obtained by showing that, under
the hypotheses specified, every Bayes solution has this form when & is sufficiently
large. Let £ = (% ,&, -+, &v) be an a priori distribution on the parameter
space and let r(£, 8) be the integrated risk of the procedure 8. Then o* is said to be
a Bayes solution relative to £ if inf; (£, 8) = r(£, 8*). For every £, however, there
exists a non-randomized Bayes solution; consequently, if

ra(§, @) = Z la — u | p(z, w&
then
(& 8% = 2 infa r.(%, @).

The function r,(%, &) is seen to have the following properties:
I: Ifra(¢, @) < 7(k,a + 1) thenr,(§, 0 + B) < r.(§,a + B+ 1) forall > 0
II: i ry(¢, @) = 7§, @+ 1) then 7,(§, @) < r.(§, a + 1) forallz = y
III: If ro(¢, @« — 1) = ro(%, @) then ro(€, @) < ra(§,a + 1) forallk = &, .
Let Av(a) = (a + 1)*—o” then r.(¢, @) < r.(¢, @ + 1) is equivalent to

u=;1 Ay — a — Dp@, wé < ”Z:; Al — wp(a, w, .

‘Then property I follows from

N N
Al — a — B— Dp@, wia £ 2 Mlp — a — Dplz, wE,
p=a+p+1 p=a+tl

(2) a a+f
< ‘; Arla — wp(z, )t < 'gAk(a + B8 — wp(z, )k,

forall 3,0 < B =N — a — 1. Since p(x,u) >0,0=2=n,0 < u =N, then
either the first or last inequality (or both) of (2) is strict for k& > 1. Property II
is a direct result of the restrictions upon p(x, u), for if r,(¢ @) = r,(§,a + 1)
then, since p(z, u) satisfies Condition 1 and p(z, u) > 0,0 =<2z =n,0=u = N,

o p(z, l‘) P(y, l-")
®) 2, Ml —a =) e b S -E Bule — e = 1)y B
= P(y, I‘) (xi I‘)
< D dla— W )sugg__;,ak(a— o a)

for all z < y, with either the first or last inequality (or both) of (3) being strict
for all k. Property III is derived by noting that if ro(£, @ — 1) < ro(£, «) then

= p(Or I‘) P(O, I‘)
Mla=Db 2 = 2 Mla—1—w) ¢ 0)en+ZAk( — ) o0y &

and
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é;i(";%;o)l) (ol @ + 1) — ra(g @)
> Aule) <— :Z: Arla — 1 — p) pgg, (‘3 £+ é My — @) pgg, 3; &)
o T Eae- e £ an- ey
- Z:: (Ak(a — DAwla — p) pE"’ 6‘; A(@)Ai(e — p — 1) ”8’ S;)
+ (ta = 020 4 5 20D

N

p(07 p') P(n, /“)
+ Z;'_ (Ak(a)Ak(ﬂ - 0[) (O O) Ak(a - I)Ak(u e ) (ny O)) E‘“

For 0sp=a—1, A(a — 1) Ala — 1) = Aw(@)Au(e — u — 1) and, by
Condition 1, (p(n, u)/p(n, 0)) > p(0, u)/p(0, 0)) so the coefficient of £, in (4)
is positive for all u < o. And since, for p > a, (A(@)Ai(e — a)/Aw(e — 1)
Ax(p — a — 1)) can be made arbitrarily large by choosing k sufficiently large
then k,(i, ) may be defined as the smallest integer % such that

Ak(a)Ak(# - a) p(n) #)P(O, O)
Ak(a - l)Ak(F - a — 1) p(ny O)p((); F‘) )
Hence, for £ = max, k,(u, ) the coefficient of £, in (4) is positive for all x > «,
and property III is thus established by taking

k, = max ’cp(l-"; @)

0<agWN

as<usN
Now Iet of be an integer such that mm(,sas ~ 1:(§, @) = r,(&, o). Then for
& < y,of < of. For suppose z < yand of < a,ﬁ since r,(¢, af) < r,(¢, of + 1)
then, by II, r.(¢, %) < 7§ of + 1) and then I nnphes the contradlctlon
(£, of — 1) < r,(%, of). For k > kp,, III glves ralt, o + 1) < ra(t, of + 2)
which implies by II, that r,(g, o +1) < r,(g, of + 2) for all z < n and this
implies, by I, that 7.(¢ af + B) < 7.5, af + 8 + 1) for all B > 1 Hence,
af < of < of + 1 forall z. If there exists a value of z such that of = of + 1lety

be the least such z, then 0 < y < n and

of = aoforx <y
i ao+1f0r:cay,

in this case, randomized Bayes solutions exist and are of the form
daf(z) = 1forz <y
8at(y) + datnily) =
daty1(z) = lforz > y.
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Since every admissible procedure is a Bayes solution this completes the proof of
Theorem 2.
The distribution

(5) pz,u) = (Z) <1%)<1 - §>_ 0<z=n0<usN

satisfies the hypotheses of Theorem 2 for 0 < z < n, and since Theorem 1
applies for £ = 0, n then

CoroLLARY. If p(x, u) 2s the distribution (5) then when k = k, a procedure &
s admissible only if

3a(0) + 6tx+l(0) =1
glx) =1for0 <z <y

3(y) + Spa(y) = 1
) =1fory<z<mn
dy(n) + dyu(n) =1
where the integers a, B, v satisfy 0 < a < B <y = N.

6. Admissible procedures when W(u,a) = | @ — p|. If Ci denotes the class
of procedures which are admissible when W(u, @) = | @ — u | then C; is con-
tained in the class C of Theorem 1. As demonstrated by Theorem 2, however,
when £ is sufficiently large the class Cx may reduce to a collection of procedures
which virtually designate the same decision for all values of z, so in this case
little significance could be attached to the mere fact that a procedure belonged to
the class C. Since W(u, @) = | @ — u |* is a conventional type of loss function
for estimation problems Theorem 2 therefore raises a question of the practical
importance of the class C; hence, it is of special interest that

TureoreM 3. If p(x, u) satisfies Conditions 1 and 2 and if the sample space M
1s finite then the class Cy of procedures which are admissible relative to W(u, o) =
| ¢ — | is the class C itself.

Proor oF THEOREM 3. If a member & of C is inadmissible then, since C is a
complete class, there exists a member &’ of C which is better than é. Then for all
possible

(6) r(u,8) — r(u,8) = ij<x, w(a—p|l—la—u)zo0.

Theorem 3 is proved by showing that (6) cannot hold for all possible u; and, in
particular, that there exists x in M such that either

r(az,8) > r(a.,8) or r(e;+ 1,8 > r(e:+ 1, 7).

Only the ordering of the sample space is pertinent so, without loss of generality,
let M = (0,1, --+, n) and let |&,—&;| = A, > O0forall xzin M. Let
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d = min,(z | &, < &)
e = max,(z | & > @)
Y = (x|d<x<eand&;_1<&=_1§&z<a,',)
= 1,9, Yma), ¥ < yjfori <j
Z=@x|d<z<eandd,, < @y < & < &)
= (21,2, ,2m), 2 < zjfori <j
thenlet yo = d, ym = ¢, and
Ui = Vgi1 + 1 =ysfore =0,1,---,m
Ugiyr = Vo; + 1 = zgufori=0,1,--- ,m—1
Moi = ay,, fort =0,1,--- ,m—1
B2i1 = Qugyy + 1 (0T oy, if oy = @oyyyy)
fort=20,1,.--,m—1

Since & and &’ are in C then @, < &, and &, < &, for all z < y so

ug.-évz,-<uz,-+l§v2¢+1 fori=0,1,---,m—1
po < p2ia S pos < pgip forte=1,2,---,m—1
and for 2k—1 = ¢ = 2k
uo—1 2k—1 T
T(Mq, 8) - r(l‘q’ 6,) = - ;0 p(x’ I‘q)Az + ;0 (_']-)t Z p(x’ I‘q)Az
2m—1 vy

Z p(:c, I»‘q)Az - i p(:c, I"q)Az-

T=uy T=ugm

-5
Let

bilk) = 3 pa, w)ds

z=u;
2(é+5)—-1

Bi.i(l-‘q) = t;h‘ (_l)tbt(ﬂq)
then, since 4, > 0 for all z,

(kg 5 8)—7(pq, 8') = Box(ug) —Br,m—i(pq).

A contradiction to (6) is then obtained by showing that there exists a pair
(k, @) such that 2k — 1 = ¢ = 2k and Box(u;) < Bi,m—r(ug)-

Let Si(k;), be the following statement, defined for all integer pairs (, 5) such
that 0 Sism—j,1=j=<m.

Si(k;): There exists an integer pair (k; , ¢(7, 7)) such that 0 < k; < 7,

20+ kj)—1 = q(4,7) = 2(¢ + k), and  Bix;(ueciiy) < Bigrj,iki(keti,i)-
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The negation of S;(k;), written not Si(k;), is then
not S;(k;): For every integer pair (k, ¢) such that 0 £ k < j and 2(z + k)—
1=<¢=20+k)

Bii(ug) = Bisk,j-k(ug).
The desired contradiction to (6) may then be written So(k.).
The statement S;(k,) is easily proved by contradiction. Note first that since &
belongs to C then

P(uzi , pas) > 0 fort=0,1,---,m—1

) ,
p(v%—l ) I‘Zi—l) >0 fOI‘ 1= 1’ 2’ e, m

so that

®) bi(us) ( ) 0 for 4 (;é)j.

If b2iyj(uas) > O then there exists x; = ugiy; such that p(z1, pe:) > 0, and since
P(uai , p2s) > 0 then, by Lemma 1,

(9a) if basqj(u2i) > O then p(z, p2) > 0 for uei < « < usiyj .
Similarly, if bs:(u2i+;) > O then there exists o < ve; such that p(xo, u2ip;) > 0.

By (7), however, there exists 1 = uz:4; such that p(zy, p2i4;) > 0; hence, by
Lemma 1,

(9b) if bai(uziy;) > 0 then p(x, p2it;) > 0 for ve; < = = ugiyj.
It then follows that

(10) if B;, 1(u2:) £ 0 then B; l(llrzH-J) ( )O for j ( ) 1

The statement in (10) is easily seen to held for all j = 1 such that
either bsi(u2it;) = 0 or basy1(uir;) = 0, for if byi(uziy;) = 0 then (8) implies (103
and if by;y1(ueiy;) = O then p(uziyr, p2,+,) = 0 but, by (7), there exists ; > ua:41
such that p(z:, p2i+;) > 0 so, by Lemma 1, p(z, uzi+;) = 0 for all z = w41 and,
in particular, bei(us2i+;) = 0. Now suppose that both be;(usi+;) > 0 and baiy1(uais ik
> 0 but that (10) does not hold; in particular, suppose bz;11(u2:) = bei(uz:) and
boi(m2i+i) Z baiva(wait;). Since, by (8), bai(uzi) > 0 then bpiya(uzs) > 0 and, by
(9a), p(x, p2) > 0 for uz; < * =< Uziya ; and since byi(uzir;) > 0 then, by (9b),
p(x, p2iy;) > 0 for vo; £ = uziy; . Then, by Condition 1,

bzi(uzi) bzi(llzi.;.j) .
P(v2i, p2i) ~ p(vai, p2iys)’
but then the assumption that by;(uzir;) = boir1(uziys) implies
a2i+1(ll2i) b2i+l(ﬂ2i+j)
P2, p2i) ~ D(v2i s p2iys)’
which contradicts Condition 1. Hence (10) holds for all ; = 1. The statement
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not S;(ky) implies that B;1(uz) = 0 and Bi;,(u2i41) = 0 and is therefore a con-
tradiction of (10); hence, S:(k;) for all ¢ such that 0 = ¢ = m — 1.

Now suppose S;(k;) for all (¢,7) suchthat 0 £ i =m — 7,1 £ j < s = mbut
not Sy(k,), where 0 < h < m — s. Then (%, , q(h, 1)) can be chosen as (0, 2h);
otherwise By,1(uz) < 0 and, since 2k < 2(h + 1 + k,1) — 1 < g(h + 1,5 — 1),
then, by (10), Bui(uet+1,.—n) = O which, together with the assumption
Sh+1(k.—1) implies the contradiction Si(k.).

If forall j < g < s, (k;, q(h, )) can be chosen as (0, 2) then (k, , ¢(k , g)) can
be chosen as (0, 2h). Otherwise, Bs,o(uz) = 0 and, since Spy,(k.—y) but not
Si(k.), B,o(tgthia.e—p) > 0. And since p(ua , uzn) > 0 then p(z, pa) > 0 for
U S T = Vg1 3 Otherwise, by Lemma 1, p(z, uzn) = O for all ¢ = veputg—s
and then (k,—, q(k, g — 1)) = (0, 2h) implies that ¢k, , g(h, g)) can be chosen
as (0, 2h). Also, p(ahtg—1y , Mothtse—e) > O; otherwise, by Lemma 1,
P, Mertoe—p) = 0 for all z = vspig-1) SINCE Vathig—1) < Varhtgtky_u)—1
< Ushtgike_y) > and then By ,(ueteg.e—y) = 0 to contradict not Su(ks). Hence,

(11) _ Bh+a-1,1(ﬂ2h) > Bh,g—l(nzh)
P(Vahyo—1y 5 M2n) — P(V2hto—1) » H2n)

and

(12) B’hﬂ—l(ﬂq(h+0-c-—0)) > Bh+a—1,l(#q(h+a.s—a))

P(V2thio—1) » Bathto,o—0)) p(UZ(h+n—i) ) l‘q(h+a.c—a))

Observe, however, that if

By, i(par) > Bs,i(1g)
D(V2thtd) 5 b2n) ~ P(V2hts) 5 M)

where 1 < 7 =< g—1,2h < ¢, and p(z, ug) > 0 for vegen = T = varnyg then,
by Condition 1,

(13)

By (ua) N Biyii(ig)
P2ty » ban) ~ P2t 5 B)
and, since By, ;(u) + Buija(u) = B jna(w),
Bh,j+1(#2h) > Bh.j+l(ll'q)
P(V2thiiy > B2n) ~ D(Vacats) 5 Ko
Since (k41 , q(h, j + 1)) can be chosen as (0, 2k) then By, j11(uz) > 0, and since,
by Condition 1, p(vah+j) » #2s)PWach+i41) 5.8q) > PWathts) 5 ba)PVachri+) 5 b2n) then

(14)

(15)

Bhiri(pn)  _ pWagan s pon) | Bujua(uan)
PWethtitn 5 b2n)  PV2thisivn) » H2n)  D(Vachts) 5 Man)

(16)
PWetris , a) . Brini(we)  _ Basn(ug)

P2trtivn s Be) PWrriy s Be)  PW2ihiisy , o)

Thus, if (13) then (16). Now let j/ be the least j, 1 < j < g — 1, such that
P(ehts) » Bathta,s—) > 0. Then (13) holds for j = j" and ¢ = g(h + ¢, 5 — 9),
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for if 5/ = 1 and p(van , Hethto,e—0)) > 0, then let j = 0 in (14), (15), (16) to get
the desired result; otherwise, if 7/ = 1 and p(van , Ho(hto,0—0p) = O then the right
side of (13) is nonpositive while the left side is positive since (%, , g(h, j°)) can
be chosen as (0, 2k). Hence, by finite induction, (13) holds for j = ¢ — 1,
g=gqh+g,8—g);ie,

B; -1 (uw.) > B, -1 (Ilvq(h+a .s—a))
P(V2(hro—1) 5 M2p) P(V2(ht9-1) » Ba(htg.0—0))

Hence, by (11) and (12),

_ Biyg1.1(ua) S — Biio—11(Bq0it9.0-0)
P(V20it0-1) 5 M2n) P(V2(hro—1) 5 Mathto,o—0))

in contradiction to Condition 1. This proves that if S;(k;) for all (7, 7) such that
0=71=m—71=j<s=mbut not Si(ks) then (k;, q(h, 7)) can be chosen
as (0, 2h) for all jsuch that 1 = j < s < m.

With this result, however, simply take j = s — 1, q = 2(h 4+ s)—1 in (13)
to get

Bh ,8—1 (M2h) Bh ,8—1 (M2 (h+5) —1)
P(V2thrs—1) 5 B28) ~ D(W2(hya—1) » M2(hts)—1)

The denominator Pp(Wais—1) , Me+s—) Must be positive; otherwise, since
PWethio)—1 5, Mahtor—1) > O then p(x, psgris—1) = 0 for all £ = vepys— so that
B o(u2t9—1) = —bars—1(2a+e—1) < O to contradict the assumption not
Su(k,). Then not Si(k,) gives, as before,

_ Buisaaum)  Biea(um)
P(V2thio—1y 5 M2n) — P(V2(hrs—) 5 H2n)

> Bh o1 (p2ht0)-1) > Bis1,1(p20i40)—1)

= p(v2thto-) 5 Bethe—1) | P(V2thts—1) , H2thte)—1)
to contradict Condition 1. Hence, Si(k;). And since S;(k;) for all ¢ such that
0 < 72 =< m — 1 then, by finite induction, S;(k;) for all (7, 7) such that 0 < ¢ =
m — j,1 £ 7 £ m. In particular, So(k»), which establishes Theorem 3.

\Y

6. Minimax procedures when W(u, o) = |a — p|. When the minimax
estimator does not have constant risk, as is obviously the general case here,
then the Bayes method of finding the minimax procedure by guessing a least
favorable a priori distribution becomes extremely difficult, if not hopeless. For
distributions of the type considered here, however, it is possible to reduce the
problem of guessing a least favorable a priori distribution to one of guessing
which points in the parameter space are assigned positive probability by a least
favorable a priori distribution.

TaroreM 4. If p(x, u) satisfies Conditions 1,2, and 3 and Wy, @) = | a — p |
then there exists a least favorable a prior: distribution which assigns positive prob-
ability to at most n + 2 values of p, o T w1 = -+ £ tnt, and if § 18 a Bayes
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solution with respect to a least favorable priori distribution then p; = &, < piys for
t1=0,1,.--,n.

Proor oF THEOREM 4. Assume, without loss of generality, that
M= (0,1, --,n). Let

N
ro(§ @) = ‘;0 le — pu| plz, u)é

and let of be the collection of integers
@ = (2,0 = a = N |infsr.(§,8) = ru¢, o).

From the proof of Theorem 2 the function r.(¢, a) has the properties
I':if 7':(5, a) = rz(f, a+ 1) then Tz(E, a+ B) = rz(f’ a+ g+ 1) for all =0
II: if ry((, @) £ 1§, @+ 1) then r.(¢, @) < re(§, @+ 1) forallz < y

Hence, af has the form
@=(f,af+1,---,o+6)

where 0 < of < N, 0= BE< N —dof , and ot + 6= aﬁ.H . Furthermore,
since rz(E, af:) = Tz(E, a:i + 1) = e = 7‘:(5, a:s + Bﬂi) or, fors = | IR ’ 13:5 -1,

N afti-1
p@, of + Veatrs + 2 pl, Wi = X pl, p
p=ajf+itl =0
and
N, az+i—1
2 ple, Wk = p@, Wt + P&, of + 0)fatss
u=a5+1+1 »=0

then p(z, of + 9)ét+i = 0for 0 < ¢ < B, . Hence, since 7,(¢, ot — 1) >r.(% af), or
N az—1

P, 0D)kas + (@ 0i + Bbagrss + 2 P WE> 2 p (3w
u=af+8f—1 u=0
and 7,(¢, of + %) < ot of + 65 + 1), or

N

af—1
> p@wh < X p@ Wk + p@, adat + p(, of + B)Easrss»

p=af+p+1 »=0

then p(z, of)tag > 0 and p(z, of + BE)tag+ss > 0. Therefore, since p(z, of) > 0
and p(z, o + B5) > 0 iniply, by Lemma 1, that p(z, of + 1) > 0for 0 < ¢ < g,
then

> 0fori = gt.

If £ is a least favorable a priori distribution; i.e., if £ maximizes inf; 7(£, 6),

>0fort=0
17) Eagrit = 0for0 <4 < g
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then since, for a fixed 9, r(%, 8) is linear in £, every £ which satisfies
(18) 7k, af —1) 2 ra(h, o) = -+ =ralg, o + B) Sl of + 65 + 1)

forz = 0,1, -, nis likewise a least favorable a priori dlstrlbutlon But smce
p(x, 1) satlsﬁes Condltlons 1,2, and 3 and, for eve x>0, px— 1, ol + B,_l)
> 0 and p(z, of ) > 0, where a,_l + B,_l <o, then for every x > 0 there
exists an integer u, such that afly + /3;_1 = pe <of’ and both p(x — 1, ug)
> 0 and p(z, ps) >'0. Let (uz), ¢ = 1,2, -+, n, pz = pz11, be a sequence of
such integers and define uy, = ag and pap = a,.o + B,,o Then every £ which
satisfies

(19) 2§ pa) = 1oz + 1) = o0 = 12(§, pata)
forz = 0,1, -+, n also satisfies (18) and has & = 0 for p, < p < gz for
z=0,1,---,n

It remains, then, to show that a solution £ to (19) exists and may be chosen
so that & = 0 for u < po and for u > pns1. This, however, follows directly
from Theorem 3, for the problem of proving the existence of such a ¢ is easily
seen to reduce to the problem of proving that a set of equations of the form

m

E p’(x’l"')gn = Z P’(x, F’)Sﬂ’x = O; 1, ym—1
u—0 p=z+1

where p’(z, u) satisfies Conditions 1 and 2 forz = 0,1, - ,n =2 m -1, u =
0,1, .-+ ,m,and p’(z, z) > 0 and p'(x, z + 1) > 0, has a solution £ = (£,) such
that £, > 0, u = 0,1, ---, m, and Y wo& = 1, and this may be viewed as a
special case of Theorem 3 with N = m and n = m — 1. Theorem 3 then asserts
that a procedure § with 8,(z) + 8,4u(z) = 1,68.(x) < 1,forx =0,1, --- ,m — 1
and 6,(x) = 1 for z = m is admissible, and therefore § is a Bayes solution rela-
tive to some a priori distribution ¢ and, by (17), & > O for u = 0,1, --- , m.
Hence, a ¢ of the desired form exists and the theorem is established.

The construction of the minimax procedure 8’ is easily accomplished once the
integer . is known for every z. 8" is defined by (& , @ , - - - , &) which is uniquely
determined by the equations

z—1

{1z ) = Z (Y, 1) (ue — @) + E (Y, 1) @ —p) = r(uo, 8")

7. Discussion. The requirement that an estimator of an integer-valued
parameter must itself be integer-valued is almost a logical necessity in any
rigorous approach to the estimation problem. For practical purposes, of course,
such a requirement has been regarded as an unnecessary refinement, and statisti-
cians conventionally estimate an integer-valued parameter by means of a real-
valued statistic, presenting as their estimate either the real number itself or the
nearest integer. The problem is frequently encountered, for example, in such a
form that the statistician wishes to present an estimate of the fraction u/N.
Certainly, division by the known constant N is a trivial alteration of the estima-
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tion problem; it would be unheard of, however, to require in this case that the
estimate assume one of the values 0/N, 1/N, ---, N/N.

If real-valued procedures are allowed then when loss is absolute error the
randomized, integer-valued procedure 6 is equivalent to the non-randomized
procedure which estimates the real number a, when z is observed. Any optimum
property ascribed to an integer-valued procedure therefore applies to its real-
valued counterpart so, as a corollary to Theorem 3, when real-valued procedures
are allowed then the class of non-randomized real-valued procedures derived from
the class C in the above manner is a minimal essentially complete class. Likewise,
if 8° is the minimax integer-valued procedure then the non-randomized real-
valued procedure &; is also minimax. Theorems 3 and 4 thus remain essentially
unaffected by the introduction of real-valued procedures.
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