UNBIASED SEQUENTIAL ESTIMATION FOR BINOMIAL POPULATIONS!

By Morris H. DEGroot
Carnegie Institute of Technology

1. Introduction and summary. The subject of minimum variance unbiased
estimation has received a great deal of attention in the statistical literature,
e.g., in the papers of Bahadur [2], Barankin [3], and Stein [14]. The emphasis
in these papers has typically been placed on the existence and construction of
minimum variance unbiased estimators when the sampling plan to be used was
given in advance.

In this paper, criteria are developed for the selection of an appropriate sam-
pling plan for the family of binomial distributions. Thus, independent observa-
tions are to be taken on the random variable U so distributed that

(1.1 PriU=1|p} =p, Pr{U=0|pl=1-p=y,

where p lies in the open interval 0 < p < 1, and the value of a given function,
g(p), is to be estimated. The problem considered here is that of determining a
sampling plan and an unbiased estimator of g(p) that are optimal, in some sense,
at a specified value, po , of p. Optimality will depend, not only on the variance of
the estimator, but also on the average sample size of the plan. A sampling plan,
S, -and estimator, f, will be considered optimal at po if, among all procedures
with average sample size at po no larger than that of S, there does not exist an
unbiased estimator with smaller variance at po than that of f.

The basic tool to be used is the information inequality (see Lemma 2.7 and
the discussion following it) which provides a lower bound for the variance of an
estimator in terms of its expected value and the average sample size of the sam-
pling plan. If, at po, this lower bound is attained for a particular estimator and
sampling plan, it may be immediately concluded that they are optimal at po .
Such an estimator is said to be efficient at p; .

In Section 2, various definitions, assumptions, and fundamental facts to be
used throughout the paper are collected.

In Section 3 it is shown that the single sample plans and the inverse binomial
sampling plans are the only ones that admit an estimator that is efficient at all
values of p.

In Section 4 some techniques are given that are often useful in the analysis of
inverse binomial sampling plans.

In Section 5 relationships between the average sample size of a sampling plan
and the functions of p that are estimable optimally are explored.
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In Sections 6 and 7 it is shown that there can exist two distinct sampling plans
with the same average sample size for all p and some comparisons are made of
such plans.

In Section 8 a new characterization of completeness is given for bounded
sampling plans and it is shown that the dimension of the linear space of unbiased
estimators of 0 can be determined simply by counting the number of boundary
points. It is further shown that for a wide class of plans, the estimators that are
efficient at a given value of p do not have uniformly minimum variance, although
non-trivial uniformly minimum variance estimators do exist.

After this paper had been accepted for publication I learned that R. B.
Dawson had obtained expression (4.13) and Theorems 8.2 and 8.4, as well as
various -other interesting results related to the material of Section 8, in his
Ph.D. thesis, “Unbiased tests, unbiased estimators, and randomized similar
regions,” Harvard University, May, 1953.

2. Definitions, assumptions, and fundamental facts. A formal definition of
the sampling plans to be considered in the paper will now be given. It will be
helpful to keep in mind the interpretation of a sampling plan as a rule that
specifies at each stage of a sequential sampling process whether sampling is to
cease or another observation is to be taken. Furthermore, it will be helpful to
visualize a sequential sample as a path in the Euclidean plane—the path starting
at the origin and being extended at a given stage one unit in either the horizontal
or vertical direction according as the observation at that stage is 0 or 1. Further
discussion of these interpretations will be given below. A formal description of
binomial sampling plans was first given by Girshick, Mosteller, and Savage in
[7], and the following discussion utilizes several of the concepts presented in
that paper and the paper of Lehmann and Stein {11]. In what follows, the word
point refers only to points v of the Euclidean plane whose coordinates X (v)
and Y (y) are non-negative integers.

A sampling plan is a function S defined on the points v, taking only the values
0 and 1, and such that for the point 8 with coordinates X(6) = 0 and Y(6) = O,
S(6) = 1.

A path to v is a sequence of points = vg,v1, * -+ ,v» = v such that S(y;) = 1
fork =0,1,---,n — 1 and either

X(yes) = X(y)+ 1

2.1
@D Y(ves1) = Y (),
or

k+1) = X(ve
2.2) X(vk41) (vs)

Y(ver) = Y(we) + 1.

Thus, each point of the sequence is either one unit to the right or one unit above
its predecessor.
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Under a given sampling plan, v is a boundary point if there exists a path to ¥
and S(y) = 0. It is a continuation point if there exists a path toy and S(y) = 1,
so that there is also at least one path “through’ v. It should be noted that the
origin 6 is always a continuation point.

A point v is an inaccessible point if there does not exist any path to v. Thus,
every point can be uniquely classified as a continuation, inaccessible, or boundary
point.

The sample size N(v) of any point v is the sum of its coordinates, X(v) 4+ Y(y).

The boundary B is the set of all boundary points.

Clearly, the values of S at inaccessible points are irrelevant to the sampling
process. However, some discussions to be given later will be simplified if it is
assumed once and for all that S(y) = 1 at all inaccessible points. It should be
clear that under these conditions S is completely determined by the set of
boundary points.

The sampling plans just discussed are somewhat restricted in two respects.
The first is that for a given sequence of observations U, , - -+ , Un the decision as
to whether another observation is taken depends only on the point v reached by
the sample path prescribed by Uy, : -+, Un ; i.e., the decision depends only on
m and D _jm; U;. The justification for considering only such plans is provided
by the fact that the sequence Y juy Uj, m = 1,2, ---, is both sufficient and
transitive. A thorough discussion of these concepts is given by Bahadur in [1].
Similar considerations, especially the theorem of Blackwell [4], justify the defi-
nition of an estimator, to be given below, as a statistic that depends on the
observed sample sequence only through the boundary point reached by the
sequence.

The second restriction on the sampling plans is that they are non-randomized.
A randomized sampling plan is a function S defined on the points v such that S
may take any value in the closed unit interval. If, at a given stage in the sampling
process, the point v is reached, then another observation is taken with proba-
bility S(y) and sampling is terminated with probability 1 — S(y). In this paper,
only plans for which S(y) is O or 1 are considered.

The probability of reaching a particular boundary point v is K(v)p""¢*”,
where K(v) is the number of distinct paths to v.

A sampling plan is said to be closed if
(2.3) 2 K@)p" ™" =1

yeB
for all p, 0 < p < 1. Only closed plans are considered.

An estimator f is a real-valued function defined on B. The only estimators to
be considered are those for which

(2.4) E(f|p) = ): FNE )P P

is absolutely convergent.
A sampling plan is complete (boundedly complete) if the only estimator (bounded



BINOMIAL SEQUENTIAL ESTIMATION 83

estimator) f, such that E(f|p) = O for all p, is the one defined by f(y) = 0
forally ¢ B.

A sampling plan is simple, if, for each positive integer m, the continuation
points of sample size m form an interval on the line X(y) + Y(y) = m.

The basic facts concerning completeness follow. Lemma 2.1 was developed
by Girshick, Mosteller, Savage, and Wolfowitz in a sequence of papers [7], [17],
[12]. Lemma 2.2 is due to Lehmann and Stein [11].

LemMa 2.1. A necessary and suffictent condition for a closed sampling plan to
be boundedly complete s that it be stmple.

LeMMa 2.2. A necessary and sufficient condition for a closed plan to be complete
is that it be simple and that the conversion of any boundary point to a continuation
point destroy closure.

The functions defined on B and taking the values X(v), Y(y), and N(y) are
denoted by X, Y, and N, respectively.

The following conditions are assumed to hold throughout the paper:

(i) For every sampling plan to be considered,

(2.5) E(N?|p) = Z; N*()K(v)p" "¢

is uniformly convergent on every closed interval of values of p;
(ii) For every estimator f to be considered,

(2.6) g) = E(f|p) = ;wf(v)Kw)p””q"“”

is differentiable termwise in the open interval, 0 < p< 1, and the derived series
is absolutely convergent.

A well-known, elementary, and useful sufficient condition for the termwise
differentiability of the series in (2.6) is that the formal termwise derivative be
absolutely uniformly convergent on every closed subinterval. This condition is
in turn very often verified by a dominance argument (see, e.g., [5], pp. 392,
396).

Some easy but important consequences of the above assumptions will now be
given. Some of the results are well-known and have been given elsewhere.

Lemma 2.3. E(Y? | p), E(X*|p), and E(XY |p) all exist and are at most
E(N*| p).

ProoF. Since 0 £ X < Nand 0 £ Y £ N, the results follow from (i).

LeEmMA 2.4. N, X, and Y, considered as estimators, satisfy (ii).

ProoF. E(N | p) = D 48N K @)p" "¢ ™. The formal termwise derivative
of this series is less, in absolute value, than

L > NE@)p .
Pq ~veB

It follows from (i) that this series converges uniformly on every closed interval
and, hence, according to the remarks following (ii), E(N | p) is termwise differ-
entiable. The proofs for X and Y are similar.
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Lemma 2.5. If f satisfies (ii) and E(f | p). = g(p), then E[(¢Y — pX)f|p] =
pag’(p)-

Proor. Termwise differentiation of the series for g(p) yields the result.

Lemma 2.6. ¢E(Y | p) = pE(X | p) = El(qY — pX)’|pl = pgEWN | p).

Proor. These results can be derived directly from Lemma 2.5. However, they
are well-known and are basic to various aspects of sequential analysis. As a
result, they have been derived under various conditions; e.g., by Wald in the
Appendix of [16] as consequences of the fundamental identity of sequential
analysis, and by Wolfowitz in [18].

Lemma 2.7. For any estimator f,

.. palg’ @)I*
(2.7) Var (f|p) = ENp)
Equality holds at a particular value of p, say po , if and only if there exist constants
a and b such that f(y) = algY(y) — peX(v)] + b for all boundary points v, where
Qo = 1 — Po .

This lemma is also well-known, especially for single sample plans. A brief
-history of this inequality with references is given by Savage in [13], p. 238. It
was first proved for sequential plans by Wolfowitz [18]. Following Savage,
(2.7) will be called the nformation inequality.

A non-constant estimator f is said to be efficient at po if equality holds in the
information inequality when p = p, . The expected value of f is then estimable
efficiently at po .

If, for a given sampling plan S, a non-constant estimator f is efficient at p
for all p, then both f and S are called efficient. From Lemma 2.7, it is seen that
f is efficient if and only if there exist two functions of p, a(p) and b(p), with
a(p) = 0, such that

(2.8) &) = a(®@)g¥Y(y) — pX ()] + b(p)

for all p and all boundary points 7.
Two types of sampling plans of prime importance are the single sample plans
and the inverse binomial sampling plans. In a single sample plan,

B = {y:N(y) = n}

for some positive integer n. It is clear that such a plan satisfies (i) since the series
involved contains only a finite number of non-zero terms.

In an inverse binomial sampling plan, either B = {y:¥(y) = ¢} for some
positive integer ¢, or B = {y:X(y) = c}. This type of plan was first treated
formally by Haldane in [8] and [9]; the name “inverse binomial sampling” was
suggested by Tweedie [15]. It is easily seen that these plans are closed. The
next lemma shows that assumption (i) is also satisfied.

Lemma 2.8. For an inverse binomial sampling plan E(N® | p) converges uni-
formly on every closed interval.

Proor. Consider the plan for which B = {y:Y(y) = ¢} for a given positive
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integer ¢. Then

Pr{N=c+jlp}=(c+;—l)pcqj’ j=0’1)""

and

BN p) = 3 (e +3) (““f - 1) e

=0 J

On the closed interval 0 < § S p = e < 1,
E(N?*|p) e°z;o(c+j)’(°+;.‘ 1) a— o),
:‘,-

and the series on the right is convergent, as is readily checked by the ratio test.
Hence, the given series converges uniformly on the closed interval. The proof
is entirely analogous when B = {y:X(y) = c}.

Because of the duality between the two types of inverse binomial sampling
plans, any facts stated in the paper concerning these plans will be demonstrated
only for the plan where B = {y:Y(y) = c}. The analogous proofs for the plan
in which B = {v:X(y) = ¢} can always be obtained simply by interchanging
the roles of X and ¥ and of p and g¢.

3. Efficient sampling plans. In this section it is shown that the only efficient
sampling plans are the single sample plans and the inverse binomial sampling
plans. For a single.sample plan, the efficient estimators are the non-constant
linear functions of Y, and hence, the functions of p that are estimable efficiently
are linear in p. For an inverse binomial sampling plan the efficient estimators are
linear functions of N, and their expectations are linear in either 1/p or 1/q.

LemMa 3.1. Let S be a given sampling plan for which there exists a non-constant
estimator f that s efficient at two values of p. Then there exist constants p, v, and &,
not all 0, such that uX(v) + vY(y) = & for all boundary potnts y.

Proor. Suppose f is efficient at po and p; . Then, from Lemma 2.7, there exist
constants ao , by , a1 , and b, such that

7o) = algeY (v) — poX(¥)] + bo
= a[gY (v) — pX(¥)] + by

for all boundary points y. Hence
(3.2) (aogo — arg)Y(v) — (aopo — ap)X(y) = b1 — bo,

and since f is not constant, neither ao nor a; is 0. Thus, not both the coefficients
of Y(y) and X(y) are 0, and (3.2) is an equation of the required form.

Clearly, the boundary points of the single sample plans and the inverse bi-
nomial sampling plans lie on straight lines as the lemma demands. The following
theorem shows that they are the only plans for which this is true.

TaroreM 3.1. Let S be a given closed sampling plan for which there exist con-

(3.1)
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stants u, v, and £, not all 0, such that uX (v) + vY(v) = £ for all boundary points .
Then S is etther a single sample plan or an inverse binomial sampling plan.

Proovr. There is no loss of génerality in assuming p = 0. The proof is divided
into cases depending on the magnitudes of u, », and &.

(1) u = v: If &/u is not a positive integer, then there are no boundary points,
and 8 is not closed. If £/u = m, a positive integer, then B is a subset of the single
sample plan with boundary B* = {y:X(y) + Y(v) = n}. Clearly, if S is closed,
then B = B*.

(ii) « = 0: If £/ is not a positive integer, then again B is empty,. and S is
not closed. If £/v = ¢, a positive integer, then B is a subset of the inverse bi-
nomial sampling plan with boundary B* = {y:Y(y) = ¢}. Again, if S is closed,
then B = B*.

(iii) » = 0: As in (ii), B must be of the form B = {y:X(y) = ¢}.

V) >0,v>.0,u 5 v:If £ <0, Bis empty. If £ > 0, there exists a point
v such that uX(y) + »Y(y) < ¢ and either u[X(y) + 1] + vY(y) > £or uX(y) +
v[Y(y) + 1] > & Thus, with positive probability, the boundary is passed and
S.is not closed.

(v) u > 0, » < 0: Suppose ¢ > 0. By the strong law of large numbers ([6],
p. 243), there is positive probability that, for ¢ > 0,

(3.3) qY(y) — pX(y) > —eN(y)
for every point y reached by the sample path. But for p sufficiently large and
€ sufficiently small the line ¢¥(y) — pX(y) = —eN(y) lies entirely above the

line uX(y) + »Y(y) = & Hence, no point satisfying the inequality (3.3) can
be a boundary point, and there is positive probability that the boundary will not
be reached. Thus, S is not closed. Analogous arguments hold if # < O or § = 0.

The main result of this section is

TueoreM 3.2. The only efficient sampling plans are the single sample plans and
the inverse binomial sampling plans. When B = {y:N(y) = n}, any non-constant
Sfunction of the form a + bY s an efficient estimator of a -+ bnp, and these are the
only efficient estimators. When B = {y:Y(y) = c}, any non-constant function of
the form a + bN is an efficient estimator of a + be(1/p), and these are the only
efficient estimators. When B = {v:X(y) = c}, any non-constant function of the
form a + bN is an efficient estimator of a + be(1/q), and these are the only efficient
estymators.

Proor. Lemma 3.1 and Theorem 3.1 show that the only procedures satisfying
certain conditions necessary for a sampling plan to be efficient are the single
sample plans and the inverse binomial sampling plans. It remains to show that
these procedures are indeed efficient.

Let B = {y:N(y) = n}. Then, for every vy € B, ¢Y(v) — pX(y) = Y(y) — np,
and hence, Y(y) = [¢¥(y) — pX(y)] + np. This demonstrates the efficiency
of Y. Since E(qgY — pX |p) = 0, E(Y | p) = np.

Let B = {y:Y(y) = ¢}. Then, for every y ¢ B, ¢Y(v) — pX(y) = ¢ — pN(v),
and hence, N(y) = —(1/p)[gY (v) — pX ()] + (¢/p). Thus, N is efficient and
E(N |p) = ¢/p.
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The proof is completed by noting that if f is an efficient estimator, then so
is every non-constant linear function of f. Furthermore, if two non-constant
estimators are both efficient at a given value of p, then they are linearly related.

CoroLLARY 3.1. A non-constant estimator s efficient if and only if it is efficient
at two distinct values of p.

Proor. From Lemma 3.1 and Theorems 3.1 and 3.2, it is seen that if f is not
constant and is efficient at two values of p then the sampling plan admits an
efficient estimator. From the comments at the end of the proof of Theorem 3.2,
it follows that this estimator is linearly related to f, and hence, that f itself is
efficient. The proof in the other direction is trivial.

4. Inverse binomial sampling plans. Because of Theorem 3.2, it seems worth-
while to investigate the properties of single sample and inverse binomial sampling
plans in some detail.

For the single sample plan with boundary B = {y:N(y) = n}, ¥/n is an
efficient estimator of p with Var(Y/n | p) = pg/n. For any estimator f,

(4.1) E(f|p) .= 72; FC)) (Y%)) p ",

which is a polynomial in p of degree at most n. Thus, only polynomials of degree
at most n are estimable unbiasedly, and since
p] — pk+1

[Y(Y— 1) --- (Y =k
nn—1):---(n—k)
fork =0,1, ---,n — 1, then every such polynomial is estimable.

The analogous properties of an inverse binomial sampling plan are less familiar
and will be discussed here.

Consider the plan with boundary B = {y:Y(y) = ¢}. For each non-negative
integer, k, there exists a unique point, vx , of B such that N(vi) = ¢ + k.

Since

4.2)

(4.3) PT{N=C+klP}=(k+Z_1>chk’ k=012---,
then for any estimator f,

(44) E(f|p) =p° gof(w) (k + ,cc B 1)-q"-

The class of functions that. are estimable unbiasedly and their estimators
will now be determined. For convenience, the functions are written as functions
of ¢ rather than of p. '

TueOREM 4.1. A function h(q) is estimable unbiasedly if and only if it can be
expanded in Taylor’s sertes in the interval | ¢ | < 1. If h(q) is estimable, then its
unique estimator is given by

_ k-1 & ho _
(4.5) flw) = FTo=Di qu[(l_q),l_o. k=0,1,2, .
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Proor. If h(g) can be expanded in Taylor’s series in the given interval, then
50 also can h(g)/(1 — )¢ and conversely. Thus, suppose

h(g) = i bqu.

1—-19° =0
Then
h(g) = p° 2 big’,
k=0
and taking

s =b/(*+:7)

yields an estimator f with E(f| p) = h(g).
Suppose now that k(g) is estimable unbiasedly. Then there exists an estimator
f such that

Ko = 9 gﬂm(" Te ‘) ¢

Replacing p by 1 — ¢ gives the required expansion. Thus,

hg < k+c—1Y\ &
(l_—q);—,;)f(’wc)( k )q,

(78w - g ).

_ =1! dT h
f('Yk) = (lc+0— l)ld?;[(l —q)‘:lq-o'

The uniqueness of f follows from the uniqueness of the Taylor’s series expansion,
which is of course the basis of the completeness of this sampling plan.

Given h(g), Theorem 4.1 provides a rule for finding its unbiased estimator.
It is often possible to find the expectation of a given estimator in closed form by
using the fact that if the series

and hence

(4.6) $(@) = 2 bua*

is differentiated m times within its interval of convergence, then
@) _ o b+ m\ &

(4-7) ml = kz_% bm+k k x.

As illustrations of the technique involved, the variance of the unbiased estimator
of p and the moment generating function of N will be determined.
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It is well-known (and can be checked from Theorem 4.1) that if f is given by
(4.8) fon) = (e = D/(k + ¢ — 1),

then, for ¢ = 2, f is an unbiased estimator of p. It should be emphasized that
this is not an efficient estimator. Using the result given above,

E(f Ip)—p(c—l) E(_k—_l__clﬁ(k—l-;—l)qk

=p'(c— 1)’ © 11)'5‘[}2k2q]

Note that the constant term in the last series of (4.9) is taken to be 0. Its value
can be assigned arbitrarily since it does not appear in the derived series. But

(4.10) i[f‘,kz] flq"“‘ 1Zl"——[—log(l—q)]

(4.9

dg Li= =1k q k=1
Hence,
dc-l * 1 X A 10g (1 —Q)
(4.11) P [,,2_31 2l ] qu[ q ]
and
ey _ _ ple—1) & [log(1 — g
(4.12) E(f"|p) = (c —2)! dq‘“‘z[ q ]

Using the easily verified fact that

£P=s=2)- 2004

J#=6)]

one obtains

d" [log 1 —¢)] _ (=1)"m!log (1 — q) S (= pm™

dg™ [ q ] g +mig 1(1 — g)igm—t’
Thus, referring to (4.12),

B(ft|p) = SN —;3_15 log (1 — ¢)
» c—2 (_ l)c—i (
(4.13) + (¢ — 1p° Z {0 = g
_ (C _l)pc —1 c—2 )e—:( T

It is interesting to note that Haldane [9] gives E(f* | p) in the form of an integral
that, in order to be evaluated, requires repeated integration by parts.

In Section 3 it was shown that NV is an efficient estimator of its expected value
Using the technique just illustrated, its moment generating function can be
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found. For ¢ < log (1/q),
N . .C > t(etk) k + c—1 k
E(™|p) =p Zﬁ € ( k )q
¢ (K -1
= (pe") g;( +;: ) (geh*
— tye 1 “ s "]
- (pe) (c — l)!dx"‘l[kgox z=ge t

— tye 1 d"—I( 1 )
= (pe) (c = D1dzt\1 — /omget

= (pe')° (c——-ll—)_' (c— DI — ge)™*

N __Il‘i_)
1—gqet/) "

It should be noted that N — ¢ has a negative binomial distribution and that
(4.14) could also be derived using techniques appropriate to that distribution
(see, e.g., Feller [6], pp. 155, 252).
Differentiating (4.14) at t = 0 yields
ENN |p) = ¢/p
(2.15) E(N'|p) = (" + cg)/p
Var(N | p) = cg/p".

Since N is an efficient estimator of ¢/p, its variance should attain the lower
bound of the information inequality; .e.,

(4.14)

. _ palg @I
(4.16) Var (NI p) = W.

Setting g(p) = E(N | p) = ¢/p does yield the value found in (4.15).

6. Relationships between sampling plans and estimable functions. For a given
sampling plan, the only estimators that are efficient at a given value po are the
non-constant functions f* of the form

(5.1) () = algY () — pX ()] + b,

for some constants a and b and all boundary points +.

LemMma 5.1. If f* is given by (5.1), then f* is constant if and only if a = 0.

Proor. If a = 0, then f*(y) = b for all boundary points y. If a = 0, then
f* is constant only if g¥(y) — poX(y) is constant for all boundary points ~.
But that would mean that the points of B lie on a straight line and, hence, the
sampling plan must be either a single sample plan or an inverse binomial sam-
pling plan. It is readily checked that for neither of these is @Y (y) — poX(v)
constant when 0 < p, < 1.
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Thus, a non-constant estimator f* is efficient at po if and only if it is of the
form (5.1) with a 0. The next theorem determines the class of functions that
are estimable efficiently at a given point, simply by evaluating E(f* | p).

THEOREM 5.1. For a given sampling plan, a non-constant function g(p) is estimable
efficiently at po if and only if there exist constants a and b with a 5% 0, such that

(5.2) 9(p) = a(p — p)E(N | p) + b;
or alternatively, if and only if there exists a constant k, k 5 0, such that
53) E(N | p) = klg(p) — 9(po)l/(p — po) for p # po,

E(N | po)) = kg'(po).
Proor. By Lemma 2.6,
E(qY — poX | p) = E(gY — pX + pN — poN | p)
= E(@Y — pX |p) + (p — P)EWV | p)
= (p — P)EW | p).

If g(p) is estimable efficiently at p, then it must be constant or the expectation of
an estimator of the form (5.1) with a > 0. Hence,

(5.4) 9(p) = E(f*|p) = a(p — p)EWN | p) + b.

Setting p = po in (5.4) gives b = g(po). Differentiating both sides of (5.4) at
po gives ¢'(p0) = aE(N |po). Thus, both (5.2) and (5.3) are satisfied
(with & = 1/a).

Conversely, if either (5.2) or (5.3) is satisfied then g(p) is the expectation of
an estimator of the form (5.1) with a = 1/k and b = g(po).

From Theorem 5.1, it is clear that there does not always exist a sampling
plan that admits estimation of a given function efficiently at a given value of p.
Since E(N | p) can never be smaller than unity, obvious restrictions on g(p)
and po are that [g(p) — g(po)]/(p — po) cannot change sign in the open interval
0 < p < 1 and that ¢g’(ps) cannot vanish. However, no general result char-
acterizing the class of functions ¢(p) for which there exist sampling plans with
E(N | p) = ¢(p) has, to the author’s knowledge, yet been found.

6. Some sampling plans. Theorem 5.1 reveals that the functions g(p) that
are estimable at a given value p, depend only on E(N | p) in a very simple way.
From the specific form of this relationship it is seen that if it is desired to estimate
a polynomial in p efficiently at a particular value, then E(NV | p) must itself be
a polynomial in p of a certain form. In this section some sampling plans for which
E(N | p) is a polynomial will be described. It should be noted that if, for a given
sampling plan, there exists a positive integer n such that Pr{N < n|p} = 1,
then E(N | p) is a polynomial of degree at most n — 1. One of the interesting
things about the plans given below is that they yield polynomials for E(NV | p)
even though they do not satisfy this condition. In particular, one of the pro-
cedures will be an unbounded sequential plan for which E(N | p) is constant.
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Hence, considering the single sample plan with the same E(N | p), it may be
concluded that E(V | p) does not determine the sampling plan.
Scheme I. Let n and m be two positive integers and let

(6.1) B = {y:Nv) =n,Y(y) <n}u{y:Y(y) =n+ m}.

That is, a single sample plan of sample size n is used unless all of the observations
are equal to 1. When this happens, sampling is continued under an inverse bi-
nomial sampling plan until m additional 1’s are obtained.

The function E(N | p) for the inverse binomial sampling plan was found
in Section 4. Using this result, it is easy to obtain E(N | p) for the above plan.

62 ZV 1P) = EW|N S n,p)Pr(¥ S n|p) + EQV [N > n, p)Pr(¥ > n | p)
' = n(l — p") + [n + (m/p)lp" = n + mp" .

For example suppose n = 2, m = 4. Then E(N | p) = 2 + 4p, and it follows
from Theorem 5.1 that p’ is estimable efficiently at 1/2. Indeed,

E(N|p) =4(p +1/2) = 40" — 1/4)/(p — 1/2)
= 4[g(p) — 9(po)l/ (P — po),

when g(p) = p°, po = 1/2. In the same way, p* + (1/2 — po)p is estimable effi-
ciently at po .

If n = 1, then, from (6.2), E(N | p) = m + 1 for all p. From Theorem 5.1 it is
seen that this plan admits an efficient estimator of p at any value p, . This does
not mean that the plan is efficient—indeed, it is known not to be. Thus, although
for every po there is an estimator of p that is efficient at po, there is no single
estimator that is efficient at all values of p. As has been shown, such an estimator
exists only under a single sample plan. From Lemmas 2.1 and 2.2 it is seen that
this plan (and every plan included in Scheme I) is boundedly complete but not
complete.

It is interesting to compare the various estimators of p for the plan with
n = 1. The only bounded unbiased estimator of p is

(6.4) foly) = [1/(m + DY (),

which equals 0 or 1 according as the first observation is 0 or 1. Hence,
Var(fo | p) = pg. Since E(N | p) = m + 1, N — (m + 1) is an unbounded, un-
biased estimator of 0. Hence, any estimator of the form

1 N(v)il
m—+ 1 m+ 1)

for some constant ¢, is an unbiased estimator of p. It is easily checked that f,,
is the efficient estimator at po . Thus, the efficient estimators of p are unbounded;
this serves as a reminder that unbiased estimators—even efficient ones—are
not necessarily desirable estimators.

Using the moments of N found in Section 4 for the inverse binomial sampling

(6.3)

(6.5) f(v) =

Y(v) + 0[1 -
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plan, Var(f,, | p) is found to be

g Po _ 2]
(6.6) m+1|:1+m(;)— 1) .
Comparing this result with the variance of the bounded estimator, fo , it is seen
that Var(f,, | ) < Var(fo | p) for p > po/2.

Finally, it should be noted that the functions that are estimable efficiently at
each p under this plan are precisely the functions that are estimable efficiently
under a single sample plan of sample size m + 1. The latter plan yields the same
E(N | p) as the above plan and admits an unbiased estimator of p with uniformly
smaller variance than any of the estimators discussed above.

The following variant of Scheme I also yields polynomials for E( | p).

Scheme I1. Let n and m be two positive integers with n = 2, and let

(6.7) B={y:N(v) =n,Y>y) <n-—1}u {y:Y(y) =n+ m}.

Thus, the boundary is the same as in Scheme I except that the point with co-
ordinates X(y) = 1, Y(y) = n — 1, is omitted. In other words, a single sample
of size n is taken. If all of the observations are equal to 1, sampling is continued
until m additional 1’s are obtained. If all but one of the initial n observations
are equal to 1, sampling is continued until m + 1 additional 1’s are obtained. If
at least two of the initial n observations are not equal to 1, sampling ceases.
Thus, denoting the number of successes in the first n observations by Y, ,
EN|p) =EWN|Ysa<n—1,pPr(¥Yn<n—1|p)
+EN|Ys=n—1,0)Pr(Y,=n—1]|p)
+ EN|Yn = n,p)Pr(Ys = n|p)

(6.8) =a(l — p" — np" )
Y wros(e e
=n+nm+ Dp"? + (m —n — mn)p™ .

The sampling plans included in Scheme II are also boundedly complete but
not complete.

There are obvious variants of Schemes I and II obtained by removing other
points on the line N(y) = = from the boundary, or by interchanging the roles
of X and Y.

7. Selection of the sampling plan. Theorem 5.1 shows that in order to esti-
mate a function g(p) efficiently at p, a sampling plan must be selected for which
(7.1) E(N | p) = klg(p) — 9(po)l/(p — po).

The efficient estimator at p, is defined by
(7.2) f) = algY (v) — poX(¥)] + 9(po),
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where a = 1/k. As discussed in Section 5, there does not always exist a sampling
plan under which a given function g(p) is estimable efficiently at a given value,
Do . On the other hand, it is made clear in Section 6 that for a given g(p) and p, ,
there may exist more than one sampling plan satisfying (7.1). Indeed, it has been
shown that there may exist more than one plan with a given E(N | p) (i.e., with
a given value of k).

In this section it is assumed that for a given g(p), po, and k, there does exist
more than one sampling plan satisfying (7.1). Let S denote the class of such plans.
Since every plan of § yields the same E(N | p), and since, under every plan of S,
the estimator f given by (7.2) is efficient at po , it follows from the information
inequality that Var(f| po) is the same under every plan of $. In general, how-
ever, for values of p other than p,, Var(f | p) will be different under the various
plans of $. The problem considered here is that of determining the plan of § for
which Var(f| p) is smallest at some value of p other than py, or the plan that
minimizes Var(f|p) in the neighborhood of p,. It will be shown that this is
equivalent to determining the plan for which Var(NV | p) is minimized at the
relevant values of p.

In the following derivation of Var(f|p) it is assumed for simplicity that,
in (7.2), @ = 1 and g(po) = 0. Thus,

f =Y — pX = (¢Y¥ — pX) + (p — po)N,
5= (q¥ = pX)" 4+ (p — po)'N* + 2(p — P)N(gY — pX).
This yields, upon application of Lemmas 2.5 and 2.6,
E(f|p) = (p — p)ENN | p),
E(f'| p) = pgE(N | p) + (p — po)’E(N* | p) + 2(p — po)pgE'(N | p),
and hence,

(7.5) Var(f| p) = (p — po)*Var(NV | p) + pgEN | p) + 2(p — po)pgE'(N | p).

This expression yields the following theorem, where for any estimator 7' and
sampling plan S, E(T | p, 8) is the expectation of T at p under the plan S.

TaeoREM 7.1. Let f = a(qY — poX) + b, Let p* be a value of p other than po.
Let 8, and Sz be two sampling plans such that E(N | p, S1) = E(N | p, Ss) for all p.
Then Var(f|p* $)  Var(f|p* S) if and only if Var(W|p* &) =
Var(N | p*, S,).

It follows from assumption (i) of Section 2 that Var(N | p) is a continuous
function of p. Hence, again referring to (7.5), the following result is immediate.

THEOREM 7.2. Let f, 81, and S, satisfy the hypotheses of Theorem 7.1, and suppose
Var(N | po, 81) < Var(N |po, S:). Then there exists an interval I of positive
length containing p, such that

Var(f | po, S1) = Var(f | po, Sa),
Var(f | p, S1) < Var(f|p, Se), forpel,p # py.

(7.3)

(7.4)

(7.6)
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One method that might at first seem useful in determining the plan of § for
which Var(N | po) is minimized would be to show that, for a particular plan, this
variance attained the lower bound provided by the information inequality;
i.e., that

E'(N|p)]
7 Var (V| p) = BLlEW )]
20 = =W T
The next lemma and theorem show that there exists such a plan only in the
trivial situations where $ contains an efficient sampling plan.
LemMma 7.1. For a given sampling plan,

_ pd BNV | p))
(7.8) Var (N |p) = “E T

for all p if and only if the sampling plan s efficient.

Proor. Suppose the plan is efficient. In a single sample plan, N is constant.
Hence, Var(N |p) = E'(N |p) = 0 for all p, and (7.8) holds. In an inverse
binomial sampling plan, N is efficient and hence again (7.8) holds.

Suppose the plan is not efficient. Since N is constant only under a single sample
plan, it is not constant under the given plan. Thus, (7.8) cannot hold for all p,
for if it did, N would be an efficient estimator.

TaeoreEM 7.3. For any sampling plan, either

_ pglE'W | p)]*

(7.9) Var (N I p) = SENTp) for all p,

or

(7.10) Var (N |p) > z%;’-)]—z for all p.
Proor. From the information inequality,

(7.11) Var (V| p) = QQ[EE('](éV_I_Imiﬂz for all p.

Suppose equality holds in (7.11) for p = po . Then N must be of the form
N@) = a[gY () — peX(v)] + b
for some constants a and b. Hence,
(1= ag)¥Y() + (1 + ap)X(y) = b

for all boundary points v. Since the coefficients of X and ¥ cannot both vanish,
the boundary points lie on a straight line, and, by Theorem 3.1, the plan is
efficient. The conclusion follows from Lemma 7.1.

It would be reassuring to know that, despite Theorem 7.3, there always exists
a plan in 8 for which Var(¥ | po) is smallest. This would be true if 8 contained
only a finite number of sampling plans. No general results have as yet been
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obtained in this direction, but the following theorem concerning the specific
case where 8 contains all plans with E(N | p) = 2 indicates the type of result
that might be expected.

THEOREM 7.4. There exist exactly three sampling plans for which E(N | p) = 2
Sor all p.

Proor. Three plans have already been given for which E(N | p) = 2; namely,
the single sample plan, the plan S* given under Scheme I of Section 6, with
n = 1, m = 1, and the symmetric image of this plan obtained by interchanging
the roles of X and Y. It will now be shown ‘that these are the only three plans.
Throughout the proof, points will be specified by their coordinates (X(v), Y(y)).

Consider a sampling plan S with boundary B for which E(N | p) = 2 for all p.
The points (0, 1) and (1, 0) cannot both be in B, for then E(N | p) = 1. If neither
(0, 1) nor (1, 0) isin B, then N = 2. Thus, if E(N | p) = 2,then Pr(N = 2| p) =
1 and S is the single sample plan. Suppose then that exactly one of the points
(0, 1) and (1, 0) is in B and, for the moment, assume it to be (1, 0). It will be
shown that 8 is the plan S* described above with boundary

B* = {(1) 0), (O; 2), (1; 2): (27 2)! (3; 2), e }-

Suppose (0, 2) £ B. Then N = 3 whenever the sample path goes through
(0, 2). Hence, E(N | p) = 3p’, which is greater than 2 for values of p arbitrarily
close to 1. Thus, (0, 2) £ B. Also, (1, 1) £ B, for, otherwise, Pr{N < 2|p} = 1,
Pr{N < 2|p} > 0,and E(N | p) < 2. The proof is now completed by an induc-
tive argument.

Assume, for a given integer n, n = 0, the points (1, 0) and (0, 2), (1, 2), - -,
(n, 2) are in B and the points (0, 1), (1, 1), ---, (» + 1, 1) are not in B. It must
be shown that (n + 1,2) e Band (n + 2, 1) £ B.

Suppose (n + 1, 2) £ B. Then N = n + 4 whenever the sample path goes
through (n + 1, 2). This happens with probability p’¢"*". Thus, by considering
the other points of B,

EWN |p) = g+ 202+ 3p%g + - + (n + 2)p’¢" + (n + 4)p’g" ™
=q+pPU+2+ -+ @+ 1"+ (0 + 2)¢""
+2A+q+ -+ "+ ¢ + P
=g+ pz at_i_q_ [11—_q"q+3] + pz [11—_97:2] + pzqn-H
=2+ p¢"" — (n + Ypg™*" — "
Nowlet p =1 — 4, ¢ = 6. Then
EWN |p) = 2+ "™ + o(s™™),

and for & positive but arbitrarily close to 0, E(N |p) > 2. It follows
that (n + 1, 2) ¢ B.
Now, if (n 4+ 2, 1) were in B, then S would be a bounded procedure and its
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continuation points would be a proper subset of the continuation points of S*.
Since S and S* yield the same E(N | p), this is impossible. Thus, (n + 2, 1) £ B
and the induction is completed. It follows that S = S*.

If, originally, it was assumed that (0, 1) e B, (1, 0) £ B, then an entirely analo-
gous demonstration would show that S must be the symmetric image of S*
described at the beginning of the proof.

8. On the completeness of bounded sampling plans. A bounded sampling plan
is one for which there exists a positive integer n such that

8.1) Pr{N < n|p} = 1.

The size of a bounded sampling plan is the smallest n for which (8.1) holds.

In the following Theorems 8.1-8.5 it is shown that if the boundary of a plan
of size n contains n 4+ 1 + k points, & = 0, then k is the dimension of the linear
space of unbiased estimators of Q.

TaEOREM 8.1. The boundary of a sampling plan of size n contains at least n + 1
points.

Proor. If n = 1, then (0, 1) and (1, 0) must both be boundary points. Pro-
ceeding by induction, suppose the theorem to be true for » = m and consider
a plan S of size m + 1. Since m + 1 = 2, the points (0, 1) and (1, 0) cannot
both be boundary points and there must exist a path through at least one of them
that extends to a boundary point of sample size m + 1. Without loss of gen-
erality, suppose this is true of the point (1, 0). Then, given that the sample
path has reached (1, 0), the sampling plan (or what remains of it) is now of size
m and hence, by the induction hypothesis, involves at least m + 1 boundary
points. In other words, there are at least m + 1 boundary points that can be
reached by paths through (1, 0). Since S is closed and bounded there must also
exist a boundary point of the form (0, y). Since this point cannot be reached
from (1, 0) it is not counted above, and the boundary contains at least m + 2
points.

TaEOREM 8.2. If the boundary of a sampling plan of size n contains more than
n + 1 points, the plan is not complete.

Proor. The probability, P(p;v), of reaching a particular boundary point v is

P(p;v) = K@)p" "¢,
a polynomial in p of degree at most n. Hence, the expectation

Z-‘;, FPp; )

of any estimator f is also such a polynomial. Conversely, every linear combination
of the P(p;v) can be attained as the expectation of some estimator. Thus, there
exists a non-trivial estimator f such that E(f | p) = 0 for all p if and only if there
exist constants a(y), not all 0, such that Y ..s a(y)P(p;v) = 0 for all p. But the
linear space of polynomials in p of degree at most n has dimension » + 1 and
hence, if B contains more than n + 1 points, the set of polynomials
{P(p;v):v € B} must be linearly dependent.
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THuEOREM 83. Under a sampling plan of size n, all polynomials in p of degree
at most n are estimable unbiasedly.

Proor. The polynomial 1 is trivially estimable unbiasedly. Furthermore,
since the plan is of size n, there exists a boundary or continuation point v; of
sample size j for each j, 1 < j < n. Lety; = (z;,y;), where z; + y; = j. Girshick
Mosteller, and Savage [7], have shown explicitly how to construct an unbiased
estimator of p“/¢*’, a polynomial in p of degree j. Thus, the polynomials
1, p*'¢™, -+, p”¢™ are all estimable unbiasedly and, hence, so is any linear
combination of them. Since no two of these polynomials are of the same degree
they are linearly independent and thus form a basis for the n + 1-dimensional
space of all polynomials in p of degree at most n. It follows that every such
polynomial is estimable unbiasedly.

THEOREM 8.4. If the boundary of a sampling plan of size n contains exactly
n + 1 points the plan is complete.

Proor. The expectation of every estimator is a linear combination of the
n + 1 polynomials P(p;'y), v € B, and by Theorem 8.3, every polynomial of
degree at most n can be expressed as such a linear combination. Thus, the set
{P(p; v):v € B} spans the n + 1-dimensional linear space of poiynomials. It
follows that the n + 1 polynomials P(p; ¥) must be linearly independent and,
hence, there exist no non-trivial unbiased estimators of 0.

TuareoREM 8.5. If the boundary of a sampling plan of size n containsn + 1 + k
points, k > 0, then there exist exactly k linearly independent unbiased estimators of 0.

Proor. Consider the n 4+ 1 4 k boundary points i, - - - , Ynt14% - Each esti-
mator f can be considered as a vector (fi, :-:, faji+x) Where f(y;) = f;,
j=1---,n 4+ 1 4 k. Thus, the space of estimators can be considered as an
n + 1 + k-dimensional linear space, V. The expectation operator E is a linear
mapping from V onto the n -4 1-dimensional linear space of polynomials in
p of degree at most n. The subspace V° = {f:E(f|p) = v 1-r all p} is the null
space of this mapping and it follows from the standard theore ms concerning rank
and nullity that ¥° has dimension k.

The remainder of this section is devoted to bounded sampling plans that are
complete only after the removal of some points from the boundary. It will be
shown that for a plan of this type it is easy to explicitly construct a basis for
the space of unbiased estimators of 0.

The following notation is used in Theorems 8.6-8.8. It is assumed that S is a
bounded sampling plan with boundary B, and that 8;, ---, 8,, with ¢ > 0,
are ¢ points of B such that the sampling plan with boundary B — {8, -- -, 8}
is closed and complete.

The sampling plan with boundary B; = B — {8,} is denoted by S; for

J=1--,
For any point v ¢ B, K(y) is the number of paths to ¥ under the plan S and
K j(y) is the number of paths to v under the plan S, forj = 1, --- , ¢. If v is not

a boundary point for a particular plan then the number of paths to ¥ under
that plan is taken to be 0. Thus, K;(8;) = Oforj =1, ---,¢.
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It should be noted that K(y) does not vanish for any v ¢ B. Also, if v # 8;
then K;(y) = K(y). This follows from the fact that any path to ¥ under S is
obviously a path to v under any sampling plan with fewer boundary points.

Consider now, under the sampling plan S, the estimators ¢; defined
forj=1,-.--,¢tby

(8.2) ¢iv) = 1 — [K(n)/K®)],
for v ¢ B.
TaEOREM 8.6. Under the sampling plan S, the estimators ¢1, - - -, ¢¢ form a

basts for the linear space of unbiased estimators of 0.

Proor. It was shown by Girshick, Mosteller, and Savage [7], and it is very
easy to verify, that, for each j, ¢; is not identically 0 and E(¢; | p) = 0 for all p.
Since the boundary of S contains ¢ more points than that of a complete plan of
the same size as S it follows from Theorem 8.5 that the dimension of the space
of unbiased estimators of 0 is £. Thus, the theorem will be proven if it is shown
that the estimators ¢, - - - , ¢ are linearly independent.

Let the sample size of 8; be n; (i.e., X(8;) 4+ Y(8;) = n;) and assume that
Bi, --- ,B: have been ordered so that n; < ny < --- = n,. Consider the matrix
A with elements a;; = ¢;(8:); thus,

<¢1 B) - ¢:8)
(8.3) A=
$1(8) - du(Br)

For j > 4, K;(8;) = K(B:). This follows by noting that a path to 8; under S;
goes through points of sample size less than n; and then through 8; . It does not
go through 8; since n; = n., and hence, it is also a path to 8; under S. Thus,
K;(8:;) £ K(B8:). The reverse inequality has been stated in the comments pre-
ceding the theorem. It follows from (8.2) that #i(8) = 0 for j > <.
Since ¢;(8;) = 1 for each j, the matrix 4 is seen to be triangular with each of
its diagonal elements equal to 1. Hence, |4| = 1. It can now be concluded that
é1, -+, ¢, are linearly independent, for otherwise |A| must vanish. This com-
pletes the proof.

Under a given sampling plan, an estimator f* is said to be a uniformly minimum
variance estimator of its expected value, if, for any other estimator f with the
same expectation as f*, Var(f* | p) < Var(f| p) for all p. Consider the estimator
f* = @Y — poX that is efficient at po . The following theorem shows that under
a sampling plan of the type now being considered f* is not a uniformly minimum
variance estimator. On the other hand, if f is any other estimator with the same
expectation as f*, then Var(f* | po) < Var(f| po) and fis not a uniformly minimum
variance estimator. Thus, under the sampling plan S, if a non-constant function
g(p) is estimable efficiently at po then there is no uniformly minimum variance
estimator of g(p).

TraeoREM 8.7. Under the sampling plan S, the estimator goY — poX s not a
uniformly minimum variance estimator.
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Proor. Lehmann and Scheffé [10] have shown that for bounded sampling
plans a necessary and sufficient condition for an estimator T to be a uniformly
minimum variance estimator is that E(T¢|p) = 0 for every ¢ such that
E(¢ | p) = 0. Suppose goY — poX was a uniformly minimum variance estimator.
Then, forj =1, ---, ¢,

0 = Efpi(gY — pX) | p]
= Elp;(¢Y — pX) | p] + (p — p)E($;N | p).
By Lemma 2.5, El$;j(¢Y — pX) | p] = O for all p, and hence, E(¢;N | p) = 0
for all p and each j. (Actually, equation (8.4) yields E(¢;N | p) = 0 only for
P # po. That E(¢;N | po) = 0follows from continuity.) In particular, E(¢,N | p) =
0 where again it is assumed that the points 8;, ---, 8: have been ordered so

thatn; é s é'ﬂg.
It follows from Theorem 8.6 that there exist constants r; , - - - , 7, such that

(84)

t

(8.5) Ne¢uly) = ; 7ibi(v)
for all y £ B. In particular,

3
(8.6) nide(8:) = 12; r;$i(8:)
fori =1, .-, t. Recalling that ¢;(8;) = 1 and ¢;(8;) = 0 forj > 1, the values
of ., -+, r; are readily found from (8.6) tober, = --- = r,;, = 0, r, = n,.
Thus, from (8.5),
(8.7) N@)$i(v) = npe(y)

for all ¥ & B. It follows that ¢.(y) = 0 for all v such that N(y)  n,. But, as
argued in the proof of Theorem 8.6, ¢.(y) = 0 for all boundary points of sample
size n, with the exception of 8, . Hence,

88) B@:|p) = 680K @™ 0,

a contradiction. It follows that Y — poX is not a uniformly minimum variance
estimator.

The next theorem shows that, despite Theorem 8.7, there do exist non-constant
uniformly minimum variance estimators.

THEOREM 8.8. Under the sampling plan S, there exist non-constant uniformly
minimum variance estimators.

Proor. Since S is bounded, there exists a boundary point o = (z, 0) and a
boundary point a; = (0, y). Neither ao nor o, is one of the points 8, - - -, B
since if either is removed from B the resulting plan is not closed. Furthermore,
¢i(aw) = ¢j(ar) = O0forj =1, -- -, t since, under any of the plans S or S;, there
is only one path to either aq or a; . Now consider an estimator f of the form
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flao) = fo,
(8.9) f () = f1,
f&od) = ¢ fory e B — {ao, au}.

Then E(f¢; | p) = cE(¢;|p) = O0forj = 1, ---, ¢, and it follows from Theorem
8.6 and the condition of Lehmann and Scheffé given at the beginning of the proof
of Theorem 8.7 that f is a uniformly minimum variance estimator.
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