PROOF OF SHANNON’S TRANSMISSION THEOREM FOR FINITE-STATE
INDECOMPOSABLE CHANNELS'

By Davip BLACKWELL, LEo BREIMAN, AND A. J. THOMASIAN
University of California, Berkeley

1. Summary. For finite-state indecomposable channels, - Shannon’s basic
theorem, that transmission is possible at any rate less than channel capacity but
not at any greater rate, is proved. A necessary and sufficient condition for in-
decomposability, from which it follows that every channel with finite memory is
indecomposable, is given. An important tool is a modification, for some processes
which are not quite stationary, of theorems of McMillan and Breiman on proba-
bilities of long sequences in ergodic processes.

2. Notation, definitions. For any positive integer N, we denote by I(N) the
set of integers 1, 2, - -+ , N and for any set S we denote by S® the set of N-
tuples (81, - -+, sv) with s; ¢ S, 2 ¢ I(N).

Let A be a fixed positive integer. A source is a pair (M, ¢), where M is a finite,
say D X D, indecomposable Markov matrix and ¢ is a function from I(D) to
I(A). A channel is a sequence of A Markov matrices C(1), ---, C(4) of the
same size, say B X R, and a function ¢ from I(R) to I(B), where B is some
positive integer. )

The elements of I(D) and I(R) will be considered as states of the source and
channel respectively. The source will be considered as driving the channel as
follows. If d ¢ I(D), r ¢ I(R) are the states of the source. and channel at the
beginning of a cycle, the source moves from d to a state ¢ £ I(D), selected ac-
cording to the Markov transition matrix M, so that M(d, ¢) is the probability
that the new state is e, given that the initial state is d. The source then emits the
number ¢(¢) € I(A), which is fed into the channel. The channel then moves into
a state s ¢ I(R), selected according to the matrix C(¢(e)), and emits the number
¥(s), completing the cycle. A new cycle then begins, with e, s as the initial states
of the source and channel. The joint motion of the source and channel is thus
described by the source-channel matriz, which is a DR X DR Markov matrix L,
with elements L((d, ), (e, s)) = M(d, e)C(¢(e), r, s). A channel will be called
indecomposable if for every source the source-channel matrix L is indecomposable.
Thus, for any source and any indecomposable channel, there is a sequence of
random variables {(d, , 7x), —® < n < o}, which is an ergodic Markov proc-
ess with transition matrix L. Moreover, the joint distribution of {(d., 7s)}
depends only on L. McMillan [4], extending the work of Shannon [5], has shown
that associated with any stationary ergodic process {z;} with a finite set F of
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states, is a number , called the entropy of the process, such that for large N it
is practically certain that the sequence of states of length N which occurs is one
whose probability is about 27*; more precisely, for any sequence f & F*™ let

Qﬂ(f) = Prob {(21, ce }zN) =f}'
Then

1) N'log Qu(zr, -+ ,2v) = —hinLas N — o,

where the log above and throughout this paper has base 2. Breiman [1] has
shown that convergence with probability 1 also occurs in (1). For the ergodic
process {(dw, 7%)}, the processes {z: = ¢(di)}, {yx = ¥(r)}, {(zx, y&)} are of
course also ergodic; we denote their entropies by H(X), H(Y), H(X, Y) re-
spectively. '

For a fixed indecomposable channel, the upper bound H over all sources of the
number H(X) + H(Y) — H(X, Y) is called, following Shannon, the capacity
of the channel. Shannon [5] and, subsequently, McMillan [4], Feinstein [2],
Hincin [3], and Wolfowitz [6] have shown that, under various hypotheses on the
channel, it is possible to transmit over the channel at any rate less than its
capacity, but not at any rate greater than its capacity. For a channel as defined
above, this means, as in [6], the following. For a given channel, to say that it is
possible to transmit at rate G means that for every ¢ > 0 there is an Ny such that

for any N = N, there are 2"¢ = J distinct sequences u; , - - - , us , where each
u; e I(A)™, and J disjoint subsets B , - - - , By of I(B)" such that
(2) Q(r, uj, E;) > 1 — efor all j and all » ¢ I(R),

where for any r ¢ I(R), u = (u(l), --- , w(N)) ¢ I(A)™, E < I(B)™
Q(ry U, E) = E C(u(l)r ) 7'1) te C(u(N)y TN—1, rN);
‘where the sum is over those sequences (71, - - - , ry) for which

W(r), -+, ¥(rw)) € E.

Thus Q(r, u, E) is the probability that the output sequence from the channel is an
element of E, when the channel is initially in state » and « is the input sequence.

For a given channel, denote by H* the upper bound of the rates G at which it
is possible to transmit. We shall show that, for indecomposable channels of the
type considered here, H* = H, that is, it is possible to transmit at any rate less
than the channel capacity, but not at a.rate greater than channel capacity.
Shannon and McMillan seem to have regarded H* < H as more or less obvious,
and devoted most of their attention to showing, under certain hypotheses, that
H = H*. The other writers have given some attention to the inequality H* < H.
In particular, Wolfowitz [6] obtained H* < H for channels of zero memory.
Our result, that H* = H for indecomposable channels, extends those ob-
tained previously. ’
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3. A necessary and sufficient condition for indecomposability. To verify that
the results to be proved in Sections 5 and 6 are valid for a given channel, we
must show that the channel is indecomposable. The following criterion is helpful.

TaroreM 1. A channel (C(1), - -+ , C(A)) is indecomposable if and only if every
Sinite product C(a,) - - - C(ax) ts an indecomposable Markov matriz, &k = 1,2, - - -,

a; ¢ I(A).
Proor. Suppose the channel is indecomposable and let a;, --- , a; be any
finite sequence of elements of I(4). Consider the source with k states 1, --- , k.

with M7, 4+ 1) = 1fori < k, M(k,1) = 1, and ¢(¢) = a; . Let
F = Ca) - Cla)

and let 71, 2 € I(R). To show that F is indecomposable it is sufficient to find
integers T , T» and a state s £ I(R) such that F™(ry , r5) > 0 and F™(rz, r5) > 0,
that is, such that r; is reachable from either r; or r, under transition matrix F.
Since the source-channel matrix L is indecomposable, the two states (k, r1),
(k, r2) have a common possible successor (¢, r) which itself has a possible suc-
cessor of the form (%, r5). Thus (k, r5) is a possible successor of either (k, r,) or
(k, r;). Since the source has period k, the times after which (k, r3) can be
reached from (k, ) or (k, ;) are multiples of k, that is, there are integers
Ty, Ts such that L™*((k, r;), (k, r5)) > 0 for ¢ = 1, 2. But L™((k, ), (k, s))
= F"(r, s). Consequently F™(r;, rs) > 0 for ¢ = 1, 2 and F is indecompos-
able.

Now suppose that every finite product C(a,) - - - C(ax) is indecomposable, and
let (M, ¢) be any source. Let (d, r), (e, s) be any two source-channel states; we
must find a common possible successor (f, t). Since M is indecomposable, d and e
have a common possible successor f which is recurrent. There are then numbers
" r', &, such that (f, ') is a successor of (d, r) and (f, ") is a successor of (e, s), so
that any common successor of (f, #') and (f, s’) is also a common successor of
(d, r) and (e, s). Thus we may suppose d = e¢ = f, and must find a common
successor (f, t) of (f, '), (f, '), where f isrecurrent. Let fo = £, f1, - -« , foma, fo = f
be a possible path from f to itself, and let F = C(¢(f1)) - - - C(¢(fx)). We assert
that if ¢ is a possible successor of ' with respect to F, then (f, t) is a possible
successor of (f,7’) in the source-channel matrix L. For L™((f, ), (f, 1)) =
M(fo, f1) -+ M(fiua, f)I"F7(, t), and since the first factor on the right is
positive, the left side is positive whenever F”(r, t) is. But since F is recurrent,
7" and s’ have a common possible successor ¢ with respect to F, so that (f, t) is
a common possible suceessor of (f, 7'), (f, s) in L, completing the proof.

We shall say that a channel has memory m if every product C(ao) - - - C(am)
has identical rows. Thus a channel has memory m if and only if the conditional
distribution of the present state of the channel, given the present input a.,
the m previous inputs ao , - -+ , am—1 and the state r of the channel just prior to
input ao , is independent of r for every ao, - - -, @ . A channel is said to have
finite memory if for some m it has memory m. Every channel with finite memory
is clearly indecomposable, for if F = C(a,) - -- C(ax), some power of F has
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identical rows so that F is indecomposable. From Theorem 1, the channel is then
indecomposable. That this includes, as a special case, the finite memory channels
as defined by Feinstein [2] and Wolfowitz [6] can be seen from the following
considerations: let the inputs to a channel be denoted by --- , X_;, Xo, X3, -+
and the outputs by ---,Y_,, Yy, ¥y, -+ and let the probability structure at
the channel be defined, following McMillan [4], by specifying the conditional
probabilities of the various output messages, given the input signals. That is, we
are given the conditional probabilities p(¥n, -+, Yi | Xn, X4, --+) where
we are now assuming that the channel is nonanticipatory and stationary. We
assume, in addition, that there is an integer m such that

p(Yann, Yn—l,Xw—lx Yn—z,Xn—-z, "’)
= p(Y“'X“’ Yﬂ—laXn-—ly crty Yn—m, X“_m).

Now if we consider the finite state channel whose states consist of m-tuples of
pairs, one member of the pairs being from the input alphabet and the other from
the output alphabet, then the above assumption implies that this finite state
channel is finitary in the sense described above, that is, it has the required
Markov property. If we add the additional restriction that there is an integer
M such that if two output messages m long, say v, y2, are separated by a dis-
tance M, that

p(yly?hl "'Xl,XO’X—17'”)
= p(yll )XI:XO’X—I) )p(Y2l XI’XO’X—I)
then this finite state channel has finite memory M.

4. A modification of McMillan’s theorem. In proving our main result, we
shall need the following extension of a special case of McMillan’s theorem.

TaEOREM 2. Let dy, dz, -+ - be a Markov process with finite indecomposable
transition matriz M, say D X D, let ¢ be a function from I(D) to I(A), and let
Un = ¢(dn). For any sequence s € I(A)™ let p(s) = P{(1, -+ ,yn) = 8}, and let
2y = p(41, -+ , Yn). There is a constant h, depending only on M and ¢, such that

3) N'log zy — —h

wn Ly and with probability 1 as N — .

Proor. If the distribution of d; is the (unique) stationary distribution for M,
the {y.} process is ergodic, and the theorems of McMillan [4] and Breiman [1]
yield (3), with & as the entropy of the process.

For any d £ I(D) and any event E, write Py(E) for P(E |d, = d). Let A =
(M, -+, Ap) be the stationary distribution for M, and let Q(E) =
The theorems of McMillan and Breiman assert that

@ M — —h ae. and Is(Q),
N
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where pa(s) = Paf(y1, -, y») = s} and zawv = pa(y1, -+, yn). For any d
for which Ay > 0, we have

A zay = (Z)\ezelv) Q(dl = dlyla syN)-

Taking logs, dividing by N, letting N — « and using (4) and the fact that
Q= d |y, -+, yn) converges a.e. (Q) to a limit which is positive a.e. (Pa)
yields

5) l_gg_]\?z_v — —h a.e. Py for s > 0.

Now let d be a state for which A; = 0, let ¢ be any state for which A\, > 0, let k
be any integer < N and let G denote the event {dx = e}. We have

6)  2awPa(@lyr, -+, yn) = 2aPa(G |y, -+, Y)P(Yr, -+ 5 Yn).

Since the P, conditional distribution of yi , ¥x41, - - - , given that G occurs, is the
same as the unconditional P, distribution of ¥, , ¥, - - - , we conclude from (5)
that on G, a.e. Ps, N' log pe(ys, -+ ,ys) — —h. Also, on G, a.e. Pq,
Py(G |4, -+, yn) has a positive limit as N — « and 24Pa(G | 1, -+, yi) is
positive. Taking logs in (6), dividing by N, letting N — o« yields

(7) N7'log zay — —h a.e. Pz on G.

Since the union of the sets G obtained by varying k and e has P; measute 1, we
conclude

8) N7 log 2w — —h a.e. Pg for all d.

Next let u = (w1, *- -, up) be any initial distribution and let P = Y psPy.
For any d for which us > 0, we have

9) Maza~=(;ﬂazw)P(dl=dly1,‘--,yn)-

Taking logs, dividing by N, letting N — « and using (8) yields
(10) N log (X pa zav) — —h a.e. Pa,

from which we obtain

(11) N7'log (3" mazan) — —ha.e. P.

Thus the probability 1 convergence in (2) is established. Finally, to obtain I,
convergence we note, following McMillan, that the sequence {N~" log 2y} is
uniformly integrable. We have

(12) J@8) = [ N loga [dP = N7 T o) | log ) |

< (k+ 1)27%47,
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where By is the event {k < | N"'log zv | < & + 1} and the sum is extended over
those s &£ I(A)™ for whichk < | N log p(s)| < k + 1. Choose k; so that 27**
A < 1. For k = k, we have

(13) J(N, k) £ (k + 1)27%2",
Thus Y %, J(V, k) goes to zero as ky — o uniformly in N, and uniform in-
tegrability is established, completing the proof.

6. The direct half of Shannon’s theorem (possibility of transmission at every
rate less than capacity). We shall need the following lemma.

LeMMmA. Let p be o probability distribution on a finite product space X X Y.
Write a(z) = 2, p(®, ¥), b(y) = 2= 2(z, ), p(y | ©) = p(x, y) / a(x). For any
numbers 6, N such that 0 < 8§ < A < 1, let

A = {y:by) > 8}, B={(zy):p|z) <.

For any integer M there are M points x1, --- , xx € X and M disjoint subsets
E}, e ,Euonsuchthat
(14) > pyla) S MON +2250) +2 5 p(0)

2’1[ &B

fori=1,---, M.

Proor. Let X, - - - , Xou be independent random variables with distribution
a(z). For each ¢ ¢ I(2M), y ¢ Y, we define the random variable Z(z, y) = 1 if
p(y | X;) < maxy=; p(y| X;), Z(%, y) = 0 otherwise, and define

fi= 220y | X)Z(G, y).

Then

Ef; = Z: a@E(f; | Xi = 2) = ==Zp(w, NE(ZG,y) | Xi = z)
(15) !
Z bly) + Z p(x,y) + 2.° pla, YEZG,y) | X: = 2),

(zy)eB

where D * indicates summation over pairs (xr,y) for which b(y) < & and
p(y|z) = \. Now E(Z(i,y) | Xi = ) = 1 — (1 — u(z, y))*"", where

u(zy) = > a(v).

vap (¥|v) 2 p (y|x)

For pairs (z, y) in Z*,
5 = bly) = Z a@)ply | v) = Z a(®) = Mulz, y),

p y|v) 2N
so that
B(ZG, ) | Xi=2) 1= (1 — (/N < 2M8/\
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Using this inequality in (15) yields
(16) Ef: < 2 b@) + E pay) + 2Mo/\ = .

It follows that E(Z 1 fi/2M) £ . Thus there are Values of X1 , o Xz,, ,
say zy , -+ , Zax , for which Z“‘f. /2M = o, where f, = fixt, -+, Tow).
Since all f7 are = 0, at least M of them, sayf?, , o, fiy,are = 2a. Then
2¢ = ) py| x,,) where the sum is over y for which

P(ylxsg) S MaXixq; p(ylx,- .
Denoting xf,. by z; and the set of y for which
p(y | 23;) > maxiu, p(y | i)

by E; yields (14), and the lemma is proved.

TraEOREM 3. For any indecomposable channel, H* = H, that is, it is possible to
transmit at any rate less than the capactity of the channel.

Proor. Let (M, ¢) be any source and let {(dn, r»), n = 0, 1,2, ---} be a
Markov process whose transition matrix is the source-channel matrix and with
do , 7o having a uniform distribution on the DR states. Let 2, = ¢(d,), yn = ¥(r4).
For any s £ I(A)™ ,t e I(B)™, r ¢ I(R) , write

a(s) = P((m1, -+ ,an) = 9), b(t) = P((yr, -+, yn) = 1),
Qr, s, ) = P((xl y T Ty) = $, (yl y "t yN) =, o = r)R/a(8)3

Il

p(s, ) = P((@1, -+ ,ax) =8, (1, -+ ,yn) =1) = a(s) 2. Q(r, s,8)/R.
According to Theorem 2, as N — «
N7'log a(zy, -+ , 28) = —H(X)
N7 log b(ys, -+ , yw) — —H(Y)
Nllogp(zi, -, &, 0%, -+ ,yy) = —H(X, Y).
" Given ¢ > 0, choose NV so large that, with probability =1 — e,
log p(zx1, - , 2w, 41, --;V,x,v) —logalz, -+ ,zy) > H(X) — HEX,Y) — «
and

log b(y1, -« -, yn) < —H(Y) + e
N
We apply the lemma to the product space U X V, where U = I A)™, v =
I(B)™, with p(u, v) as defined above and & = 277 (ary—a , A = QNVHED-HE =9
and conclude the existence of M = 2" say, points ul y o0, uu € X and M
disjoint subsets E;, --- , Ex of V such that

u%. p(ulv) = 4.9 N HO+HHX)—HX ¥)=G—2¢] + 8.
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Thus for any G < H(X) + H(Y) — H(X, Y) we can, for any 8 > 0, by first
choosing e sufficiently small (less than min (8/9, (H(X) + H(Y) — H(X, Y) —
G)/2) and then choosing N sufficiently large, find M = 2"¢ X-sequences u; , - - - ,
u of length N and M disjoint subsets B , - - - , Ex of I(B)™ such that
a7 v§~ p|u) > 1~ 6.
This does not quite prove that it is possible to transmit at rate G as defined above,
since (2) requires that

> Q(ryui,v) >1—¢ forall reR,

yeE;
that is, that for each initial state of the channel, each of the M messages can be
correctly recovered, with large probability. This is an immediate consequence
of (17), however, since (17) yields

R_l E (Z Q(T’ ui;”)) >1- B:

veE g
so that, since Q(r, u; , E;) < 1 for all r, 4,

2 Q(r,ui,v) >1—RB

veEg
for each r. Since 3 can be made arbitrarily small and R is a fixed number, the
number of states of the channel, the proof is complete.

6. The converse half of Shannon’s theorem (impossibility of transmission at a
rate greater than capacity).

THEOREM 4. For any indecomposable channel, H* < H, that 1s, it is not possible
to transmit at a rate greater than the capactty of the channel.

Proor. Suppose that it is possible to transmit over a given channel at rate G,
let e be given, 0 < ¢ < 2and let N, us, -+ ,us,J = 2¥¢, By, --- , E; denote
the quantities whose existence is implied by the possibility of transmission at
rate G. We may suppose that UE; = I(B)™, since if (2) is satisfied for E; it is
also satisfied if E; is replaced by a superset. We must exhibit a source (M, ¢)
for which H(X) + H(Y) — H(X, Y) is nearly G. Our source produces inputs
in blocks of N by selecting one of the u; at random, successive choices being in-
dependent. The entropy H(X) will then be precisely G. Since observing a long
y sequence nearly identifies the corresponding z sequence, the conditional en-
tropy H(X,Y) — H(Y) is small, so that H(X) + H(Y) — H(X, Y) is nearly G.

More precisely, the input source will have NJ states (n, j), with M((n, j),
(n+1,5)) = 1forn < N, M((N, ), (1, 9)) = 1/J for 2 £ I(J). We define
¢(n,j) = u;n , the nth symbol in the sequence u; . Let (d , %) be a Markov proc-
ess whose transition matrix is the source-channel matrix, and whose initial dis-
tribution is such that d; = (1, 7) with probability 1/J, 7 ¢ I(J) and write zx =
¢(di), y» = ¥(r). Then every x sequence of length NT which is possible has
probability J~7 = 27V7¢ (since ¢ < %, u; 5% u; for ¢ % j). From Theorem 2,
H(X) = GQ.
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To estimate H(X, Y) — H(Y), we recall some results of Shannon [5]. If z is
any random variable assuming T' distinct values with probabilities p; , - - - , pr,
the number —> p, log p: is called the entropy of z and will be denoted by h(z).
Always h(z) < log T. If (z, y) are two random variables, each with a finite set
of values, the number h(z, y) — h(y) is called the conditional entropy of z given
y and is denoted by h(z | y). It equals the expected value of the entropy of the
conditional distribution of z given y. For any function ¢ defined on the range of
Y, h@®¥)) = h(y) and h(z | 6(y)) = h(z | y).

Notice that, in the notation of Theorem 2, E log zy = —h(y1, -+ , yn), S0
that the L, convergence in (2) implies that A(y:, -+, y»)/N — H as N — o,
Thus, in our present notation,

h(xly"' )xNT,yI’"' :yNT)/NT_)H(X, Y) _H(Y)
as T — «. We have

T—1
h(xl, ,xwlyl, ,yw) = Zo h(xm+1, ,th+N|yNz+1, ,ym+N)
=l
T—1
é Zl h(at I bt))
— ;
where a; = (xm.,_l y T, xm.,.u) and b; = Uj if (?/m+1 y Tty yNt+N) & Ej (We may

suppose that UE; = I(B)™). We estimate h(a; | b;) by the following lemma.
LemmA. For any distribution o on a product space U X U of pairs (a, b) such
thatY.; a(a, a) = 1 — e > 1 we have

ha|b) = —g(e) + elog (J — 1),

where g(t) = tlogt + (1 — t)log (1 — ¢),0 < ¢t < 1, and J s the number of
elements of U.
Proor oF THE LEmMuMA. Let 8(b) = D, a(a, b). Then

~#alb = T a0 3 g 2D
Now
50 = sy
- S0 s 0) — ot
) ; B(b)ag,:()b, 5 log ﬂ(b)agl’o?()b, 5 n B(b) ;(bc;(b, b, og B(d) ;(bc)v(b, b)

_ o (B0 _B0) = atbb),
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Consequently,

—h(a|d) = ;B(b)y (%) — elog (J — 1).

Since g(t) is convex and Y 5 (b)) = 1,

600 [ 8D 2 4[5 o, 0] 2 90 - 9 = 900.

The hypotheses of the lemma are satisfied for (a., b), so that
h(ae|b) = —g(e) + elog J = —g(e) + eNG.

Thus
h(xl y "ty I l Y, "y yNT) = T(_g(e) + GNG)

Dividing by NT and letting T — < yields
BHX V) - HOY) s 49 + @

Thus, assuming that transmission at rate G is possible we have for every ¢ > 0
and arbitrarily large N, exhibited a source for which

H(X)+ H(Y) — HX,Y) 2 G1 — ¢ + g()/N.

It follows that H = H* and the proof is complete.

7. Another form of Shannon’s Theorem. Let {w,, n = 1,2, ... } be any
stationary ergodic process whose variables have a finite set of values, say I(W),
and consider a given indecomposable channel as defined above. Shannon en-
quires whether the channel is adequate for trandmitting the information pro-
duced by the source, with large probability of correct reception. To say that the
channel is adequate means that, for every ¢ > 0, there is an integer Ny such that
for any N = N, there are (1) a function f (the encoder) from I(W)*® to I(4)®
and (2) a function g (the decoder) from I(B)*™ to I(W)" such that, for every
initial state r of the channel,

mia =8} >1—¢
where a and 8 are random variables (the first N symbols produced by the source

and the decoded estimate for these symbols respectively) whose joint distribution
w is defined by

w{a = 0,8 = v'} = Prob {(wr, -+, wy) = v} 0(8)2_}7, Q(r,f(v),0)

where Q(r, u, 8), as defined earlier, is the probability that the channel, when
initially in state r, on receiving an input u, will produce output 6. The form in
which Shannon describes his result is the following.

THEOREM 5. An indecomposable channel of capacity H is adequate for the station-
ary ergodic source {w,} if the entropy h of {w,} is less than H, and not sf h > H.
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The idea of the proof of this result, based on McMillan’s theorem and Theorems
3 and 4 above, is extremely simple. According to McMillan’s theorem, the
source w, is very likely to produce one of about 2" sequences of length N, each
of which has probability about 2. Accordingly, to have a large probability
of transmitting the actual sequence accurately, it is necessary and sufficient
that the channel be able to distinguish among about 2*" different input sequences
of length N which, by Theorem 3, it is if 4~ < H and is not if » > H. The proof
below simply makes this idea precise.

Proor. From (1), for any ¢ > 0 there is an N, such that for any N = N, there
isaset F < I(W)™ with not more than 2%+ elements such that

Prob {(wi, ---,wy) e F} > 1 — e

From Theorem 3 there is an No = N; such that for any N = N, there are
2E=9% _— J distinet sequences uy, - -+, us in I(A)®™ and J disjoint subsets
E, -, E;of I(B)*™ such that

Q(r,u;, E;) > 1 — eforall j and r.

If H — ¢ = h + ethere are at most J elements in F, so that there is a function
f from I(W)™ to I(A)" such that f maps distinct elements of F onto distinct
u; . With this f and with g chosen so that ¢g(8) ¢ F, flg(6)] = u; for all 6 ¢ E;,
we have

mia = B8} > (1 — €,

since the probability that « ¢ F is greater than 1 — ¢ and the conditional prob-
ability, given that « = ap ¢ F, that 8 = ao is at least Q(r, u;, E;) > 1 — ¢,
where f(ap) = u; . Thus if & < H, the channel is adequate.

Conversely, suppose the channel is adequate. From (1), for any ¢ > 0 there
is an N, such that for any N = N, there is a set F; < I(W)™ such that

Prob {(w1, ---,wy) e F1} > 1 — ¢

and Prob (wy , -+ , wy) = ap < 27%" for all ay & F; . Also, there is an N3 = N,
such that for every N = N; there are functions f, g satisfying the definition of
adequacy. Since m{a = B} > 1 — ¢, there is a subset Fy of I(W)™ such that
m{a € F2} > 1 — /¢ the conditional probability

mla=8la=a} >1—eforaeF,.

Then mf{a ¢ F; N F3} > 1 — ¢ — /¢, 5o that F; N F;, and hence F. has at
least 2%79Y(1 — ¢ — V/¢) = J; elements. For oy ¢ F;, define E(x) as the set
of all § £ I(B)™ such that g(5) = o . The assertion m{a = 8| @ = a0} > 1 — Ve
is equivalent to

(17) Q(T, f(ao)y E(ao) >1 - '\/;-

Note that, since the sets E(a) are disjoint, so are the elements of (o), provided
¢ < .707, which we may assume. In summary, for every ¢ > 0 we have found an
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N3 such that for any N = N; there are at least J1(N, ¢) distinct elements of
I(A)™ (namely the f(a), a0 € F and Jy(N, €) corresponding subsets of I(B)™
(namely the E(ay)) such that (17) holds. Thus if g < A, it is possible to transmit
at rate G, since, for sufficiently small ¢ (< b — @), Ji(IV, ) > 2" for all suf-
ficiently large N. It now follows from Theorem 4 that » < H, and the proof is
complete.
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