SYMMETRIZABLE MARKOV MATRICES
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Introduction. Suppose that the evolution of the state probabilities p:(¢) of a
Markov process is governed by the system of differential equations

dp; < .
(1) Hgt=,Z.;Qﬁ7”'(t)» 'L=1)"'7N)

where Q; represents the transition rate from state S; to state S; ([1], p. 235). In
many applications one is interested primarily in knowing the equilibrium state
probabilities x; defined by x; = lim:.. p:(t), which, if they exist, can be obtained
by solving the system of homogeneous linear equations

N
) ,EIQ,-,-w,-= 0, i=1,2---,N.
FED

While (2) can be solved in principle (and in practice if NV is not too large), the
solution in general does not fulfill the ultimate desideratum of being susceptible
to representation as a simple function of the transition rates Q;;. If the states
are simply ordered and a transition from a given state S; can occur only to a
neighboring state S;_; or S;;; then the equilibrium probability x; satisfies the
following simple formula

®) mo= MM N
K2 p3 c cc Higd

where \; is the transition rate from state S; to state S;4; and ui , the- transition
rate from state S..1 to state S;, and x; is chosen so that

N
(@ Z; m o= 1.
Processes of this sort, with simply ordered sets of states, are called birth and
death processes. The discussion of Section 1 below deals with a class of Markov
matrices @ which includes the set of birth and death matrices and allows repre-
sentations analogous to (3) for the equilibrium probabilities. In Section 2 it is
shown that all the matrices in this class have non-positive characteristic values
and in consequence of this fact, the difference between the state probability
pi(t) and the corresponding equilibrium probability ; is majorized by a function
of ¢ and the set of initial state probabilities p;(0). In Section 3 the foregoing
theory is illustrated by an anisotropic random walk.
The following notions and notations are used. Let Q be an N X N matrix.
The graph G(Q) associated with @ consists of vertices V;, V,, ---, Vy and of
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directed line segments joining certain of the vertices. The directed line segment
ViV connecting V; to V; belongs to G(Q) if, and only if, Q:; = 0. If ky , kp, - - - ,
k. is a sequence of indices, the product of matrix elements Q,x; Qioks * - + Qr,_sk,
shall be denoted by the symbol [kik: - - - k,]. V; shall be said to be connected to
V ; if there exists a sequence of indices ky , k2, - - - , k, such that [jk &, - - - k,i] 0
If u is a sequence of N positive numbers, l(u) shall refer to an inner product
space of sequences of N complex numbers with the inner product given by

(z,y) = Zy-lxigiﬂi .

Every N X N matrix represents an operator on L(u). A matrix A is called l(u)-
symmetric if (Az, y) = (z, Ay) for every = ¢ () and every y & L(u).

1. The equilibrium probabilities. Let u be a sequence of N positive numbers.
It is clear that a matrix A is ly(s)-symmetric if, and only if, for every pair of
indices 7 and 7,

(5) Aijpi = Ajipj .

What conditions must a matrix 4 satisfy in order to be lL(u)-symmetric for
some sequence u? The answer is that the matrix is characterized by the “loop
condition”, i.e., the product of matrix elements around a closed loop is inde-
pendent of the direction in which the loop is traversed. This statement is made
precise in

THEOREM 1. A matriz A with non-negative off-diagonal elements A;; such that
Aij #~ 0 implies Aj; 7% 0 is L(u)-symmetric for some sequence u of N positive
numbers if, and only f, for every index i and every sequence of indices ky , ks , - - - ,
k.,

6) [ekiks - - - kst] = [dhks— - - - Ki).

Proor. Suppose A4 is L(p)-symmetric. A straight-forward induction based on
(5) shows that (6) holds.

Now suppose that (6) holds for every sequence of indices (k; , k2, --- k,) and
every index ¢. The proof shall be based on the construction of a u sequence of N
positive numbers such that A4 is l(u)-symmetric.

By hypothesis, if V,;V; is in G(A4), then so is V;V;. Thus G(4) is the union of
graphs G(A) = Gy + G: + --- + Gn, which are pairwise disconnected, each
one separately being, however, a connected graph.' Let G; be a particular one
of these subgraphs and V; one of its vertices. Let u; > 0 and for every V; ¢ G;
define

@

_ likike - kgl
#] f]‘k‘ ka—l ... kl'if I“"- b

where the chain of vertices in G; with indices &y, ks - - - , k, connects % to 5. It is
clear that (6) guarantees the uniqueness of u; once u; has been chosen. For, sup-

! A graph G is called connected if a) in case the line V..V, € G then also V,V,, ¢ G and b)
every pair of vertices is connected by at least one chain of lines.
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pose ki , ks y "ty ke were another chain connecting 7 to j. Let
r likiks - Kag)

Bj = oo Fq M.

[jkt kt—l e kli]
(6) requires that
kb - -+ Koglllekey - -« oid) = [is - - - Keglljk, - - - Ford]

and thus, u; = u;. The procedure is repeated for all G;. For the resulting se-
quence u it is apparent that all u; > 0 and that (5) is satisfied.

CoroLLARY 1. If A has non-negative off-diagonal elements and the graph G(A)
conststs of only one connected set and (6) s satisfied, then there exists a unique se-
quence p of positive numbers such that A 1s L(u)-symmetric and

8) pit ozt e+ our = L

In addition to possessing non-negative off-diagonal elements, a Markov matrix
Q has the property that

© Q= —2 Qi

and thus that the sum of all of the elements in a column vanishes. A consequence
of this fact is

THEOREM 2. If a Markov matriz Q is lL(u)-symmetric for some sequence u satis-
Sying (8)1 and ts graph is connected, then its equilibrium probabilities m; are given by
T = MKi .

Proor. By hypothesis (5) holds: Q;; ui* = Qj; ui'. Summation of both mem-
bers with respect to ¢ and use of (9) complete the proof. The preceding results
are summarized in

TareorEM 3. If the evolution of state probabilities of a Markov process ts governed
by (1) and transition is possible between any pair of states in one or more jumps
and for every i and every set (k.) of indices, [i kiks -+« ks 1] = [¢ Kooy -+ - Ky 2],
and Q;; ¥ 0 implies Q;; = 0, then the equilibrium probability = is given by

(10) mr=[fss— 1. 1ddm;/[i12 - - - &f],

where the initial state has been chosen arbitrarily and the set of states Sy, Sz, -+ ¢,
S, has been picked so that the product in the denominator does not vanish. Finally,
of course, (10) together with D i wx. = 1 prescribes a unique set of equilibrium
probabilities.

2. The approach to equilibrium. If a transition rate matrix Q is l;(u)-symmetric
then it represents a symmetric operator on l(u). But every characteristic value
of Q is of the form Mz) = (Qz, z)/(x, z) for some sequence z ¢ ly(u). Therefore
M) = 0 implies that all characteristic values of  are non-positive. We have

(1) Qr,y) =1/2 ,2_1 Z; (Yims — Yi ) Qijzi — Qjixs),
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but Q:;u; = Qjm; . Therefore,
N N
@z, y) = —1/2 Z‘i JZ; Qii/us (yips — yim) @ims — i),

and thus Mz) = 0. The result is stated in

TueoREM 4. If a Markov matriz s ly(u)-symmetric then all of its characteristic
values are non-positive. Zero s the largest characteristic value.

The importance of the characteristic values of Q lies in the fact that they con-
trol the approach to equilibrium. This fact is elucidated in

TrEOREM 5. Let Q be an l,(u)-symmetric Markov matriz with connected graph.
Let = be the sequence of equilibrium probabilities. Let p(t) be the solution of (1) with
initial value p(0). If —\y and —\,, are.the largest and smallest negative character-
stic values of Q then

exp(—Ant) | pO)—= || = || p()—= || = exp(—Audt) || pO)— ||
Proor. Letting r(t) = p(f) — =, (1) implies that
dllr|® _ ( dr) _
‘ —J{——' =2 r, Zi—t- = 2(7', Qr).
Since p(t) = @ « + ¢, where (¢, x) = 0, we have
a= (), ) = 2iua pt) mm = 2aam) =1,

and thus r(¢) is orthogonal to . Hence, on identifying characteristic values by
their variational properties (see, for example, (2], p. 230),

2
~an = 2min (4, 00/l¢ I s XL /)17 5 2min @, @0/141* = -

Integration and identification of r(f) and the constant of integration complete
the proof.

3. A homogeneous anisotropic random walk on a finite lattice. Suppose a
particle moves about among the points of a finite 3-dimensional lattice and that
the conditional probability that at time ¢ + At it is at point P’ = (z1, 3, 3)
having been at P = (2, 2, x3) at time ¢ is given by:

Mg for zi=z+ 1 Ty = Tp T3 = 1
My “ zm=2:—1 123=u1 T3 = 1,
My “ z=um Ty =234 1 Ty =
My “ zm==z = —1 3=
My, “ z1=m2 T2 = 2, zy =23+ 1
M, “ zi=ax Ty = zs =23 — 1

0 otherwise.
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Transition rates to points other than those of the lattice vanish. The resulting
process is l(u)-symmetric and thus if , denotes the equilibrium probability of
the particle’s being at P = (z1, 22, 73) and m, that of being at the origin, then

. = (&) (Afz) (E) .
? w) \Ms ¥

It is a pleasure to acknowledge the help provided through stimulating con-
versations with my colleagues J. Tukey and V. E. Benes.

(Added in proofs.) There is considerable overlap between the work reported
here and the results (particularly Theorem VIII) of the Research Announcement,
“Integral Representations for Markov Transition Probabilities,” by D. G. Ken-
dall, Bulletin A.M.S. 64 (1958), 358-362. The notion of symmetrizability was sug-
gested to the author, as it seems to have been to D. G. Kendall (who calls it
reversability), by the spectral decomposition of Birth and Death Markov matrices
effected by Kac [(1)], Ledermann and Renter (7], and Karlin and McGregor [2].
(References are to the bibliography of the above cited announcement.)
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