ASYMPTOTIC DISTRIBUTIONS OF “PSI-SQUARED” GOODNESS
OF FIT CRITERIA FOR m-TH ORDER MARKOV CHAINS!

By Leo A. GoopMAN

Unaverstty of Chicago
1. Introduction and Summary. Let {X,, X, ---, Xy} be an observed se-
quence from a stochastic process, where X; can take any one of s values 1, 2,
.-+, 8. Let f, be the frequency of the m-tuple u = (u;, %2, *++ , Unm) in the se-
quence. Let H, be the composite hypothesis that the process is a Markov chain
of order n. Let H, be any simple hypothesis belonging to H . Let Hy be the
maximum likelihood H, . Let the expected value of f, in a new sequence of

length N given H, be f,.. , and given H be fi .. Let

‘/’rzn.n = Zu: (fu - fu.n)2/fu.n,
‘l/:zn = ? (fu - f:n)z/f:n )

*2
Yatn = 0.

Good had proposed in [7] the following two conjectures: (a) that the asymptotic
distribution (N — ) of ym= , when H, is true, is

m—n—1

x Kooy (/N
A=1

where * denotes convolution, g(\) = (s — 1)’™ "™, and K(z) is the x’-dis-
tribution with ¢ degrees of freedom; (b) that the asymptotic distribution of
Y., when H, is true, is

m—1

le Ko (x/)\)*K.—l(x/m) ’

mathematically independent of n. Conjectures (a) and (b) were proved by Bil-
lingsley [2] for the special case n = 0. For the special case n = —1 (by conven-
tion, H, is the hypothesis of equiprobable or perfect randomness (see [7])),
Conjecture (b) was proved by Good [5] when s is prime. In the present paper,
Conjecture (a) will be proved for the general case n = —1; conjecture (b) will be
shown to be incorrect for n > 0, although a modified version of (b) will be proved
for n = —1. A third conjecture by Good [6] will also be proved here. It was
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1124 LEO A. GOODMAN

assumed in these earlier papers, and it will be assumed here, that all transition
probabilities in the Markov chain are positive; the results can be modified ac-
cordingly when some of these probabilities are zero (see [1] and [10]).

Let M = —2 l0g MAn,m1, Where A, m— is the ratio of the maximum likeli-
hood given H, to that given Hy_; (see [6]). For m = n + 2, the statistic ym's
is asymptotically equivalent, when H w s true, to the likelihood ratio statistic
M,..Form>n+2 ¢u,is asymptotically equivalent, when H,, is true, to

e  AM i1 ama, while M., is asymptotically equivalent to

m—n—1
Muiirm1
psc
(see [6], [10]). Thus, nl/:.,z,. corresponds asymptotically to a weighted sum of the
likelihood ratio statistics Mato,n , Magsni1, *** y Mm,m—2, with the weights
m—mn—1,m—mn—2,---, 1, respectively, while M, . weights these statis-
tics equally (see [13] and reference to [13] in Section 4 herein).

Let Liyn = —2 log g, m—1, where u,,»— is the ratio of the likelihood given
H, to the maximum likelihood given Hyp i, . Form—1=n= 0, the statistic
¥i.» is asymptotically equivalent, when H, is true, t0 Lnn . Form — 1 > n =
0, ¥4, is asymptotically equivalent, when H, is true, to

m—1
é AM i1 nmaan + MLyyy,0 ,

while L, is asymptotically equivalent to Y wt Mmirrmar + Lnsin.
For n > 0, the relation between y;,, and the likelihood ratio-statistics Lu,n
and M, , is not so straightforward. However, a modification n//:,f,. of Yin (see
Section 6 herein) is asymptotically equivalent, when H, is true, to L, for
m=mn+1,and to X  AMmprmax + (M — 0)Lpgan for m > n + 1;
while the likelihood ratio statistic La,, is asymptotically equivalent to
m—n—1

= Mm-l-l—)‘,m—l—} + Ln+l,n .

In [10], the m-tuple u was “split” into an (m — n — 1)-tuple, an n-tuple,
and a 1-tuple; thus obtaining s “contingency tables” (n = 0) each s™ "™ X s
(see [10]). The statistic M, can be seen to be asymptotically equivalent to the
sum of the “likelihood ratio statistics” (for testing “independence” in each table)
for the s™ tables, and the asymptotic distribution, when Hy, is true, of M, , will
be x* with s"(s™ " — 1)(s — 1) = s™ — s™* — "t + 5" degrees of free-
dom. It is also possible to “split”’ the m-tuple u into an (m — n — 1 — r)-tuple,
an n-tuple, and a (1 + r)-tuple (0 < r < m — n — 2); thus obtaining s"
“contingency tables,” each s™ """ X §*" (see [10]). The sum ,M,, of
the likelihood ratio (or any equivalent goodness of fit) statistics for the s tables
will have an asymptotic mean value, when H., is true, of

8n(sm—n—l—r _ 1)(sl+r _ 1) — sm _ sm—r—l _ 8n+l+r + 8”.
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but the asymptotic distribution will not be x* unless » = 0 or m — n — 2.
It can be seen, using the methods developed in the present paper, that the statis-
tic .M. will be asymptotically equivalent, when H, is true, to

m—n—1

);1 RO M pi1rm1-n

where
(A for 0<A=0v
hA) =<v for v=EANSEm—n—v
m—n—2A) for m—n—v=AN=m-—n—1,

and v = min [r+1, m —n —r — 1]. Thus, the asymptotic distribution
(N — ) of ;Mm,. (or the corresponding asymptotically equivalent goodness
of fit statistics), when H., is true, is

m—n—1

* Kymlz/(R(N))] .

This result generalizes the earlier published results concerning the asymptotic
distribution of the likelihood ratio statistic M, (or the corresponding asymp-
totically equivalent goodness of fit statistics) for testing the null hypothesis
H', within H,_, , since ;M , for r = 0 or m — n — 2 is asymptotically equiv-
alent to M., . (see [6], [10]). A proof of this result will not be given since the
method of proof is quite similar to that presented here for the asymptotic dis-
tribution of ¥mn .

2. The Case n = —1. Let us first consider the case of equiprobable or perfect
randomness (n = —1). We have that H., = H,=HY , and Yoy = Yty .
Thus, Conjectures (a) and (b) must be in agreement whenn = —1. Forn = —1,
Conjecture (a) states that the asymptotic distribution of Yl is

m

)‘:1 U’X)(x/x) ’
while (b) states that the asymptotic distribution of ym, _; is
m—1
* Kooy (x/N*K._1(x/m) .
A=1
Thus, we must define K, ¢qy(x/m) as K,_1(x/m);i.e., K —n2-1(x/m) as K,_1(x/m).
It should also be mentioned that ¥ . and Yl are defined only form =2 n + 1
0

(with m = 1, for n = —1), and the symbol * K is to be understood as the
=1

atomic distribution that has the total probability 1 at the value z = 0. Since
H., is a special case of Ho, results for n = —1 will follow directly from results
forn = 0.



1126 LEO A. GOODMAN

3. The Case n = 0. In the present paper, it will be convenient deal to with
circular sequences, so that (for m = 2) >.;fij = >.;fii = fi . A more general
statement (for m = 2) can be seen to hold for circular sequences (see [6]). A
method of modifying results obtained for circular sequences so that they can
be applied to linear sequences has been given in [9], and this method can be
used to indicate that results analogous to those presented in the present paper
will hold for linear sequences. The reader is cautioned that formulas for cir-
cular sequences can not be applied directly to linear sequences (see [9] and
Corrigenda to [6]). It will also be convenient herein to replace ¥s.. and e
by their asymptotically equivalent forms (when H, is true)

'I'rzn.n ~ 2Zufu log (fu / fu.n),

and Ymn = 2 fu log (fu / fan), respectively.

Let us first consider Conjecture (a) whenn = 0. For m = 1, this conjecture is
obviously correct. For m = 2, this conjecture was first stated in [8] and was
proved by Dawson and Good [4] and by Goodman [10]. The analogous result
for the asymptotically equivalent form of ¥2 was proved by Hoel [11].

For m = 3, Conjecture (a) states that

Vso = 2, (o — Fifi e/ N/ (fs £ o/ N®)

15k
~ 2 00 ?
~ Xs(s—1)2 + X(s—1)2,

where the symbols x; denote independent random variables each having a chi-
square distribution with ¢ degrees of freedom. (The f:f;fi/N* used above is not
the exact expected value, but is an asymptotic approximation; such asymptotic
approximations for expected values will be used throughout.) We have that

Vo R 2 Z;‘ foin 1og [fin/ (fi fi fo/ N))
=2 gk:fﬁk log [fin/(fi fa/N)] + 2 ’_Zkfﬂc log [f/(fi fi/N)1 .

The second term in the sum is asymptotically x{s_12 , by the result for m = 2.
The first term in the sum can be split into two parts, thus obtaining

2ij;fiik log [fiu/(fii fue/f)] + 2 Xn}fﬁ log [f:; /(f: fi/N)] .

By the results in [10], for the test of H 1 within H; , the asymptotic distribution
of the first part is x.e-y? ; the asymptotic distribution of the second part is
Xts—? (by the results for m = 2). The first part is asymptotically independent of
the second part. This can be seen from the fact that their sum has the same
asymptotic behavior, under H o, as the standard likelihood ratio statistic used in
testing independence in an s* X s contingency table (see the test of Hj within
H: in [10]), and the two parts in the sum are obtained in the same manner as
the partitioning of the likelihood ratio for the contingency table into two inde-
pendent parts (see p. 429 in [3] and the articles referred to therein; rigorous
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proofs of some of the published results concermng partitioning of contlngency
tables are given in [12]%). The first part is obtained by separating the s* rows
into s sets of s rows, thus obtaining s contingency tables, each s X s, and usmg
the combined likelihood ratio for the s tables to obtaln asymptotically a x,(,_l)z
distribution (which leads to a test of H; within Hs in [10]); the second part is
obtained by combmmg the s rows in each set to obtain an s X s contingency
table, and using the likelihood ratio for this table to obtaln asymptotically a
X{a—n? distribution (which leads to a test of Ho within Hj in [10]) Slnce the sec-
ond part of the first term in ¥ is equal to the second germ in Yia , their sum
is asymptotically 2x%_1,” . Thus we have proved that ¥s¢ & Xoen? + 2xten)? -
For m = 4, Conjecture (a) states that

Yio = ”EM (Fiier — Fi Fi Fe S/ NV (f: 53 fu i/ N®)

R Xare—nt + 2Xe-n? + 3X(n? -
We have that
vie R 2 Zk:lf.'}kz log [fiser/ (fi fi fu f1/N¥)]
L3 .

=2 g:“fmz log [fijer/ (fi firt/N)] + 2 %;fﬂcz log [fas/ (i fe fi/ NP .

The second term in the sum is yag and is asymptotically x%u_ny2 + 2x%epy2 »
by Conjecture (a) for m = 3. The first term can be split into two parts, thus ob-
taining

2 Z i 1og [fims/ (fim Fina/Fi)] + 2 E Siie log [fiin/ (fs fn/N)] .

By the results in [10] for the test of H, Wlthm Hj, the first part is asymptotically
Xa2(e_n? ; the second part is asymptotically xts2_1 -1 (by the results form = 3).

The two parts are asymptotically independent. This follows from the fact that
their sum has the same asymptotic behavior, under H o', as the standard likeli-
hood ratio statlstlc used in testlng independence in an s* X s contingency table
(see the test of Ho within Hj 3 in [10]), and the two parts in the sum are obtained
in the same manner as the partitioning of the likelihood ratio for the contingency
tab]e into two independent parts. The first part is obtained by separating the
s* rows into & sets of s rows, thus obtaining §* contmgency tables, each 8 X s,
and using the combined llkellhood ratlo for the s’ tables to obtain x22(s_1?
(which leads to a test of Hz within Hj in [10]) the second part is obtained by
combining the s rows in each set to obtain a,n s* X s contingency table, and usmg
the hkellhood ratio for this table we get x{s2_1ye_1 (Which leads to a test of Hp
within H» in [10]) Since the second part of the first term in ¥4s can be written
a8 X{at1y—)) = Xoe_n? + x(,_l)z (see the results for m = 3), and since the sec-
ond term in Yieis Yao & Xaen? + 2Xte—p? (Where the Xoenz and the x},_pe

* T am indebted to T. W. Anderson for bringing [12] to my attention.
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expressions are identical with those appearing in the second part of the first
term), their sum is asymptotically 2x2.—n2 + 3x{s—nz . We have thus proved that

*2 2 2 2
Va0 X Xa2-1? + 2Xs—12 + 3X(e-12 .

Form = 5,6, - - -, the same method of proof applies for Conjecture (a) when
n = 0; it is easy to see that ¥u5 is asymptotically equivalent, under Hp, to a
weighted sum of asymptotically independent likelihood ratio statistics.

Let us now consider Conjecture (b) when n = 0. We have

Vo 2 ;f& 10g (fu/fu,m)
=2 {Zufu 10g (fn/f:m) + E“fu lOg (f:‘,n/fu,n)}
R Ymn + 2 Zufu 10g (£ n/fu,n)-

For m = 1, f¥o = f., and the second term is 2_;f: log (f;/Np:), which is
asymptotically x5_; by the standard statistical theory for goodness of fit tests.
For m = 2, the second term is

2 3 fulog (f2 affes) = 2 3 furlog [(Fe s/ N/ Np i
=4 Zfs log (f:/Nps),

which is asymptotically 2x{,_) . The first term Yo is asymptotlcally independent
of the second. This follows from the fact that the sum of yso and 2 fi log
(fi/Np;) is the likelihood ratio obtained in testing the null hypothesis H, that
the transition probabilities for the Markov chain are p;; = p; = pj (specified)
within the hypothesis Hi (i.e., 2D :;f:; log (fij / fbi) = Xto1y? + Xfopy =
xa—1 (see [1])), and the two terms in the sum are obtained by partitioning the
likelihood ratio into two independent parts (the independence of the two parts
follows directly from an examination of the asymptotlc behavior of the f;; (see,
e.g., [91)). The first part is asymptotlca]ly Xts—1y2 and tests the null hypothesis
H;, Lo that p;; = p; (unspecified) within H;; the second part is asymptotlcally
x(,_n a.nd tests the null hypothesis H, that p; = p} (specified) within Hg . Thus,
Y0 & X(o—n? + 2Xo—1) -
For m = 3 the second term is

2 Zu:fu log(fi o/fu0) = 2 iJZ};fm log [(f: 1§/ N*)/Np: p; pi)
=6 S filog (N,

which is asymptotically 3x(,—) . The first term is independent of the second, by a
similar argument to that presented for m = 2. Thus,

2 2 2’ 2
¥3,0 R Xee-1? + 2X(s—12 + 3X(e—1) -
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Form = 4,5, 6, ---, the same method of proof applies for Conjecture (b) when
n = 0.

We have thus given an altogether different method for proving the results
obtained in [2] for » = 0; the results in [2] were based on the theory of finite-
dimensional vector spaces. Since H., is a special case of Hy, the results given in
the present section also prove that Conjectures (a) and (b), when properly inter-
preted, are true for » = —1, which generalizes the result proved in [5] for n =
—1 and s prime. The different method presented in the present paper may fur-
ther the understanding of the results in [2] and [5].

4. The Case n = 1. Let us now consider Conjecture (a) when » = 1. For
m = 2, the conjecture is obviously true. For m = 3, we have that

Vil A 2 g_k:fijk log [fiin/ (fii fanlf] R Xowo—n?
by the results in [10] for the test of Hy within H;. For m = 4, we have that
Vi1 A2 “Z“ SFiiwr 10g {fisw/ i f fir/ (f3 f)l}
=2 ;“ Fisea 10g [fiau/ (Fise S/ S)] + 2 ZZ”; Sfiielog [fin/ (fii fin/F)]
+ 2 MZI Finr Log [fina/ (fin fur/Fi)]-

By the results in [10] for the test of Hj within Hj , the first term in the sum is
asymptotically x’ze_2, and the second term is asymptotically Xoe-nz (see

= 3). The first term is asymptotically independent of the second. This follows
from the fact that their sum can be regarded as the combined likelihood ratio
used in testing independence in s contingency tables, each s* X s (see the test
of Hy within Hj in [10]), and the two terms in the sum are obtained by partition-
ing the likelihood ratio for each of the s tables into two independent parts. For
each of the s tables, the first part is obtained by separating the s’ rows into s
sets of s rows, thus obtaining s new tables, each s X s, and using the combined
likelihood ratio for the total of s tables to obtain xj2¢_12 (Which is a test of
H; within Hj in [10]) ; the second part, for each of the original s tables, is obtained
by combining the s rows in each new table to obtain an s X s table and using
the likelihood ratlo for thls table (there are s such tables) we get x>e—n? (which
is a test of H; within Hs in [10]). The third term in the sum is asymptotically
xie—n2 (see m = 3), and it is equal to the second term in the sum. Thus we have
Vi1 R Xore-n? + 2X3(s—1)2 .

For m = 5, 6 , the same method of proof applies for Conjecture (a)
when n = 1; ¢myis asymptotlca,lly equivalent to a we1ghted sum of asymptoti-
cally 1ndependent likelihood ratio statistics, under H;i.

Let us now consider Conjecture (b) when n = 1. We have that

Vna R Yma + 2 Eu:f" log (fi1/fu)-
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For m = 2, f:l = f, ; thus, the first term t//::,’l = 0, and the second term is
2 ;i fi; log (fij / Npipi;), where the p; are the stationary probabilities for the
first order Markov chain with constant transition matrix P = [p;;]. Conjecture
(b) states that Y3, = xte—n? + 2xtesy . We could write

Vii R 2 Z fiilog [fu/ (f: fi/N)] + 2 %;fe,- log [(f: fi/ N)/(Np: p.i)l.

The first is not asymptotically x{,—1?, except when n = 0; and the second
term is not asymptotically 2x¢,—1) , except when n = 0. It is easy to see that
Conjecture (b) will not hold true for n = 1, nor for n > 1.

Conjecture (b) will now be modified and this modified version will be proved
true. This modification, for the special case n» = 1, was first mentioned to the
author by P. Billingsley in a private communication. In this communication,
he mentioned that he had also obtained independently a proof of Conjecture (a),
for the case n = 1, by very different methods from those used in the present
paper, and that his results for Conjecture (a) and the modified Conjecture (b),
when n = 1, could be extended to the case when n > 1, although the detailed
asymptotic distributions were not given in the more general case [13].

Let Yoy = D> u(fu — fen)*/faa, where fi, is the expected value of f, in a
new sequence of length N given H; and f.,; i.e., fux = fu,lI7mt Pujusys - Then

Yt & Y + 2 ;fn log (fus/fe)-

When m = 2, the first term :[/;: in the sum is zero and the second term is
2 %fc’f log (fii/fs pis),

W,}}ich is asymptotically x2,—1y (see [1]). Thus. the asymptotic distribution of
Vo1 s Xoe - .

When m = 3, the first term 3, is asymptotically x5e-n2, and the second
term is

2 %;fﬁk log (fi; f/fi fi pii pi) = 4 %}fe,- log (fii/fi pii),

which is asymptotically 2x2¢_1, . The first term leads to a test of Hy within Hy,
and the second term leads to a test of H; within H1 ; it can be seen that the
two terms are asymptotically independent under H;. Thus, for m = 3, the
asymptotic distribution of ¥m;, when H, is true, is

-2

)\*l Kao\)(w/ )\)*K,(s_n[x/ (m — 1)].
This result can be proved for m = 3 by the same method as given here for m =
3. Thus, a modified version of Conjecture (b) holds true for n = 1.

6. The Case n = 2. Let us now consider Conjecture (a) when n = 2. For
m = 3, the conjecture is obviously true. For m = 4, we have

LS Zk:l Fima log [fima/ (Fim fim/fin)] = XFree—n2
17
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by the results in [10]. For m = 5, we have
Ve SE) ij%?m Fiitim 10g [fisuim/ (fiie finr Frrm/ i fi)]

=2 ,-,%:m Fistim 108 [ fiiam/ (fisur Fiam/Fix)] + 2 ;“ Fii 10g [fia/ (Fiin Fina/Fn)]
+2 g-::m Fitim 108 [firrm/ (firr furm/Fr)).

By the results in [10], the first term in the sum is asymptotically x3sc_yp2 , and
the second term is asymptotically x32¢_ns (see m = 4). The first term is asymp-
totically independent of the second; this follows by an argument similar to
those appearing earlier here. The third term in the sum is asymptotically

2
Xs2(s—1)2

(see m = 4), and it is equal to the second term in the sum. Thus, we have
'/':; =~ Xfﬂ(.s-l)z + 2X32(3—l)2 .

For m = 6, 7, ---, the same method of proof applies for Conjecture (a)
when n = 2. Conjecture (b) will not be true for n = 2, as it was not for n = 1.
A modification of Conjecture (b) for n = 2 will now be given, which is similar to,
although different from, Billingsley’s modification of this conjecture for the
special casen = 1.

Let yme = > (fu = fa2)’/fuz, where fu is the expected value of f, in a
new sequence of length N given Hy and fu,u,; i, foz = fujug Lot Dusus iviss
where Py 4,4, is the second order trans1t10n probablhty that X; = u; 3 glven
that X, 1 = u and X, = w, Then Yz & Uma + 2D ufu log (fas/fus).
When m = 3, the first term 1//32 in the sum is zero and the second term is
2 > ik fin 1og (fi/fiipise), Wh.lch is asymptotically x’2e—1 (see [1]): Thus, the
asymptotic distribution of Yoz is x,z(,_l)

When m = 4, the first term ;s is asymptotically x?2¢p?, and the second

term is
2 E fima 1og (fim finr/fin fis Dise Piv)) = 4 g.‘k,fﬁk log (fin/fis Dise),

Whlch is asymptotically 2x>2¢_y . The first term leads to a test of H; within
Hj3, and the second term leads to a test of Hy within Hj ; it can be seen that the
two terms are asymptotically independent under H,. Thus, for m = 4, the
asymptotic distribution of ¥me, when H, is true, is

m—3

)\:l Kﬂ()t)(x/)‘)*Ksz(s—-l)[x/(m — 2)]

This result can be proved for m = 4 by the same method as given hereform = 4.
Thus, a modified version of Conjecture (b) holds true for n = 2.

6. The General Case. The method of proof used in the preceding sections for
n = —1,0, 1,2 can also be applied when n = 3, 4, -- - . In this way, Conjecture
(a) can be proved in the general case n = —1 and the following modification of
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Con]ecture (b) also holds in the genera,l case. Let Ymn = 2w (fu — o)/ fum s
where f, . is the expected value of f, in a new sequence of len h N given H,
and fuus...un (0 = 1). Then, the asymptotic distribution of ¥m», when H, is
true, is

m—n—1
):1 K00 (@/N*K sno—p[z/(m — n)].
3

If we define lllfr:o as Yh,0, then Conjecture (b) for n = 0, is identical with the
modiﬁed version, and it also holds true. For n = —1, H_; is a special case of
Hy , and the modified version of Conjecture (b) can be apphed with n taken as
zero. The reader will note that the asymptotic distribution of Ynin is moOt mathe-
matically independent of #; nelther was the asymptotic distribution of ¥ s
The result presented here for Y generalizes Billingsley’s result for n = 1.

A direct proof of these results could be given for the general case; this was not
done here, since the proof proceeds along the samé lines as the earlier discussion
herein, and the results may be simpler to understand by considering first n = 0,
m=1234-:---;n=1m=2,3,4 :---;n=2,m=3,4,---; ete.

In closing, we mention another conjecture by I. J. Good. In [6], the author
conjectures that, when H,, ; is true, the variables —2 1og Am_1,m (m = 0, 1, 2,
--+) are asymptotically independent, Where Am—1,m is the ratio of the maximum
likelihood given H,,_; to that given H,, If this con]ecture were true, than an
elegant proof of some results for testmg H within H, would be available (see
[6]). We have that —2 log Am_1,m = 1[/,,,+1 i, When H,, ; is true. The asymp-
totic independence of the likelihood ratios follows by the same kind of argu-
ment presented earlier in the present paper for the 1ndependence of some of the
statistics considered (see, e.g., the reason why ¢4 2 and ‘//3 1 are asymptotically
independent, given n = 1, in the discussion here of the casem = 4 and n = 1).

The reader is referred to [13] for results that are closely related to some of
those presented here, although the general approach and methods are very dif-
ferent. Also, some of the work in [14}], [15], and {16] has some (but not much)
relation to the present paper.
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