THE STRUCTURE OF BIVARIATE DISTRIBUTIONS

By. H. O. LANCASTER

School of Public Health and Tropical Medicine, Sydney, Australia

1. Introduction. K. Pearson [18] in his study on the association between two
chance variables defined a measure, the mean square contingency, ¢’ = x*/N,
where x° is that, usually calculated in a contingency table with fixed marginal
totals, and N is the size of the sample. In a bivariate joint normal distribution
with coefficient of correlation, p, Pearson showed that ¢* would have a limiting
value if the sample size became indefinitely large, while the subdivisions of the
marginal distributions were made increasingly fine. In effect, he was considering
a property of the parent joint normal distribution, rather than of a sample
drawn from it. He noted that this limiting ¢* was independent of the scale of the
marginal variables and was invariant under any bi-unique transformations of the
marginal variables of the form, z — z'(z), y — y'(y). If the distribution was the
bivariate joint normal, he showed that p* = ¢°/(1 + ¢°). In some distributions,
jointly normal with appropriate choice of the marginal variable, but not so with
the variables actually chosen, he took the value of p still to have the meaning
that an appropriate transformation would yield the variables of the underlying
joint normal distribution. .

Hirshfeld [8], considering contigency tables with a finite number of discrete
values of the variables, sought for transformations of the marginal variables
that would yield linear least squares regression lines. He found that these var-
iables maximised the coefficients of correlation.

Fisher [3] defined a set of variables on each of the marginal distributions of
an m X n contigency table, such that z; = 1 for an observation falling into the
jth class and z; = 0 elsewhere for j = 1, 2 --- m — 1, and similarly for y; with
j=1,2.--+(n — 1). His problem was to find a linear form in the z;, which
would have maximum correlation with any linear form in the y;. For con-
venience, these linear forms were considered without loss of generality as being
normalised. Fisher referred to such a variable and the corresponding correlation
as canonical and thus identified them with the canonical variables and correla-
tion of Hotelling [10]. Fisher’s theory was amplified by Maung [13] and Williams
[25], who considered observational data in the form of a contingency table. We
shall see later that in this case, the problem of finding the canonical correlations

is equivalent to the determination of the canonical form of a rectangular matrix-

under pre- and post-multiplication by orthogonal matrices.

It is of interest to extend this type of analysis to the theoretical parent popula-
tion and to more general classes of bivariate distributions. Lancaster [12] applied
the methods of the theory of integral equations to find the canonical correlations
and variables in the joint normal distribution and this work leads to a generalisa-
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720 H. 0. LANCASTER

tion of the canonical correlation theory. If the correlation is to have meaning,
the canonical variables must have a finite variance, so that each canonical
variable can be expressed as an orthonormal linear form in a complete set of
orthogonal functions defined on the marginal distribution. The problem is now
one in eigenvalue theory. Indeed, it is shown that the canonical correlations are
the eigenvalues and the canonical variables on each marginal distribution form a
subset, perhaps improper, of a complete set; the canonical variables are, more-
over, the eigenfunctions except for a factor. This analysis holds provided the
limiting value of Pearson’s ¢’ is finite. If ¢’ is finite, it is further shown that the
bivariate distribution can be expanded in an eigenfunction expansion. ¢* is then
the sum of the squares of the canonical correlations. The contingency table is then
shown to be a special case of the general theory.

Once the canonical form of a bivariate population, that is, the eigenfunction
expansion, has been obtained, some further applications of the theory can be
made. First, the regressions take a particularly simple form and are confirmed to
be the solution of Hirschfeld’s problem. Second, given the marginal distributions
it is possible to obtain bivariate distributions with prescribed correlations. Third,
a goodness of fit test can be devised for the bivariate joint normal distribution,
which displays as components of x°, the contributions of the regressions of the
ith Hermite-Chebishev polynomial in z on the jth polynomial in y. The test is
made of the total contributions from those pairs for which ¢ # j.

2. Pearson’s ¢? as the Sum of Squares of the Correlation Coefficients. K.
Pearson [18] introduced ¢’ as the “mean square contigency’’ for a bivariate dis-
tribution in order to derive a measure of association independent of the sample
size, N= He wrote ¢ = x°/N. Pearson saw that x* (or rather ¢°) had a use as a
descriptive measure, whereas it is usually thought of as a criterion of goodness
of fit, e.g., as in the test due to Pearson [16]. It is convenient to modify Pearson’s
definition by using the integral sign in the sense of Lebesgue-Stieltjes and adopt-
ing the notation of Hellinger [7], which has been justified by Hobson [9].

DEFINITION.

+o0
(14) ¢ = [| urevr/ee ae) - 1
(B) - [ ¢y a0 ane) - 1
where
@) Q(z, y) = dF(z,y)/1dG(z) dH (y)).

Qz, y), and so the integrand of (1A), is to be taken as zero, if the point (z, y)
does not correspond to points of increase of both G(z) and H(y). ¢* can evidently
be regarded as the limit of the sum Y., ;f%;/(fi.f.;) — 1, where f;; is the weight
of the bivariate distribution corresponding to marginal sets, A; and B;, and
where f;. and f.; are the weights of the marginal distributions corresponding to
the same sets.
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Examples of bounded -¢° distributions are provided by the joint distribution
of independent stochastic variables, in which case ¢’ is zero, and by the bivariate
normal distribution with the absolute value of the correlation less than unity.
All discrete distributions with finitely many points of increase in both variables
will also have a finite ¢’. A case of special interest is provided by the bivariate
joint-normal distribution. In this distribution we may write g(z) dz and h(y) dy in
place of dG(z) and dH(y) respectively and f(z,y) dz dy in place of dF(z, y).
Pearson derived the relation,

(3) ¢ = [[ £ n/la@h) dedy — 1= 5/ - 5,
where | p| < 1. This result has been discussed by Lancaster [12]. Howcver, if
| p| = 1 and so the bivariate normal distribution is singular, ¢’ is unbounded.

Indeed, ¢’ is unbounded for any bivariate distribution distributed along a
straight line, with infinitely many points of increase.

It follows from the definition by an analysis similar to that used to justify
the Riemann integral that ¢° is uniquely determined by the passage to the limit

if it is bounded. .
Derintrion. Let {#} and {y®} be complete sets of orthonormal functions

defined on the marginal distributions, G(z) and H(y), respectively by
@ [ 2% a6 = [y*4* aHG) = b5
Let p;; be the correlation coefficients,

(5) pij = f f 2y dF (z, y).

By the Schwarz inequality p;; always exists and is not greater than unity in
absolute value. Further,

(6) poo = 1, pox = pro = 0 k # 0.

The following discussion gives a statistical content to some well known analy-
sis. The steps taken can be justified by the theory of integral equations as set
out in Courant and Hilbert [2] or Riesz and Szent-Nagy [22].

TueoreM 1. If F(z, y) is a ¢’-bounded distribution and if

(7) Smn = Smn (xy ?/) = g Z::O xii x(‘)y(j)y
then '
® Qe = [ [ @ = Su)? a6 (@) aH )

s minimised by taking

) Aij = pij, t1=0,12,---m;5=0,1,2, --- n.
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Writing S for Sms as m — « and n — =,

(10) Qz,y) = S(z,y), almost everywhere

and
(11) Zl 21 Pl = ¢"

Proor. The set {2z} X {y*?} is complete over the distribution G(z) X H(y),
and Q(z, ), as defined in (2), is square summable by (1B) and the hypothesis of
the theorem. The result (9) follows by differentiating (7) with regard to \:; for
i=0,1,2, ---m;7=0,1,2,---n. For any finite m and 7, the sum
Z;, ipii £ ¢°, so that D i p3; converges. The completeness assures the truth
of (10) and of (11), which is the Parseval equality.

It is our aim now to redefine the sets {z‘”} and {y'”} so that the correlation
matrix,

(12) R=(Pi.’i)7 i=1y2;""j=1’2""7

assumes as simple a form as possible. The theorems of the next section show that
R is diagonal if we choose, for the sets {z*?} and {y*”}, the canonical variables
in the sense of Fisher. The chief difficulty lies in the need to prove that the
canonical variables form subsets of complete sets of orthonormal functions. We
have, therefore, to proceed indirectly.

3. The Canonical Variables. The canonical variables have been defined on
discrete distributions with finitely many points of increase. They are usually
thought of as “scores to be assigned” but may also be thought of as functions of
the marginal variables. Often no marginal variable has been explicitly defined;
then, we may take the row or column position as the variable. The following
definition may be regarded as the appropriate extension of Fisher’s definition.

DEerinrTIoN. The canonical variables (or functions) are two sets of orthonormal
functions defined on the marginal distributions in a recursive manner such that
the correlation between corresponding members of the two sets is maximal.
Unity may be considered as a member of zero order of each set of variables.
Symbolically, the orthogonal and normalising conditions are

£ = 22,2 =170,

f £ d6(z) = f 2 dH() = 0, i=1,2...,
(13) )
[ e a6 = [ 19 aBG) = 1, i=12..,

fg(i)g(i) 4G (z) = fﬂ(i)n(]‘) dH(y) = 0 for ¢ # j,
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and the maximisation conditions are that
(14) pi = corr (£?,9?) = ff £999 dF (2, y)

should be maximal for each %, given the preceding canonical variables. The p;
are the canonieal correlations and can by convention be taken always to be
positive.

TaEOREM 2. The canonical variables obey a second set of orthogonal conditions,

15) BEOn?) = [ [ £999 ar(,y) = o, i i .

Proor. For definiteness, let j > 4. By hypothesis E(¢”»?) is maximal in the
sense of the definition above and is equal to p; , say. Suppose that E(t?5"?) is
not zero but equal to p; tan 6. Now n'” has been defined according to (13) and
so the function, Cos 61 + Sin 64'?, obeys all the necessary orthogonal and
normalising conditions, and its correlation with £ is easily found to be p; sec 6
and this is greater than p; , a contradiction results and so the theorem is proved.

As has been already noted, the canonical functions are necessarily square
summable and so can be written as linear forms in any complete set of ortho-
normal functions, defined on the marginal distributions. Thus we can write

£ = aa®,  Dah=1,
(16) k:l k
2P =2 bay®, 2 bh =1
k=1 k
Now let us determine £ and n® in terms of the {z®} and {y?} respectively.
Corr (¢, ") = corr (Z a:z?, ; bez™)

(17) o
= Z Z aib;pij.

i=1 j=1
Now Y .;p:jis convergent and so the bilinear form on the right of (17) can be
treated by the theory of quadratic forms in infinitely many variables. The
normalising conditions (13) assure us that » ;af = 1and D ;b; = 1 and that
neither £¢* nor ™ contains any constant term. The bilinear form will have an
attained maximum value for variations in the a; and b; . We take the coefficients
of one such maximum to define a new set of variables

" (1) (1) (s)
P =¥ = 3 aa®,
2 (1 (2)
(18) 2P = a5z® + a22®,

3 (1) (2) (3
2*¥ = apz® + apz® + agr®,
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where the @, as;, --- are chosen to satisfy the orthogonal and normalising
conditions. A similar transformation is applied to the y”:

PO = 40 = 5by”
(1()) y*(2) — bzly(l) + b22y(2)
*@ = baly(l) + bazy(2) + baay(s)

............................

(pij), in the new variables is simpler in

i

But now the correlation matrix, R
that, because of Theorem 2,

(20) pia=pui=0 1 # 1.

We can proceed similarly to find £® and 2® in terms of the {z'”} and {y'"}
respectively. Since £® is orthogonal to £

(21) £ = E afz*®,
and similarly,
(22) n® = 2Byt

with >, a¥* = >, b¥ = 1. Now to find £* and n® we shall have to maximise
> 72 Y 52 afbf ek . This again has an attained maximum and we take again
a new set of variables

1
x+() — *(l) E(l)
x+(2) = Z;’ a:‘x*(l) — 2(2)’
t) * 2
(23) $+() — aszx*() + ag‘sx*@)’

+@) __ * 2 * (3) * 4)
T = ax*” + az*” 4+ agx*”,

+(1) +@ | +@0) @

and similarly define ¥, y* ', ¥y~ +-- in terms of the y
matrix is simplified again for now
{p+1.' = p+ﬂ =0 for 7 = l,

P+2z = P+12 = for 7 # 2.

. The correlation

(24)

This process may be continued a denumerable infinity of times or until all p;
are zero for ¢ > r or j > r for some value of r. We may follow Williams [25] and
refer to r as the rank of the departure from independence. r may be infinite. At
each step, since the transformation is orthogonal, a complete set is transformed
into a complete set. It is evident that we may pass from the sets {z*°} and {y oy
by a series of orthogonal transformations to complete sets of orthonormal func-
tions, of which the sets {£”} and {#?} are subsets and conversely. We can sum
up these results in
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TuporeMm 3. If F(z, y) is a ¢’-bounded bivariate distribution with marginal
dustribution, G(x) and H(y), then complete sets of orthonormal functions can be
defined on the marginal distributions such that each member of a set of canonical
variables appears as a member of the compleie set of orthonormal functions. The
element of frequency can be expressed in terms of the marginal distributions,

(25) dF(z,y) = { 1+ i ps x(i)y(')} dG(z) dH(y), a.e.,
and
(26) ¢" = 2 ol

i=1

Proor. We have just proved the first statement. To prove the second we write,
in the same way as in Theorem 1,

(21) @ = [[ 196, 1) = Sulo, ) d6G) dHG)

and take the partial differentials of Q with respect to A,; . Owing to the simplified
form of the correlation matrix, p;; is now zero for ¢ s j and pi; is p: . Since {z®} X
{y*?} is a complete set on G(z) X H (), it follows that the minimised @ tends to
zero as m — « and n — «, and (26) which is the Parseval equality follows.

It may be proved that the choice of orthonormal functions is unique except
for a convention as to sign if the p; form a pair-wise different set. It is assumed
throughout that, once z‘” is chosen, y” is defined so as to give the expectation
of 299 o positive value. If, however, p;11, pjt2, - -+ pj+x are of equal magnitude
and 2P 29 ... 29 i one solution for the corresponding canonical vari-
ables, then every other solution is given by an arbitrary orthogonal transforma-
tion on these z*" ... 2*® and the same transformation on the TRARIPPRYCALS
A converse of Theorem 3 holds.

TuEOREM 4. If a bivariate distribution can be written in the form (25) with {z¥}
and {y”} forming complete sets on the marginal distribution and if E,—pf s fi-
nite, then the p; are the canonical correlations, '° and y® are the canonical var-
1ables and Z,- or = &

Proor. The proof is by induction. We suppose first that the p; are pairwise
different. Then if £ and 5 are the first pair of canonical variables

corr (¢ n) = corr (2 a:z”, X° b;y?)
K 7
= Z ahip;.

Now D .ai = Y. bf; = 1 and Cauchy’s inequality shows that the sum on the
right of (28) is maximised by taking a; = b; = 1 and all other coefficients zero.
Similarly, if py = ps - -+ = pr , Cauchy’s inequality shows that the correlation of
£ and 9 is p; if Z'{ a? = 1 and a; = b; and that this is the maximum. Clearly
however in this case too we can take a; = b, = 1, and once again z® and y®
are the pair of first canonical variables or functions. We can proceed by induction

(28)
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to prove the main statement of the theorem. Defining Q(z, y) as in (2) and writing
out its value by the use of (25), we derive

0
Zl: pi = ¢~

This is a generalisation of a result of Hirschfeld [8] and Maung [13] in the finite
case. Further, we may note that Theorem 3 is a generalisation of the Mehler
identity; for, using the notation of (3), we define complete sets of orthogonal
functions {z”} = {¢:(z)} and {y*®} = {¥:(y)} on the marginal distributions
where ¢,(z) is a polynomial of precise degree 7 standardised by the formula

[ v@4i@@) dz = 55,
(29)
Osj .

[ v dy

g(r) and h(y) have the same functional form in this case. By considering the
expectation of exp{tx — 1’ + uy — Lu’}, namely exp put, we find that

(30) Ex(")ym = 6ijpi

and Mehler’s identity (Mehler [14]; Watson [24]) follows after Theorem 3 and
continuity considerations. Conversely, given Mehler’s identity, Theorem 4
shows that | p |* are the canonical correlations in this special case and the stand-
ardised Hermite-Chebishev polynomials, the canonical variables. Pearson [17]
showed the great value of the Mehler identity in discussing normal correlation,
although he and his collaborator, Bramley-Moore, failed to note that the tetra-
choric expansion is indeed the Mehler identity. The Mehler identity is the
special case when f(x) and g(y) are standardised normal distributions and
h(z, y) is the bivariate normal distribution with coefficient or correlation, p.
This identity is given in Szegé’s textbook [27] on page 371, where Szegd has
z4/2 and y+/2 corresponding to our z and y and w for our p. Our
¥i(z) is Hi2*2)/+/3! in his notation.

Dr. G. S. Watson (personal communication) has pointed out that the usual
eigenfunction and kernel theory might be applied. The analogy is quite easy to
establish in purely discrete or purely continuous distributions. In the continuous
case we should define a kernel

(31) K(z,y) = f(z,y) {g() h(y)}

where g(z) > 0, h(y) > 0, with the convention that K(z, y) = 0 if g(z) h(y) = 0.
K(x, y) would in general be unsymmetric. It would follow that

w1V = [ K@ 1)a®vg(@) doy
(32)
0i27v0@) = [ K, )y v/h) dy,



BIVARIATE DISTRIBUTIONS 727

in precisely the same way as in equation (26) and (27) of Schmidt [23], noting
the different definitions for the eigenvalues. (32) is proved by the application
of Theorem 3. In the finite discrete case, where the frequencies are f:; , the kernel
K(z, y) is replaced by f;,-f;'*f_'}* = b;; and this is discussed in the next section.
(32) is simplified if the marginal distributions are rectangular with

g(x) = h(y) = 1.

4. The Finite Case. The discussion above is a generalisation of a procedure,
alternative to that of Fisher [3] and Maung [13], which may be used in the finite
discrete case of an m by n contigency table with proportions f:; in the cell of the
tth row and jth column, with f;, = D>_;fi; > 0,f.; = D_:f:; > 0, and for definite-
ness, m = n. It follows from Theorem 3 that if we construct matrices, X and Y,
with the (k + 1)th column consisting of the values of the kth eanonical variable,
then X'FY will have a canonical form with non-zero elements everywhere except
along the leading diagonal. It is found simpler to deal with a matrix B derived
from F and then the problem is reduced to determining a canonical form for a
rectangular matrix under pre- and post-multiplication by orthogonal matrices,
which we consider by an adaptation of the argument of Murnaghan [15] on his
pages, 26 and 27. The defining conditions for the matrices X and ¥ may be
written

=1 i=1,2 ---m,
ya=1 i=1,2--n,
(33) (G—1 (-1 .
Ty =& =&, .7=2)3)"':m;
(-1 (7—1) .
yii=n(%) =77iJ ) .7=2’3""7n-

(13) now becomes

X' diag f:. X = Ln,
34)

Y diagf;Y = 1,,

and the elements of the leading diagonal of X’FY are to be maximised. Theorem 4
ensures that it is sufficient and Theorem 2 that it is necessary for X’FY to be in
canonical form. We therefore state without completing the proof

THEOREM 5. Given an m X n contigency table with proportions fi; in the cell of
the ith and jth column, let an m X n matriz, B, be defined by

(35) bi; = fuf 7

Then orthogonal matrices M and N exist with elements of the first column \/f. and
/[ .; respectively such that M'BN <s in canonical form, namely

(36) M'BN = C = [diag(1, p1 - * * pm-1), Om,n—m).

It is evident further by a consideration of the forms of (M’BN) (M’BN)’ and
(M'BN)" (M'BN) that M and N are the orthogonal matrices that reduce BB’
and B’B respectively to canonical form. Conversely, it can be shown that if ¥
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transforms B’B to canonical form with unity in the leading position and  other
non-zero diagonal elements, then an M, having for its first (¢ 4+ 1) columns the
first (k + 1) columns of BN normalised, can be constructed so that M’BN is in
the required form. In fact, the first (X 4+ 1) columns of BN are mutually orthog-
onal because (NB)’ (BN) is diagonal. Maung [13], obtains the latent roots of
BB’ or B’B by solving the determinantal equation, | BB’ — A1 | = 0, in the
usual manner. An alternative is to use the iteration method of Frazer, Duncan
and Collar ([6], page 133). We note further that M and N must be of the form,

{M = My(1 4 M),
N = Nl(l + N2);

where M,; and N, are of the Helmert type with first columns having elements
f? . and f,*j respectively. Now the elements of

(38) MBB'M,=1+W

can be computed readily. Using the observed number, a;; in the contigency table

k k k’ 134
a,, (ak+l.. E Qi — Qiy1,j Z ai.) (ak'+1,. E Qij — Opry1,j Z ai.)
i=1 i=1 i=l
k

=1

4 7

a.; {ak. A Ary1,. Qir 41, Z as, Z ai.}
1 1

The trace of W is x°. It does not take much more time to compute W than x
if m is not too large. A computing routine is to form a matrix with elements in
the first row, (a;;a2. — a1.a2;), elements in the second row (a1; + @s;)as. — (a;. +
as.)as; and so on. For each row, a standardising factor is computed,

k 3
{ak. Opt1,. Z ai.} .
1

The elements of W are then simply computed by formula (39). The Helthert
matrix can be looked upon as generating sets of orthonormal functions, which
take a simple form. The values for the canonical variables are then calculated
by an orthogonal transformation
(40) X = diag f7*M
= fMi(1 4 M)

where M; is the Helmert Matrix and MW M, is diagonal, M, being obtained by
iteration and similarly ¥ can be written in terms of N and N,. )

A NumEericaL ExampLeE. Maung [13] has given the following example of a
classification of Aberdeen schoolchildren by hair and eye colours (see Table I).

A matrix of elements, U, with ux; = (@41, . ZLI Qi — Qiy1,j ZLlai.) is
given by

[ 1,487,190 —273,082 —1,077,957 —110,090 —26,061}

37)

(39) Wkk' =

2

16,182,645 773,584 —8,895,366 —7,831,720 —229,143
19,806,181 1,123,770 7,415,022 —26,653,016 —1,691,957
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TABLE I
Hair colour
Eye colour Total
Fair Red Medium Dark Black

Blue.............. 1368 170 1041 398 1 2978
Light............. 2577 474 2703 932 11 6697
Medium. ......... 1390 420 3826 1842 33 7511
Dark............. 454 255 1848 2506 112 5175
Total............. 5789 1319 9418 5678 157 22,361

The elements of this matrix are now divided by the corresponding column totals
of the contigency table to give a matrix (v,,). Divisors appropriate to each row
of U are now computed, {ax.aet1,. D 1a:i}} = dy. . Thenwy;is D uavi/{dd; i1
or Y . vaui/{dd;}. We thus obtain the matrix, W, of (38).

65.8744811  237.1027158  173.4280109
237.1027158 1167.9147643 1252.2082711
173.4280109 1252.2082711 2450.0865906

The trace of W is 3683.875836 agreeing with Maung’s value for x°.
The orthogonal matrix, M, of (37) is then derived from W by an iteration
process and is

0.522636 0.806650 —0.275985 |.
0.848266 —0.524438 0.073545

The values of the complete set of orthonormal variables associated with the
Helmert matrix, M;,- may be displayed as a matrix,

1 2.279806 1.005036 0.548741

[0.085413 0.272546 0. 958344]

1 —1.013777 1.005036 0.548741
1 0 —1.294598 0.548741
1 0 0 —1.822352

In the jth column, all elements above the dlagonal are equal to {p, / (Z’"l
Dr. 21 pk)} the diagonal element is —{ > i " pi./(p;. > i pk} and element
below the diagonal are zero. Post-multiplication of this matrix by (1 + M)
yields the sets of canonical variables in the form of a 4 X 4 matrix, X, of Equa-
tion (40)

+1.1855 -1.1443 +41.9478
+0.9042 -4-0.2466 —1.2086
—0.2111 -—1.3321 -0.3976
—1.5458 +40.9557 —0.1340

The values of the elements agree with those given by Maung.
The canonical variables in y can now be obtained by using Fisher’s algorithm

ek ek
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as in (45), below, and we may write the first four columns of the matrix, ¥, as
+1.3419 +0.9713 +0.3288"

+0.2933 —0.0236 —3.7389
+0.0038 —1.1224 +0.1666J.

ke pd e

—1.3643 +40.7922 +40.3625
1 —2.8278 +43.0607 -—3.8177

Programs, similar to the computational process used above, are now available
on electronic computers.

Interpreting the findings, the first set of canonical variables arranges both hair
colour and eye colour in the same order as was suggested by biological considera-
tions. H there is an underlying bivariate distribution the first set of canonical
variables gives the best values to be assigned to the marginal variables.

6. Identifications of the Finite and the General Cases. We now state some
corollaries deducible from the theorems above in such a way as to bring out the
identity of the theory of canonical correlation as a special case of the more general
theory; where appropriate, we have numbered these ‘‘a’ for the finite case, “b”
for the more general.

COROLLARIES.

(ia). p: are the non-zero latent roots of the matrices BB’ and BB’; p; are the
“roots” of B under transformation by pre- and post-multiplication of B by
orthogonal matrices.

(ib). p} are the eigenvalues of certain symmetric kernels and p; are the eigen-
values of a certain, possibly asymmetric, kernel.

(iia). The identity of Fisher [4]

m—1
(41) fs = f,-.f.,-{l + 2 pkx(“y‘“}
is a special case of our Theorem 3. It is also proved by noting that
(42) X'AY = M'BN = C,

and the inverse of X’ is diag f; X and the inverse of Y is Y’ diag f.; by (34).
(iib). The generalisation of Fisher’s identity is given by Theorem 3.
(iiia) and (iiib). If m; and n, are the kth column vectors of M and N respec-

tively

e = B'm;,
(43)
pmy = Bny,
or alternatively after (36)
BN = MC,
(44) .
B'M = N(C',
or
AY = diagf,. XC,
(45) .
A'X = diagf.; Y,
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(45) corresponds exactly with equations (26) and (27) of Schmidt [23] as modified
in our (32). The equation (45) is the basis of Fisher’s {3] algorithm for the compu-
tation of the canonical correlations, which we give as a corollary.

(iv). The canonical variables can be obtained by iteration if pj11 > pj4a.
From (45) it follows that

(46) diag f1'A diag f7'4’X = XCC’,
and so
47) (diag f3'A diag f7'A")’X no = X(CC")? x, .

Therefore if any vector X, is taken orthogonal to the first j columns of X but not
orthogonal to the (j + 1)th column, the iteration of the form (45) will yield a
vector proportional to the (5 4+ 1)th column of X. This is a special case of iterat-
ing using Schmidt’s (26) and (27), which we could rewrite as (ivbh).

(v). In Yates [26], arises the problem to find values for y such that y will have
maximum correlation with an z, which has prescribed values.

We may write

m—1

(48) z =2 a;z?, Dai=1
i=1 [
Then from the canonical form of Theorem 3 and the use of the Cauchy in-
equality, we find that
m—1

(49) y = Z; aipiy®,

is such that the correlation of x and y is maximal and
m—1 3

(50) corr (z, y) = (Z: a? p?) .

(vi). In either finite or infinite cases, it can be proved that the existence of &
canonical correlations of unity means the distribution consists of (k1) disjunct
pieces. The case of one canonical correlation of unity has been treated by Richter
[21].

6. Regression in the Bivariate Distribution. If the bivariate surface can be
described in the canonical form (25), then regression takes a particularly simple
form.

THEOREM 6. The regressions of the canonical variables are given by the lines,

’ =¥ = py,
¥ = p®.
For i 5 j the regression of *° on y'? and y*” on z'? are zero.

Proor. This follows in the usual way by minimising

f f (" — N P) dF (, y).

(51)
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Incidentally, we have proved that the regression of 2 on y'” is linear since any
square summable function of ‘” orthogonal to ¥ can be expanded in terms of
the other orthonormal functions. '

7. Generalization of the Notion of Correlation. Many attempts have been
made to find some way of obtaining bivariate distributions which would general-
ize the normal case. Pretorius [20] has given many references to such attempts.
Fisher’s theory of canonical correlation gives an alternative approach. Suppose
we are given marginal variables with distribution functions G(z) and H(y), then
a bivariate distribution can be formed using (25) provided that the series
n+ >3 piz?y®] is non-negative at points corresponding to increase in both
G(x) and H(y). We may take one of the simplest possible pairs of distributions
for the margins, namely the rectangular over the range —3 to 3 and set up three
different bivariate distributions.

ExampLE 1. We take as our orthonormal sets of functions the normalised.
Legendre polynomials, in particular

(20 = 2 /T3,
z? = 6+/5 (" — i%).

We can now assign correlations p; and p, subject to the condition that the density
becomes nowhere negative

(53) dF(z,y) = {1 + 120, zy + 180p:(2’ — 1%)(4* — %)} dz dy.

But the maximum absolute value of z®y® is 3 and that of z®y® is 5, so the
expression in (53) will be positive if

(54) 3lpm|+5]m| <L

ExampLE 2. We choose the cosine series as the orthonormal sets,
z® = 4/2 Cos(2rz),
{x(z) = 4/2 Cos(4nz),

(52)

(55)

and similarly define 4 and y®
(56)  dF(z,y) = {1 + 2p; Cos (2xz) Cos (27y)
+ 202 Cos (47x) Cos (4wy)} dx dY -

This is non-negative if the absolute value of p; and p; are both less than 3.
ExampLe 3. A further possibility results from forming arbitrary bivariate
distributions, e.g., we might divide the square with corners at (43, 4+3) into
four quarters and add +p; to the density in the first and third quadrants and
subtract p; from the density in the second and fourth quadrants. We could also
subdivide the original square into 16 parts and add p; to the four corner sub-
divisions and to the four central subdivisions and subtract p, from the remainder.
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The resulting distribution can be described with the aid of step-functions
(57) dF(z,y) = {1+ pey® + pz®y®} dz dy,

where

(58)

z? = 4+1forz £0,forz < 0,
e

= —1fort =z <%and +1 for z elsewhere.

To obtain a complete set of orthogonal functions defined on [—3, 1] we divide
this interval into four subintervals of equal length. On each complete sets of
orthonormal functions may be defined. For example, we may choose the Eegendre
polynomials as our set, standardized so as to be orthonormal on the uniform
distribution [—%, %]. Corresponding to the first interval we define a set of orthog-
onal polynomlals which have the values 1 = P¥(X), PX,4=1,2 --- where
X + % is the fractional part of 4(x + 1), on the first interval and zero elsewhere
and similar sets on the other subintervals. The four sets of functions may be
displayed as the elements of a four rowed matrix, P, of 1nﬁn1tely many columns.
The rows of this matrix are obviously mutually orthogonal since no tw o elements
of the same column can be simultaneously non-zero. Let us now defineQ = AP,
where A is the matrix
1 1 1 1—|
-1 -1 11

1 -1 -1 1 J
-1 1 -1 1
The elements of @ are now an orthonormal set. on the whole interval. gy = z
a term constant on [}, 3]. gu = 2, gn = £®. qu is necessary for completeness
It is constant on any subinterval but changes sign being —1 on the odd intervals.
Every other function ¢;; of the form & P”(X). The ¥ may be similarly defined.

It is clear from the examples that the same correlations can arise in a great
many different ways. In the next section, we show how the methods can be used
as a test of normality.

These three examples show how bivariate distributions can be formed with
arbitrarily prescribed correlation coefficients. ‘Barrett and Lampard [1] give two
other examples where such bivariate distributions arise naturally out of a physical
problem.

()

8. A Canonical Partition of x2. In testing whether a bivariate distribution
is normal, the marginal distributions can be tested in the usual way by an overall
x* or the individual degrees of freedom can be displayed as previously sug-
gested by Lancaster [11] by the aid of orthogonal polynomials. Moreover, ac-
cording to the analysis of the present paper and that of Lancaster [11] the regres-
sions of the orthogonal polynomials in  and y on one another should be zero
except for polynomials of the same degree. We therefore may compute the regres-
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sions and display them in the form of a matrix, which we explain with the aid of
a well-known example, the correlation table of Pearson and Lee (Biometrika
2,257), easily accessible in ([5], paragraph 30). After estimating the mean and
variance of both variables, the regressions of the theoretical Hermite-Chebishev
in one variable on those of the other may be computed and set out as suggested
by Lancaster [11]. The mean and standard deviations have been computed using
n as a divisor. The table of Pearson and Lee has been modified to 8 columns
representing classifications of daughters’ heights. The ¢;(z)¢;(y) sums of products
of polynomials of the form, y:(z)¢;(y)f:;, have been computed and divided by
1376 the number of observations to give component x’s of a partition of x*. The
leading 4 X 4 submatrix is as follows—

. . —1.006
19.238 —0.053 —1.834
0.398 8.325 —0.460
—0.328 —0.578 —0.350 2.390

The term 19.238 corresponds to the regression of the first polynomial in the
fathers’ heights on first polynomial in the daughters’ heights and to a correlation
of 0.5186, which is slightly different from that given by Fisher [5] as the grouping
is different. It may be noted also that the squares of the 3 X 3 submatrix exclud-
ing the marginal terms accounts for over 446 of a x° of 504.23 if the table is
analysed by the usual x* with fixed marginal totals, so that all the significant
departure from independence is shown to be accounted for by the first three not
identically zero diagonal terms, the sum of whose squares is 445.

Pearson [19] gave a rule which substantially states that the number of degrees
of freedom must be subtracted from the x° of the test of homogeneity when
computing ¢°. We have

= (504.234 — 98)/1376

= 0.295228,
o° = 0.295228/1.295228
= 0.227935,
p = 0.477,

which gives a correlation approximately equal to that calculated here, 0.5186.

An alternative canonical partition is given by estimating the means and var-
iances and computmg the marginal frequencies on the assumption of normality
A partition of x* is obtained as shown in Table II.

It is clear that the distribution of Pearson and Lee is fitted very well by the
assumption that it is a sample of a bivariate normal distribution. The residual x*
of 101.04 with 95 degrees of freedom represents the sums of squares due to all
other regressions than the first three regressions of the form ¢.(z) on ¥:(y). The
assumption of normality of the marginal distributions and a non-zero correlation
are sufficient to account for the total x°, for the residual x° is little greater than
the corresponding degrees of freedom.
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TABLE II
Source of x? ]%er%‘;‘:f:l:f x2
Difference of distribution of father’s heights from theoretical. .. ... 5 7.20
Difference of distribution of daughter’s heights from theoretical. . . 12 12.77
Regression of 1(g) on ¢a(Z) . . oo ovriini 1 370.10
Regression of Y2(y) on ¢a(Z) . . oooneiiiii 1 69.31
Regression of Y3(y) on ¥s(Z) . oo e 1 5.71
Residual.................. PP 95 101.04
Total . oo 115 566.13

9. Summary. The problems of Hirschfeld [8] and of the description of a
contingency table by means of the canonical variables and correlations have been
generalised to distributions limited only by the condition that the Pearson ¢ is
finite. Any theoretical or observed distribution subject to this condition can be
described by the canonical variables (that is, subsets of complete sets of orthog-
onal functions in the variables of the two marginal distributions, which obey
the second orthogonality condition that Ez®y"? is zero for 7 # J, and the canoni-
cal correlations. The theory of Fisher [3], Maung [13] and Williams [25] has been
related to the eigenfunction theory.

Mehler’s identity, or in statistical language, the expansion of the bivariate
normal frequency in tetrachoric functions, has been generalised. The approach of
Maung [13] has been modified to allow for an extension of the canonical theory to
continuous marginal distributions.

The methods used give a new test of goodness of fit for the bivariate normal
distribution and enable populations to be constructed with arbitrary marginal
distributions and correlations.
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