A COMPARATIVE STUDY OF SEVERAL ONE-SIDED
GOODNESS-OF-FIT TESTS!

By Doucras G. CHAPMAN
University of Washington

0. Summary. Criteria for evaluating goodness-of-fit tests are reviewed and
two additional criteria proposed. The several goodness-of-fit tests which have
been proposed are studied in the light of these criteria. It is shown that it is rela-
tively easy to evaluate the maximum and minimum power of those tests which
are ‘“partially ordered” against alternatives at a fixed ‘““distance” from the hy-
pothesis. A comparison is made of five tests on the basis of such minimum and
maximum power functions.

1. Introduction. Let X be a real random variable with d.f. F ¢ Q, the class of
continuous distribution functions (d.f.) on R. The aim of this paper is a com-
parative study of some of the distribution-free tests of the hypothesis

Hoy:F = F,
(where F, is completely specified), against the alternative
F <F,.

The class of distributions belonging to 2, that are less than F, will be denoted
by &. (A distribution F is less than Fy if F(x) = Fo(x) everywhere with the strict
inequality holding on a set of positive Fy-measure.) Birnbaum and Scheuer [7]
have called this problem that of testing goodness-of-fit against stochastically
comparable alternatives. A list of a number of tests for this situation and for the
case where the set of alternativesis F ¢ 2., F = Fy, as well as some of the con-
siderations ihvolved in designing such tests, have been given by Birnbaum [4].

If the goodness-of-fit test is merely a preliminary test to justify assumptions
made for the purpose of further tests, its usefulness at the present time is debat-
able. As yet not enough is known of the effects of different types of deviations
from assumptions on the behavior of statistical tests and estimates, nor of the
effects of preliminary tests. Box and Andersen [9], however, have given examples
which seem to indicate that the use of a preliminary test may leave the statis-
tician in a less satisfactory position than if no preliminary test were made.

On the other hand the goodness-of-fit test is quite reasonable in validating a
theoretical model. Moreover F, or functions of F, may enter into further develop-
ments of the whole problem so that it is desirable to have an explicit representa-
tion for it.

Received July 1, 1957; revised April 11, 1958.

1 This research was initiated while the author held a Guggenheim Fellowship at the

Readership in the Design and Analysis of Scientific Experiment at Oxford University. It
was completed with the support of the O.N.R.

655

[
)
Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to é%%
The Annals of Mathematical Statistics. BINORN

www.jstor.org



656 DOUGLAS G. CHAPMAN

In many statistical applications tests are made for changes in a mean; equally
well changes in the whole distribution may be of interest. In this case one-sided
as well as two-sided alternatives to Hy could be of interest to the statistician.

In [4] Birnbaum noted that it is desirable to introduce a metric into the space
of distributions and he suggested a number of possibilities. The choice of the
metric is to a large extent a metastatistical consideration. However, the metric

p(F,G) = sup |F(z) — G(2)|

—o <z <0
or in the one-sided case
p (F,Q) = sup (F(z) — G(z))

has been used extensively in probability and statistics. Furthermore these metrics
seem appropriate in several of the situations discussed above where a test of H,
is reasonable. We will consider only these distance functions and more especially
the second which is appropriate to stochastically comparable alternatives. This
study will be limited to those tests which have been proposed for this problem
and for which the distribution theory of the test under the null hypothesis is
known at least for the asymptotic case. For those tests that satisfy certain weak
criteria, the maximum and minimum large sample power for alternatives whose
distance from the hypothesis is equal to 4, is determined. This approach of find-
ing sharp upper and lower bounds-for the power of a test for such alternatives
was introduced by Birnbaum in [5].
The almost standard notation

1 "
@(x)"—_—.__:f etlzdt
V2or e
and Z, for the root of the equation
®d(z) =
will be used.

E, [f(X)] and E¢ [f(X)] will denote the expectation of the random function
f(X) when X has the distributions Fy, and G respectively.

2. Criteria for tests of Ho. A test of H, of size o is a measurable function
o(X; - -+ X,) or ¢, for short, from R, to the interval (0, 1) such that

Ey(en) = a.

Consider the alternative G ¢ ®. The power function Ee(p.) will be denoted
Ben(@).

The properties of admissibility, consistency and unbiasedness for a test are
well known. We refer to Birnbaum and Rubin [6] for the concepts of tests of
structure (d), distribution-free and strongly distribution-free tests, and recall
that they showed that for all strictly monotone distributions in Q, tests of struc-
ture (d) are strongly distribution free and conversely.
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Since all tests we will consider are of structure (d) we may consider the prob-
lem in its canonical form, i.e., where Fy is the uniform distribution on the interval
(0, 1) and all distributions of & are restricted to the unit interval.

To emphasize this, it will be convenient to let  be a sure number in (0, 1) and
U an r.v. uniformly distributed in (0, 1). It will also be convenient to denote by
U,, Uy, - -+, U, the ordered sample from this distribution. In some instances it
will be convenient to introduce Up and U,41 . These are set equal to 0 and 1
respectively.

We also introduce two more concepts, monotonicity and partial ordering, as
applied to tests of the hypothesis Hy .

DEFINITION 1. ¢ is a monotone test of H if

(1) U, 2 V; (z’=l,2,---n)=>(U1,Uz,-~-U,.)g(Vl,Vg,---V,.).
DEFINITION 2. ¢ is a partially ordered [p.o.] test of H, if
(2) Gi(u) = Ga(u) for all ue (0, 1) = B,(G1) = B,(G:).

From the continuity theorem for Lebesgue-Stieltjes integrals we have the
following obvious
REeMARK. If ¢ is continuous except for a finite number of jumps and ¢ is p.o.

then ¢ is unbiased.

The relationship between monotonicity and partial ordering will be useful
later.

TuaeorEM. Tests of structure (d) that are monotone are p.o.

Proor. Let Gi(u) = Go(u) £ u and recall

1 1 1 n
® 8@y = [ [ [ ol [dGw) G =1,2).
[ 0 J=1
Make the change of variables
Yi = Gl(uj) (7 =12--- n)(z =1, 2)
in the two integrals. The inverse is defined in the usual fashion, i.e.,
u; = Gi'(y) = inf [z:Gi(x) = y,l.
0<z<1
The two integrals become

@) [ [ [eee, - ewnlla,  G=12.

Since Gy < Gz, Gy = G, 7'; this, together with the monotonicity property of
¢, implies the required inequality for B,(G1), B.(G2).

It may also be noted that any monotone test is admissible. This follows from a
result of A. Birnbaum [2] (appendix) who considered this problem where the set

of alternatives is restricted to d.f. with monotone densities. In this paper we de-
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termine which of the several tests of H, that have been suggested satisfy these

criteria and then determine
@«:(A) = inf Bp(G)i Bw(A) = Sup ﬁ¢(G);
@eg(A) Geg(A)

where
g(A) = [G:G ¢ &, p (Fe, @) = A], 0<ALI,

for these several test functions .
To obtain sharp upper and lower bounds of the power of any p.o. test against

all alternatives G such that
(5) p (Fo, G) = A4,

we consider the alternatives

0, u <0,
u’ Oéu <u01
(6) G oy (w) = {ug, U = u < up + A,
u, U+ A=u<l,
1, 1 = u,
and
0, u < A,
) Gu(u) = {u — A, A=Su<l,
11 1= wu

These distributions are not members of the family of alternatives &, but it is
possible to find distributions in @ arbitrarily close to G ., or G . Hence it follows
from the continuity of the power functions, that if the test is p.o.

§¢(A) = inf Aﬁlp(Gmuo); qu(A) = 3¢(GM)-

0<ug<1—
Such bounds are given below for several of the tests of H that meet the criteria
of admissibility, consistency, unbiasedness, monotonicity and partial ordered-
ness.

3. Fisher and Pearson tests. The statistics

8) r=—22.1nU;,

i=1
(9) o =—=2>In(1 — Uy
1=l

were introduced in the problem of combining tests but are also suitable for test-
ing H, . If H,is true = and ' both are distributed as x* with 2n d.f. Furthermore,
the u.m.p. test of H, against the family of alternatives

(10) Gi =" k>1
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is obviously of the form: Reject Hy if 7 < ¢. A similar statement may be made
about «’.

Furthermore, such tests are obviously monotone and hence p.o.

It will be convenient to refer to the tests, reject H if # < ¢ or #’ > ¢, simply
as the tests =, #’. These are two of the class of likelihood ratio tests of the form:
Reject H if X iln ¢:(U;) > ¢, where g, is the derivative of a specified ab-
solutely continuous alternative G, .

If Eoln g2(U)) < o, this test statistic is asymptotically normal and further-
more if Eqglln g1(U)F < » and Eofln ¢(U)] < Eglln ¢1(U)] the usual argument
shows that the test based on Y -y In ¢;(U;) is consistent for testing Ho against
the alternative G.

In particular for the tests =, =/, we have

TuEOREM. The lests w, n’ are consistent for the set of alternatives &.

Proor. In view of the remark above it is necessary to show that Elln U},
Eglln U] are finite and Ey[ln U] < Egfln U]. Now

1) Mmﬁ:fmm%%¢
Let 1 > ¢ > 0; for every e
(12) ﬁ%mmww=ammmm+2[mwkgdm

Since G(u) = u the first term on the right-hand side of (12) can be made

arbitrarily small by appropriate choice of e while for all ¢ the second integral is
bounded by

1
f |In u| du = 1.
0

This shows that both Eg[ln UT?, E¢lln U} exist and also validates the integra-
tion by parts in the next step.
For

mmm=fmmw@
(13) ’

In uG(u) |y — ./;l ggL) du.

The first term on the right-hand side of (13) is zero. Since G(u) < w with in-
equality holding on a set. of positive measure

1 1
[ -1 0

as required for the consistency of the = test.
The proof of the consistency of =’ requires consideration of two cases.

Case 1. Eglln (1 - U)] > — o,
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Since G is continuous and G(u) < u on a set of positive measure, 3 ¢ such that

[,

== du = 25 > 0.

Now in view of the finiteness of E¢fln (1 — U)], 3 ¢ which may be chosen less
than 8/3 and ¢ such that

[Ine|[l — G(1 — ¢)] < /3

and also

| [ In (1 — w) d6(w) — [ T (1 - wdew) | < 5/3.
Now
[ In (1 — w) dG@W) < [ Tn (1 — W d6w) + 5/3

1—e G(u)
1—wu

=G'(1—e)1ne+/(1 du + 8/3

1—e 1—e
G — ¢ lne+f s du.—f zLl@du+5/3
0 0

1—u 1—u
=—14+e+IndG1l —e —1] — 26 +8/3 < —1 — 4.
Since the critical region of the #’ test converges to: Reject H, if

’
__‘ll'_<_l_Za

2n V'’

while by Khintchine’s theorem —(n'/2n) converges almost surely to
Egln (1 — U)] £ —1 — 6 under the alternative G, the consistency follows.

CasE 2. Efln 1 — U)] = — o,

By well-known results in this case infinitely many of the sequence of the in-
dependent r.v. D imiln (1 — Uy)n = 1,2, 3 - -, are with probability 1 less than
nd for any arbitrary A. Hence from the remark on the critical region the con-
sistency is immediate.

As a consequence of this theorem it may be noted that = is asymptotically
normal both under H, and all alternatives in &; it is trivial to give examples that
this is not true for =’. This behavior is reversed for alternatives G(u) = u.

The asymptotic normality of = permits an elementary derivation of 8.(A)
and B.(A) for large samples. In particular

(14) Ex|lnU|=1—- A1 — In 4),
(15) oy |InU| =1+ 24InA — (In® A)(A + AP,
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and
(16) E,,.,,olan|=l—A+uoln(l +$)
0,
17) with max En,,|[In U| = (1 — A)[1 — In (1 —A)].
ug

This maximum is attained when 4, = 1 — A. Also
Euuo(In U)* = 2(1 — A) — woln® (uo + A) — In ug
— 2(uo — A)In (up + A) — 2uoInuy .

A numerical study of the variance of In U as a function of u, shows that the
variance is maximized when up = 1 — A though the changes with respect to u, are
very slight.

Forupg=1— A
omlnU) = (1 — A)2 —2In (1l — A) + In’ (1 — A)]

—(1—-AT - - AP

(18)

(19)
Hence approximately for large n

6:(8) = & ([Z« +Vall =)@ — A) + 4]

om(ln u)

(20) ’
‘ — Zs + /n[AQ1l — In A)]
(21) Bla) = & ([1 + 227 A — InfARA + A“’)l”"> '

The minimum power of the =’ test is attained against the alternative G, ,
i.e., the jump of height A is located at = A. Furthermore this minimum power
is the same as the minimum power of the = test.

On the other hand #’ will not be asymptotically normally distributed for
G 5 in fact with probability 1 — (1 — A)", #’ = + « in which case rejection is
immediate. However, under the condition that all the U; are less than 1, o' is
asymptotically normal so that

(22) Br(8) =1 — (1 = A)"1 — &(x)],

where

-~ Aln A
e — Vg3

A 1n2 A 1/2 °
1 —-2"-4
[ -2
Tables giving numerical values of these minimum and maximum power func-
tions are displayed in section 8 below where the several tests are compared.

(23) z =

3. Dy test. The empirical d.f. F,(u) is basic in many distribution-free tests of
Hy . The use of the statistic

(24) Dy = sup [u — F,(u)]

0<ugl
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as a large sample test for Hy, became possible after Smirnov [20] obtained its
limiting distribution. Subsequently Birnbaum and Tingey [3] gave a closed ex-
pression for the distribution of D7, for finite n.

These results are
(25) imPr(vnD; 2] =1— ¢

and

(26) PrDy=e=1 —c (I"fém (?)(1 R 7%')"-"(6 + 'r{)j-l)’

where as usual [z] is the greatest integer contained in z.

It is immediate from the definition that the test is monotone and hence p.o.
and admissible, as well as being consistent.

Birnbaum in [5] gave upper and lower bounds for the power of the D7, test for
alternatives of fixed distance A within the class of all continuous distribution
functions. The upper bound is attained for the alternative labeled here G and
we quote his result

: [r(cent] 7, / A\ A\
(en — A) ‘;o (i)<l_€n+A—;‘) (€n+A+;">

for e, = A,
for e, < A,

(27) Bo,(8)

where ¢, is chosen so that
Pr (D7 > e | Hol =
In view of Smirnov’s result for large »
Bor — (&) = 2" for e, = A

The lower bound of the power of the D7 test within the class of stochastically
comparable alternatives was studied by Birnbaum and Scheuer [7]. Their result
is given as a number of double and triple sums of terms of the same type as those
in (26), and is not in a form useful for comparison or evaluation purposes.

The following approach does not yield a simple closed expression for the exact
power, but an adequate approximation is obtained. We write

B(Gmuo) = Pr [uO + A— Fn(u0+ A — 0) g. enIGmuo)
(28) +Pl'[05up {u _Fn(u)} = énl’llo'l‘A— Fn(u0+ A _0) < en,Gmuo]

Su<ug

4+ Pr[ sup {u—F.(w)} Z e| sup {u—Fa(w)} < en,Gmugl-
uotdasu<l 0<suo<uotA

It will be convenient to symbolize the three terms on the right hand of (28) by

P, , P,, P; respectively. It is immediate that

[n(uqtd—ey)]

(29) Pi= ), B(k;n, w),

k=0
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where the right-hand summands denote binomial probabilities in the usual
notation.
An examination of the integral representation of

P,(e) = Pr| ,Sup {u — F,(w)} = ¢

given by Birnbaum and Tingey in [3]

e p/n)+e p(2/n)+e (Kin)+e pl
Pn(e)=n!ff f o..f f e
0 Yz zg ZK IR +1

1
f dz, -+ digys ATryr -+ - daz dze dzy,

Zn-1

where K = [n(1 — ¢)], shows immediately that P, and P; are bounded by a.
Hence the dominant term in 8(Gmy,) is Pi1 which is minimized when Uy = 3.
This value has been used in making minimum power calculations for the D7

test.
However the actual values of P, can be determined in the large sample case.

Consider

Pr[ sup {u — Fa(u)} = €| Fuluo) = ?I_z’ Gmuo]

0<u=up

en pliugl(l/n)+e,) Huol(K'[n)+en] pl
0) —uftf o [
0 uy ug’ uK’ +1

1
f du;, s duxf.,.z duK'.H e duz dul y
Uk—-1

where K’ = [n(uo — ea)].

The integral form can be written down in a similar manner to that of P.(¢) and
the result given is obtained by a trivial change of variable. By a slight extension
of the arguments used by Birnbaum and Tingey this can be expressed as a closed

sum, viz

ne\ kY (k)(nuo Ne, j)"'j(ne,, j)’.'1
e 1-()a) EO(E - 1) B+
It is convenient to denote the function on the right-hand side
V(nuo/k, neq/k, k).

The power of the D, test against alternatives of the form

u<1l,0<a< o,
L

au, 0

can be expressed in terms of the function V. This can be seen by writing down the
integral using the general power formula given by Birnbaum ([5], p. 486) or by a
simple direct argument. In fact

32) Bo-(G) =1 — V (}len)

v 1IIA
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While the sums in (31) can be evaluated by a straight-forward process, the
process is tedious for large &, and we obtain instead an asymptotic result that
yields a method of approximating V in this situation.

Let G..(u) denote a sequence of d.f. of the form

-1
(1-1-—‘1:) w, 0=2u<b —-vn<a<+'n,

(33)
1, u = b,
where
= min(l +%ﬁ ,1),
Then
(34) Bo; (Gra) = PI‘[ sup ( _) u — F.(u) > e,.:l
osu<b \/

Now we use Donsker’s theorem [11] justifying Doob’s heuristic approach to the
Kolmogorov-Smirnov theorems [12] to validate the following steps:

lim Pr[ sup {vn(u — F.(w) + aw)} > Z]

(35) n->0 0su<d

=Pr|[sup (X(u) + auw) > Z],

0su<l1
where X (u) is a Gaussian process with the properties noted by Doob ([12], p.
397). Further, the transformation he made and his evaluation of
Pr {sup [¢(¢) — (at + )] = 0}

may be used to evaluate this last probability. We have in fact

Pr| sup (X(u) + aul> Z] = Prl: sup tw) + au > Z:I
0su<l

0fu<wo U + 1
— e—zz(z-a).

(36)

In other words, putting e, = Z/ v/n

. —2
lim V 1 — ¥,

a VA
1 + —_—=y, 5=, n) =
noveo ( V'V
Henceif n, k — o with VE(n/2k) — 1‘] = (n — 2k)/24/% and n/k remaining
finite and if u, is set equal to }

n e, _
- ,}’k’lV(zk & ’k) nl’,,TwV<2k oV 1/ )
‘ _ n 2 nfn — 2k
=1 -eo[ 237 - /2 (") 7]
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so that an approximate evaluation of P, is given by

n

2 2 22
(38) P, = > B(k;n, 1) [exp (—2"5" + 2ne, — 6")].
k=[n(3Fh—en)] k k

This formula was used to evaluate P, for a number of values of n and A. These
are shown in Table 1. The striking feature of the table is the negligible size of P .
Further, by making the change of variable W = 1 — U and noting that

(39) P3 = Pr [ sup [u - Fn(u)] ; € ‘uO - Fn(uo) < €n,y Gmuo]

- uptA<u<l

it is obvious that for up = %, P; < P,.
Hence min., 8o; (Gmu,) is bounded between P; + P, and P; + 2P, for large
samples.

6. Tests related to D, test. Anderson and Darling [1] considered a class of
tests based on the more general distance function

sup V' |F.(z) — F(z) |¢[F ()],

—0LzL 0

where ¢ is a non-negative weight function. The choice of ¥ = 1 yields the Kolmo-
gorov statistic. Anderson and Darling also studied
_1
(@) = (1 =1’

0, otherwise,

0<a=t=b<l,

but the distribution function is not in usable form. The distribution of
SUP—w<zcoV 1 [F(z) — Fo(x)WlF(z)], when H, is true, has apparently only
been obtained for the case ¢ = 1. More recently, Pyke [17] has studied a class of
tests based on a generalized one-sided distance, but again the distributions have
not been given.

TABLE 1
Po="Pr| sup u— F,(u) = ex|wu+ A —Folup + A —0) < &,]*
0su<uy
n
A

50 100 200 400
0.05 .0081 .0062 .0035 .0011
0.10 .0027 .0001 —_ —
0.20 .0002 — — —
0.30 —_ — - —
0.40 — — — —
0.50 —_ — — —

* Calculations made using formula (38). Entries marked with — are less than .0001.
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One asymptotic result of this type is known that could form the basis of a large
sample test of Hy . This is the result due to Renyi [18], viz., if H, is true

_ zla/(1-a) 1}
(40) lim P{\/ﬁsng<Z}= 4/ f e, Z>0
0,

= VA

IIA

for arbitrary a¢,0 < a < 1.

The restriction ¢ < w is unpleasant since it imposes an additional decision on
the statistician, viz., the choice of a. Furthermore, it is apparent that the test
based on this result cannot be consistent against alternatives which do not differ
from Fo(z) for the set E[z:Fo(z) < a]. On the other hand the test is consistent
against all other alternatives in &.

One feature of this test may be noted. The minimum power of the test may be
studied in a manner parallel to that used for the D7 test. In particular the prob-
ability of rejection is the probability that the empirical d.f. F,(u) falls at some
point below the line u(l + e.) — €, Wheree, is chosen to satisfy the size condi-
tion; i.e., approximately for large samples

(41) € = Za l1—a
an
The primary term of the power function 8(Gmy,) is thus seen to be approx-
imately .
[\/EA—ZOU‘/I-;“(I —uo—A):|
42 d ,
“2 funll = )]

which for sufficiently large n is minimized when
=1—a— A

Further this minimum power will be an increasing function of a; i.e., increasing a
will increase the minimum power of the test within the class of d.f.’s for which the
test is consistent but at the same time this class will be decreased.

6. Tests based on the integral criterion. To Cramér and Von Mises is due the
idea of testing H, by a statistic based on the integral of the square of the differ-
ence between hypothetical and empirical distribution functions. Smirnov modi-
fied this by integrating with respect to the probability measure generated by
F(u). A more general form was given by Anderson and Darling [1] (this paper
also gives references to the original authors which have been omitted here). This is

wh=n [ : [F.(x) — F@)WF )] dF.

The limiting distribution of this statistic with the weight function ¢ = 1 was
given first by Smirnov, then by Von Mises and later by Anderson and Darling.
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They also gave a tabulation of the limiting distribution (cf. [1], p. 203). The
latter authors also give the d.f. of W2 for the weight function

¥ =11 =)

but the function is complex and no tabulation has been given.

Before discussing the classical form of W7 , it is of interest to note that since
we are here considering one-sided alternatives, it is not unreasonable to introduce
as a test statistic

0 . 1
@) Wi=n[ o) - F@IdFG) = n fo (F.(u) — ul du.
It is seen at once that

(44) Wu=2Ui—2

i=1 2
so that the test is equivalent to one based on
> Us.
=1

Such a test has also been proposed by L. Moses.

For n large, under H, , U is N(3, 1/12n), while under th alteernative G(u) < u
it is normally distributed with mean [3 v dG(u) > %. The variance of U under the
alternative is finite so that the test is consistent for all alternatives in &. The test
is also obviously monotone and hence p.o. For any alternative the large sample
power is easily computed. In particular

(45) U =

S|

@) F) = oG =1 — 8 (L VIR )

and

_ _ Za - \/37LA2
(47) B (Gmup) =1 — @ ({1 — A2(6 — 8A + 3A?) + 12u0A2]1/2>'

The minimum of (47) is attained when %, = 0.
Consider now the classical integral criterion, i.e.,

0 1
(48) & = [ IFuo) = FOF dF@) = f [Fau) — ul? du.
It is well known that
n . 2
o =t B0

LS U2 — 1) + 2
i=1 3

P — =
i=1 n

(49)

I
™
S
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and that if H, is true

(50) BW) =5y W) = %(‘%gn—‘g)

It is known that if Hp is true nw’ has a limiting distribution which is not
normal. However, if H, is false, the limiting distribution of o, appropriately
normalized, is normal.

For if the U, have a d.f. G(w)

W = [ w — G.(w))? du = /od w — Gw) + Gw) — G.(w)]* du
1) =[#wmu+2[ammw

—9 f ()G () + f [Gu) — Gu(w)]* du,

where G,(u) has been written to emphasize that the sample has been drawn from
the population with distribution G and where we have written u — G(u) = 8(u).
The notation

fo " 5() dt = D)
and

fol & (u) du + 2 [ 8(u)G(u) — 2D(1) + 2E[D(U)] = C(@)

will also be used.
From Kolmogorov’s theorem that

(52) lim [Pr[v/n sup |Gw) — G.(w) | = Z]] = 2 é (— 1)t

n->0 I<ugl

it is easily seen that
1
Vi [ 166) = Gl du

tends to zero in probability. Also

1 1 n—1 Ui
f 3(w)Go(w) du = = D1 8(u) du
0 n i=1 U;

= D) — ;> D).

Since D(u) < 2 for 0 £ u £ 1, E{[D(U))* < = and hence
V/n {1/n 221w [D(U:) — EID(U)1}

is asymptotically normal with mean zero and variance given by the usual formula.
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Finally then v/7 (&’ — C(®)) is the sum of an asymptotically normal r.v. and
one tending in probability to zero. It is therefore itself asymptotically normal
with expectation zero.

Define w, by the equation Pr [n(w)’ > w. | Ho] = a.

The o test (i.e., reject Ho when nw’ > w,) is consistent but not monotone. Its
failure to be monotone arises from the fact that the test is tyo-sided and we are
here considering one-sided alternatives. On the other hand, at least for n suf-
ficiently large that the term

[ 6w - @@ du
is negligible with respect to the other terms of «*, the test is p.o. This follows from
the decomposition (51), since the other terms in this expression increase as G
decreases.

The calculation of E[D(U)], ¢’[D(U)] is particularly simple for the alternatives
Guuy and G, . In fact, it is also possible in these cases to calculate straight-

forwardly E(o®).
Thus
3
(54) Eou (o) = % (1 + %) + 16+ At - 1)
while
(55) g‘;muo(wz) = u"(l_;}ﬁ‘l)_ A+ 0 (;13)

The value of 4; which minimizes the function 3(Gm.,) is a rather complicated
expression involving A, 7 and w, ; however, it is easily seen that as n — o this
minimizing value tends to 3. For simplicity we have evaluated only the ap-
proximate large sample power function 8(Gn 4):

(56)  Bur(Gmy) =1 — @ [% (;“’7%) - 235 (1 + %) Vn = 32%/—;]

Similarly evaluating E(«’) and ¢*(«”) to terms of order 1/#°

(57) Bu2(8) = Bu2(Gu) = 1 — &(),
where
1 A A
- (3-5+%
6 2 3 2 9
S ) — (A" = 340V

(58) x

Il

1 A2 2 3 A4]1/2

24 ['15 —pt3t 1
7. Other tests. A procedure that has been suggested for the problem of com-
bining tests and which consequently could be adapted to the equivalent problem
of testing H, , is based on the minimum or maximum of the transformed observa-
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tions, i.e., in our notation, U, or U, . Even restricting the problem by choosing a
simple univariate statistic such as U;, does not yield a unique u. m. p. test.
Moreover the “intuitive” test of Ho against one-sided alternatives—i.e., reject
H, when U, > ¢ for appropriately chosen ¢c—is obviously not consistent. In fact,
it is only consistent for those alternatives G(u) < u such that lim,.. G(u)/u = 0.
Furthermore, the test—reject H when U, > c¢—would be consistent for no
alternatives of &. .

Of more interest are a group of tests based on anether class of statistics, the.
so-called spacing of the observations. It is convenient to define

(59) S;=Ui—Ui_1, z'=1,2,~-n+1.

Various tests based on the statistics S; have been proposed by Sherman [19] and
others. These tests are not p.o. and hence are excluded from the present study.
The proof of this fact as well as some other properties of these tests will be given
in a later paper.

TABLE 2A
Minimum power of several tests for alternatives whose distance from Fy is A
A
Test
005 | o1 [o125| o015 | owrs [ 020 | o025 | 03 | 035 | oas | os0
n = 50
w, .052 .059 | — — — .072 — 108 | — .179 ’ .306
U .052 .059 | .065 .073 .085 | .102 .153 .250 | .577 .676 .994
w? 131 .448 .697 | .842 .922 | .981
Dy .057 .156 | .248 .372 .511 | .648 .862 .964 | — | 1.000 |
n = 100
w, .053 063 | — — — .080 — 137 | — .254 .460
U .053 | .085| — | .092| — | .148 | .257 | .457 | .738 | .949 | 1.000
w? .054 .228 | .449 730 | .914 | .970 .990 1999
n .086 .327 | .521 .710 — .940 — 1.000
n = 200
w, .054 .068 | — — — .094 — 185 | — .382 .623
U 055 | 075 | — | .123| — | .232| .447 | .756 | .965 | 1.000
w? .069 .335 .617 | .803 .956 991 | — | 1.000
Dy .158 .649 | .862 .964 — .999 | 1.000
n = 400
o | 086 06| — | — | — [.a1m] — | 20| — | .583| .902
U .058 | .091 | .125| .179 | .264 | .388 | .727 | .966 | — | 1.000
w? — .054 | 415 | .757 916 | .974 .998
- 329 | 940 | — | 1.000
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8. Comparison of the minimum and maximum powers of consistent, partially
ordered tests. In the preceding sections it has been shown that the tests asso-
ciated with the statistics (8), 7/(9), D= (24), U (45) and »’ (48) are consistent,
monotone and p.o. Furthermore, useful large sample approximations were found
for 8(A) and B(A) for each test. In view of the fact that most of these large sample
power functions are expressed in terms of normal probabilities it would not be
difficult to obtain inequalities between the power functions for the different tests.
However, in not all cases does the same relationship between the power functions
persist for all A or all n. Furthermore, such inequalities do not indicate the
magnitude of the power differences.

As a more informative approach calculations have been made of 8(A) and B(A)
for each test for a range of values of » and A. These have been calculated for two
test sizes, viz., @ = 0.05 and @ = 0.01. The minimum power was calculated for
A = 0.05,0.1, 0.2, 0.3, 0.4 and 0.5 and where desirable, some intermediate values
while the maximum power was calculated for A = 0.01, (0.01) 0.10, 0.15, 0.20,
0.30, 0.40, and 0.50. A fixed sequence of sample sizes n was used, viz.,
n = 50, 100, 200, 400, 600, 800, 1000, 2000, 4000, 6000, 8000, 10,000 . . . with the
stopping rule, stop whenever the absolute values of the normal deviate ex-
ceeded 3.

TABLE 2B
Mazximum power of several tests for alternatives whose distance from Fy is A

a | oot | 002 | 003 | oot | 005 | 006 | 007 | 008 | 009 | 010 | 0125 | 05 | 02

n = 50

L9656 | .972 | .977 | .983 | .987 | .990 | .993 | .995 | .997 |1
J125 | .189 | .272 | .373 | .484 | .598 | .706 | .799 | .871 | .970 | .996
123 | (178 | .246 | .325 | .412 | .504 | .595 | .681 | .758 | .899 | .968| .999
— — | .092 | .193 | .308 | .412 | .509 | .580 | 662 | — | — | .973
.096 | .129 | .170 | .220 | .278 | .346 | .420 | .501 | .586 | .793 | .948

g, 8 A,
SI88%

Dy

n = 100

.967 | .980 | .989 | .949 | .998 |1
J111 | .211 | .354 | .523 | .689 | .824 | .916 | .966 | .988 | .997 |1
.168 | .267 | .387 | .518 | .646 | .759 | .849 | .914 | .955 | .994 |1

CRSERE
2

D7 | .080 | 123 | .181 | .257 | .350 | .459 | .578 | .698 | .811 | .905 |1

A 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 1.0

~ | .169 | .370 | .633 | .840 | .950 | .989 | .999 |1
U | .124 | .250 | .421 | .609 | .773 | .889 | .954 | .984 | .996 | .999
w? | — |.093 | .317 | .529 | .675 | .797 | .873 | .925 | .955 | .975
Dy | .096 | .171 | .279 | .421 | .587 | .755 | .897 | .983 |1
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Some of the powers so calculated for « = 0.05 are exhibited in Table 2A and
2B. It might be hoped that some of the tests could be eliminated by such a
comparison—this would be the case if 8 for one test fell below 8 for some other
test. However, this is not the case.

In general the tables indicate that the relationship of the tests is reversed from
the minimum to the maximum power. Thus we have

Br = Br < B(7), B3 <Bo; <PBo; <BW), Fi<Pe<Br.

The relationship between the «® and U tests varies with A and n.

It is evident that the =’ test has the best maximum power of the tests con-
sidered, but its minimum power (and that of the = test) is extremely low. On the
other hand the D7, test which has the lowest maximum power (of the tests con-
sidered) has the greatest minimum power. This raises the question whether there
exists a non-trivial test which is p.o. and for which 3(A) = B(4).

An alternative comparison between the tests is given in Table 3, which shows
the sample sizes necessary to achieve a pre-assigned power level 8, for given A
and for @« = 0.05. The values corresponding to 8 = 0.95 only are listed though
corresponding values of n have been calculated for 8 = 0.90 and 8 = 0.99. The
latter calculation emphasizes the poorness of the =, 7’ tests against alternatives
Gmu—over 2,443,900 observations are required to insure 8(0.05) = 0.99. It
should be noted that these values of n were calculated from the primary term

TABLE 3
Sample sizes necessary that B(A) and B(A) = 0.95 for several p.o. tests and
for @« = 0.05
Minimum Alternative
A
Test
0.05 | 0.1 ; 0.2 | 0.3 1 0.4 | 0.5
D7, 1675 419 ' 105 47 ‘ 27 17
w? 14,038 2290 406 153 ' 78 45
U 569,067 34,233 1867 304 77 25
T, 1,677,025 102,081 23,903 \ 4463 1325 511
1
Maximum Alternative
A
Test
0.01 0.02 | 0.03 | 0.04 | 0.05 | 0.06 0.07 l 0.08 | 0.09 I 0.10
D3 | 29,679 | 7420 3298 6855 1188 825 606 464 367 297
w?” 4761 1057 540 302 204 160 104 80 65 53
U 9108 | 2296 1027 583 375 261 193 148 117 95
T 3067 936 471 291 200 148 115 92 77 65
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Py[cf(29)] and consequently the required sample size with the D7 test is slightly
over-estimated.

It is also to be noted that the smaller sample sizes indicated in Table 3 must not
be construed too literally since they have been computed from asymptotic
formulae.

Of these tests considered it appears that if no information is available on the
possible alternatives to H, then from some minimax point of view, the D, test is
the most favorable.
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