BAYES SOLUTIONS OF THE STATISTICAL INVENTORY PROBLEM!

By HERBERT SCARF

Stanford University

1. Introduction. The inventory problem as discussed in the paper of Arrow,
Harris, and Marschak [1] is a sequential decision problem. At the beginning of
each time period a decision is made to stock a quantity of a specific item in an-
ticipation of demand during that period. If the demand exceeds the available
supply, the next period is begun with an initial stock which is either zero or
negative. If the demand, on the other hand, is less than the available supply,
the subsequent period begins with a stock level which is equal to the excess of
supply over demand. In both cases the stock level may be augmented by addi-
tional purchasing. .

A number of costs are assumed to be operative in this situation, among them,
a cost of purchasing stock, a cost of holding or maintaining the stock in inven-
tory, and a cost which arises whenever current inventory is insufficient to meet
demand. The main problem is the determination of a sequence of purchasing or
ordering decisions which minimizes some criterion built up from these costs.
The criterion adopted in this paper is to discount costs incurred 7 periods in the
future by an amount «", and to select that sequence of stockage decisions which
minimizes the sum of all discounted costs. An elaborate discussion of the costs
and the general structure of inventory models may be found in [2]. In the paper
of Arrow, Harris, and Marschak and in a number of other papers in this area,
the assumption has been made that the quantity demanded during any time
period is a random variable whose distribution is known and unchanging from
period to period. However, in the second of two papers by Dvoretsky, Kiefer
and Wolfowitz [3] a more general situation in which the demand distribution is
not known precisely is examined from the point of view of statistical decision
theory. In the present paper our concern will be with this latter problem. The
treatment, in distinction to that given in the paper by Kiefer, et al will be very
specific, in the sense that we shall restrict our attention to very simple types of
cost functions in order to obtain some detailed results about the optimal stockage
policies.

The costs will be as follows:

(a) The ordering cost ¢(z2), as a function of the amount ordered, will be as-
sumed to be linear, i.e., ¢(z) = cz.

(b) If the inventory at the close of the period is positive a holding cost h(z)
will be incurred, which in this paper is assumed to be a linear function of the
quantity of inventory on hand at the end of the period, i.e., A(z) = hz.

(¢) If the quantity of stock at the end of any period is negative a linear pen-
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alty cost will be incurred. The marginal penalty cost is represented by the con-
stant p. It will be assumed that p > ¢(1 — a).

It should be noted that under these assumptions, if the demand distribution
is known precisely the optimal stockage policy is exceedingly simple to deter-
mine. In fact there exists a single critical stock level Z so that if the stock on hand
at the beginning of any period is greater than £ we do not order, and if the stock
level z at the beginning of the period is less than & we order an amount £ — z.
The number Z is obtained as the solution of the equation

p—c(l—a) f “
(1) = [ e
where ¢(£) is the density of the distribution of demand.
In this paper, rather than making the assumption that the density of demand
is known precisely, we assume that it may be described by a density ¢(¢, w)
with an unknown statistical parameter w. It will be convenient to restrict our
attention to densities ¢(£ w) which are members of the exponential class, i.e.,

(2) e(§ w) = B(w)e “r(g),

with () = 0 for ¢ < 0. The reason for this restriction is that at the nth stage
all of the relevant information may be summarized in the single statistic s =
(51 + - + &)/ (n — 1). We shall assume that r7(¢) is bounded, and that
r(¢) > 0 for £ > 0. We shall also assume that an a priori Bayes distribution
is chosen for the unknown parameter . At the beginning of the nth period
the available information will consist of two parts, one a knowledge of the cur-
rent stock level z and the second part a knowledge of the statistic s. The optimal
policy at the nth period will be that function of the two variables x and s which
indicates the proper quantity of the items to be purchased. Our first result,
which is crucially dependent. upon the assumptions made about the cost func-
tions, is that the optimal policies are again defined by single critical numbers.
In fact there is a sequence of functions Z.(s) so that the quantity to order is
equal to

(3) Max{Z.(s) — z, 0} (see Theorem 1).

The critical functions £.(s) are themselves quite difficult to obtain analyti-
cally. Some properties of the functions may be obtained, for example, it will be
shown that #.(s) is monotone increasing, a fact which is essentially a conse-
quence of the monotone likelihood ratio property possessed by all members of
the exponential class [7]. This result is demonstrated in Theorem 2.

Theorem 3 presents an additional result. If at the beginning of the nth period,
the stock level is less than Z.(s), we bring the stock level up to this number.
If the demand during the nth period is £, the new stock level is Z.(s) — &, and
the new average demand is ((n — 1)s + £)/n. In Theorem 3 it is demonstrated
that no ordering is done at the beginning of the (n 4 1)st period if £ is suffi-
ciently small. Mathematically this is equivalent to
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Enpa([(n — 1)s + £)/n)

for £ sufficiently small.

Our primary interest however will be in obtaining an asymptotic expansion
for the critical functions £,(s), for large n. It will be shown, under the assump-
tion of certain regularity conditions, that

(4) 2a(s) ~ #(s) + 28

The function Z(s) is the critical level for the inventory problem in which the
demand density is known precisely, in fact known to be (£, w) where w is selected
so that the mean demand is actually s. This is, of course, the value of & which

satisfies the equation

dlog B
dw

Therefore, as (1) indicates, the function &(s) is given by the solution of the equa-
tion

= s, which we shall write as w(s).

(5)

p—c(l —a) f“"
(6) —ﬂT = A ¢(£, w(s)) dt.

The term a(s) may also be determined explicitly. Let ®(z, w) be the cumula-
tive demand distribution, and let ¢’(w) be the variance of demand if the true
parameter value is w(o® = — (d’ log 8/dw’)). Then

(7) a(s) = —%%:ﬁ

with z replaced by Z(s) and v replaced by w(s) after the differentiation is car-
ried out. The expansion is valid if f has two continuous derivatives near the point
w(s), f(w(s)) > 0, and 0 < s < Max, (8'/8)(w).

The sign of a(s) may be either positive or negative. Since w(s) is the maximum
likelihood estimator of the true parameter value, #(s) will be the maximum
likelihood estimate of the critical stockage level, and equation (5) indicates
that the optimal Bayes stockage policy approaches the maximum likelihood
policy occasionally from above and occasionally from below, depending on the
costs and the original Bayes estimate.

It is important to realize that in this discussion neither s nor &,(s) are ran-
dom variables. ,(s) is for each n a specific function which minimizes total cost
under the assumption that a specific Bayes distribution is operative. These
functions are difficult to compute directly and our purpose in obtaining an
asymptotic expansion is solely to approximate these functions in a simple way
for large values of n.

The crucial part of the proof of (5) is the determination of the first several
terms in the asymptotic expansion of the a posteriori Bayes density. and there
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are many points in common with some recent work done by Johns and Guthrie
[5], in a problem of acceptance sampling,.

2. A review of the problem when the demand distribution is known. In this
section we shall assemble those facts about the non-statistical version of our
problem, which will be needed in the subsequent sections of this paper. We
begin by defining C'(z) to be the expected cost incurred by the use of an optimal
policy if the initial stock level is x. Costs which occur n periods in the future are
discounted by a factor " and incorporated in the function C(z). In the model
that we are considering = may take on negative values, representing unfilled
orders.

If the policy used is to order an amount y — x when the initial stock is z,
then the cost incurred during the first period is ¢(y — &) + L(y), where

{h[o" = e®d+p[ (E-ne®ds  §>0
(8) L(y) = ’

@®

{Pj: (& — y)e(§) dt; y < 0.

At the end of the first period the stock on hand is 3 — £. Since the situation faced
at the beginning of the second period is precisely that faced at the beginning of
the first period with the exception that the stock level is now y — £, we see that
the expectation of all future costs may be summarized by o« [¢ C(y — £)e(£§) df,
and therefore C(2) =< {c(y — z) + L(y) + « I3 C(y — £)e(t) dt}. The choice
of y which minimizes the right hand side of this equation is clearly optimal and
we obtain

(9) C(z) = ;gf {C(y —z)+ L(y) + « [ Cly — &)e(£) dé}.

It is sometimes convenient to consider an inventory problem with precisely
the same costs as the above problem, but which is engaged in for a total of N
periods rather than continuing indefinitely in the future. No costs, either holding
or penalty costs, are incurred after N periods have elapsed and no salvage value
is to be attributed to any excess stock at the end of N periods. If the minimum
expected costs for such a problem are denoted by C"(x), then C"(z) tends to
C(2) at every point [6] and we have the following equation:

(10)  C%(z) = inf {cy — v + L(y)'+ afo C Ny — B)e(¥) d£},

where C'(x) = 0.

Equation (10) may be used to show that C¥(z) is convex, and therefore C(z)
is convex. A simple argument, based on (9) and the convexity of C'(x) shows
that the optimal stockage policy is indeed defined by the single eritical number &
which minimizes

(11) o + Ly) + “fo Cly — o) de.
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(This argument is given in detail in the next section for the statistical problem.)
Equation (9) shows us that for © < &, C'(z) = —¢, and it therefore follows
from (11) that Z satisfies the equation

0=rc(l—a)+Ly).

This is merely a restatement of equation (1).

This method permits us to make a direct computation of the optimal stockage
policy, without making an explicit determination of the cost C'(x). We shall
find it necessary in the treatment of the statistical problem, to utilize the fact
that in some sense the minimum cost function depends continuously upon the
demand distribution. In order to obtain this result we shall derive an expression
for C(x).

If 2 > %, equation (9) yields

C) = L) + o [ "0 = ele) dt

(12)

L) + o [ T - Do di e | f Cle — 8)e(e) dt.

In the latter integral v — £ < & so that C(x — &) = ¢(Z — v + £) + C(%)
and we obtain for ¥ > &

C(z) = L(z) + alct — cx + C(7)) /:I_so(i‘) dt

tae [ s®dital Ol — Do) dk
T3 0
If we put = &, we obtain

M@+wf@@&

l—«a

(13) c(z) =

’

and if we define U(x) = C(z + &), we obtain
(14) Ule) = 4@) + o [ Ul = Dol®) d5
where 4
A(@) = L + 0 + a(—cr + C@) [ o® dt +ac [ to6) d&
Equation (14) is a Volterra equation which may be solved for U(z) as follows:

We define M(z, @) = 2.1 a"®™ (z), where ™ is the n-fold convolution of
the cumulative demand distribution. Then
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(15) Uz) = C(x + 3) = A(z) + fo Az — £) dML(, a).

This discussion may be used to prove the following lemma.

Lemma 1. Let oi(z) be a sequence of positive density functions which converges
uniformly tn every finite interval to the positive density function ¢(a). Furthermore,
assume that the functions have finite means which converge to the finite mean of .
If we define C*(2) to be the cost function for the tnventory problem with demand
density o(x), then C*(z) converges to C(z) at every poind.

If we define * to be the critical stockage level for the problem with demand
distribution ¢;(2), then it is clear from equation (1), that £ — Z. By uniform
convergence and (8) we see that L*(£*) — L(z) and therefore by (13) ¥ (&) —
C(z). If x < & then for large k, x < &' and C*(2) = ¢(&* — z) + C*(&*
which tends to C(x). On the other hand if > # and consequently >z for
large k, then we may use (15) to show that C*(z) tends to C'(z). The only point
that needs mention is that if we define M*(x, a) = Y 7 a"®”(z), then M*(x, a)
converges uniformly in any finite x-interval to M (z, «).

3. Properties of Bayes solutions to the statistical problem. In this section
we shall set up a functional equation analogous to (9) and discuss some simple
properties of Bayes solutions to the problem. The asymptotic expansion of the
Bayes solutions will be discussed in the subsequent section.

We assume that the demand density is of the form

(16) o(£ w) = B(w)e *r(f).

We shall also assume that an a priori distribution has been selected for the
unknown parameter w. We denote the density of this distribution by f(w).

At the beginning of the nth period, the information available to the decision
maker is a knowledge of the present stock level z, and a record of all the pre-
vious demands &, &, - -+, &1 . All of the demand information may be sum-
marized in the sufficient statistic

2k

- _ =1
(17) s_n——l'

We define C,, (2, s) to be the discounted sum of costs incurred if an optimal policy
is followed. We first of all remark that the demand density with which the de-
cision maker is faced during the nth period is prob (demand = & | average de-
mand in last n — 1 periods = s), and this is

[ 8@ (0) o
(18) eu(g]s) = r(§) g .
./‘; Bn—l(w)e—(n—l)wsf(w) dw

This distribution summarizes the decision makers expectations as far as demand
during the nth period is concerned.
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If the policy used is to order an amount y — =, then the expected cost during
the nth period is ¢(y — z) + La(y | s), where

[ 6= el 9dE+p[ € - nenelds >0
0 y

L]

P (&8 — y)en(£]s) d; y < 0.

(19)  La(y|s) =

If demand in the nth period is £, then the stock level at the beginning of the
(n + 1)st period is y — £, and the statistic s which represents average demand
in the preceding periods becomes ((n — 1)s + &)/n = s+ ((¢ — s)/n).
Therefore the discounted expected cost from the (n + 1)st period onward, if
an optimal policy is followed in those periods is Cna(y — &, s + ((¢ — 5)/n)).
We therefore obtain the following functional equation

[

Cu(z,s) = igﬁv(y —2) + L.(y|s)

(20) + af Cm(y — s+ (¢ — 8))¢n($|s) d&'}.

It is worth remarking that this heuristic derivation may be made quite rigorous
by considering the abstract decision spaces [6].

In order to analyze equation (20) we first define Cy(z, s) to be optimal dis-
counted expected costs from time period n onwards if the inventory problem is
engaged in for a total of N periods. It may be shown that

Cu(z,s) = inf{C(y — ) + La(y|s)
(21) vas
+af Cn+l(y—sys+( ))¢"(£ls)d£}1

and that limuy.e Ch(z, s) = Cu(z, s). If n > N, then Ch(z, s) = 0.

LemMA 2. Ca(z, ) has a continuous derivative with respect to x, and is conver
with respect to x. The optimal policies are defined by single critical numbers &y (s) =
0. Cn(x, s) has a continuous second derivative with respect to x at all points except
perhaps x = n(s) at which point both the right and left hand second derivatives
exust.

The lemma is clearly true when n = N + 1. Let us assume that it is true for
n + 1 and show that it remains true for n. The function

2w+l e Galv-get E )0t @

is a differentiable convex function. For y — -+ « this function becomes posi-
tively infinite. To see this we notice that this function is larger than

¢y + La(y | s)
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and for y > 0 this latter function has a derivative equal to ¢ — p + (h + p)
Jt ea(£ ] s) dt, which is certainly positive for y — + . For y < 0, the stock
level y — £ < Znia(s + ((¢ — s)/n)) (by the assumption that all of the criti-
cal numbers are positive), and therefore

Cfﬂ(y-— £s+ (—E—%—ﬁ) =c|-:Eff+1(s+ (S—s)>—?/+f]

- T
+ Clx+l (i:+l (8+ (g—;;s)_),s__*_ (E—:’:sz)‘

It follows that (8/dy)Cr(y — & s+ ((¢ — s)/n)) = —c for y < 0, and
therefore the derivative of (22) with respect to y is ¢(1 — a) — p < 0. It
follows that the minimum of (22) occurs at a point &5 (s) > 0. From the con-
vexity of (22) and equation (21) it follows that &h(s) is indeed the critical
number. In order to show the convexity of Ch(z, s) we notice first of all that for
x < &n(s), the function C(z, s) is linear in . For y > &n(s), Ca(y, s) = (22)
with the term cy replaced by zero, and is therefore convex.

The only problem in showing the differentiability of Cy(x, s) with respect to
x, is in verifying that the right and left hand derivatives are the same at the
point Zn(s), and this follows from the fact that the derivative of (22) equals
zero when y = Zn(s).

It follows from this lemma that C,.(z, s) is a convex function with respect to
z, and also that its derivative with respect to x is equal to —¢, when z < 0. A
repetition of the above arguments yields the following result.

THEOREM 1. There ts a sequence of non-negative functions £,(s) so that the op-
ltmal ordering rule vs to purchase Min (£.(s) — z, 0). In fact, .(s) = limy_e
Zn(s).

In the course of proving this theorem, the critical number &.(s) will be found
to be the unique minimum of

(8 —s)

n

(23) cy+Ln(yls)+oef0 Cra (y—E,s-l- >¢>»(£|8)d£‘

The uniqueness of the minimum is a consequence of the fact that (23) has
strictly increasing first differences, which is itself implied by Li(y|s) =
(h+ p) ealy|s) > 0.

Unlike the case in which the demand distribution is known precisely there is
no simple equation along the lines of (1) which determines the critical numbers
Zn(s). Certain properties of the critical functions may, however, be derived
from a direct examination of equation (20). In the following argument we shall
show that £.(s) is increasing in s, a fact which is interesting in its own right and
necessary for the considerations of Section 4.

LemMa 3. 9Cn(x, 8)/0x is decreasing in s.

The proof of this lemma is by backwards induction on the subscript n. The
proof uses, in a crucial way, a property of densities with a monotone likelihood
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ratio [7]. A probability density p(z |w) is said to have a monotone likelihood
ratio if

P(xl | w1) I)(xl | wz)

(24) det (x2 I (,31) p(xz | w?)

l-O forx; > xsand w1 > we .

We shall use the fact, demonstrated in [7], that if p(z | @) has a monotone
likelihood ratio, then h(w) = [ p(x | w)g(z) dz is a monotone decreasing func-
tion of w if g(x) is a monotone decreasing function of z.

The particular densities that we shall be interested in are the densities

‘/JII 6"(03) e-wEe—(n—l)wsf(w) dw

enlt ] 8) = 7(£) =
f ﬂn_l( )e—(n—l)mf( )dw

defined in equation (18).
If the determinant (24) is formed, using this density, it will be seen to have
the same sign as the determinant

f Bne—wfle-—-(n-—l)wqf(w) dw f 6ne-—w£le—(n—l)aazf(w) dw
0

f ﬂ" —wky _(n—l)m,f(w) de f 6ne~w£ze—(n—l)wazf(w) dw
0

and this may be seen to be positive, by virtue of the fact that

logf e “g(w) dw
0
is a convex function whenever g is positive (in this case we take

9(w) = B"(w)f(w)e “tg(nDorz)

We now proceed with the induction proof of Lemma 3. Let us assume that
dCn 11(x, 8)/ds is decreasing in s. From Lemma 2, we see that

aCh(z, s)
ar
(25) T - R TR =) PRI
= T2 &(s),
—c; r = En(s).

Let us first of all show that
36) Ga,9) = LD o [T (g C2) g

is decreasing in s. Since dL.(z, s)/dz is equal to —p + (h + D) [oea(E ]| 8) dt,
we may rewrite the expression for G(z, s) as
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G(z,s) =

(£ —s)

( a o N
i -p+ fo {a e <x et T) + (h + pixa(e) [ ) 28,

ox

where x:(£) is the characteristic function of (0, z). If s < s, then by the in-
duction assumption, we have

G(x) sl) ;

@ N (E - 82)
_ Cn+l (l‘ - f,:, s2 + ————)
P+ | "L (et pxalp) [PrEN )

The integrand in this expression, is a monotone decreasing function of £, by vir-
tue of the convexity of Ch,, with respect to its first argument, and because of
the induction assumption. Using the property of distributions with a monotone
likelihood ratio we conclude that the integral is larger than the corresponding
integral with s; replaced by s,. This demonstrates that G(z, s;) = G(z, s;).

The critical number Z,(s) is the solution of the equation —¢ = G(z, s). This
permits us to conclude that Zn(s)) < Za(s:). To see this we write

Gﬁ(f}:(Sz), 82) = —C = G:(i:(sl)7 sl) g GI:(:ZI:(SI)) 82)1

and recall that G is an increasing function of its first argument (see the proof of
Lemma, 2).
In order to complete the proof of this step of the induction, we consider three
cases.
(a) z < &n(s1). In this case
aCu(z,5) _ 9Ca(z,8) _
or ox B

(b) En(s1) £ = < Zn(se). In this case

3C(z, 81) _ (2, %)
ax dx

0.

= G(x, 31) +c= G(iﬁr(&), 81) +c=0.

(¢) &n(s:) < z. In this case

aCa(z,81) _ 9Cn(z, )
dx ar

= G(z,8) — G(r,8) =0.

This completes the proof of Lemma 3.

As a consequence of Lemma 3, we see that for b > a, C7(b, s) — Cn(a, s)
is decreasing in s, and passing to the limit we obtain C,(b, s) — C.(a, s) is de-
creasing in s. By a slight modification of the arguments of Lemma 3, we obtain

TueorEM 2. The critical stockage numbers Z.(s) are increasing functions of the
statistic s. The critical numbers & (s) are also wncreasing functions of s.

The next question that we shall examine is the relationship between the critical
numbers in successive time periods. Suppose that at the beginning of the nth
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period the stock level z is less than the critical level Z.(s), where s represents the
average demand in the preceding n — 1 periods. The optimal rule is to bring
the stock level up to Z,(s). If demand during the nth period is £, then the stock
level at the beginning of the (n + 1)st period is £.(s) — £, and the average de-
mand is s + ((¢ — s)/n). We shall address ourselves to the question of whether
the optimal rule calls for positive ordering in the (n + 1)st period if the demand
¢ is small. To say that there will be no positive ordering is equivalent to saying
that Z.(s) — & 2 Zo1a(s + ((¢ — 8)/n)) for all small £ and in view of the
conclusion of Theorem 2, this is equivalent to saying that

Za(8) > Tnp(s(n — 1)/n).

This result is actually true.

TureoreM 3. The critical levels have the property that T.(s) > Taii(s(n — 1)/
n), or in other words, we do not order in any period if the demand has been suffi-
ciently small during the previous period. ’

Let us assume to the contrary that there exist values of n and s, so that

_ _ n—1
(29) T.(s) = :v,.+1( ~ s).

We know that (see (23)) Z.(s) is the unique minimum point of

(30) ¢y + La(y | s) +af: Cn+1(?/'— g5+ s))qan(sls) d .

n

For y < Z.(s) we will have, by assumption, y — £ < Zaq1(s + ((¢ — s)/n))
and therefore C,11(y — & s + ((§ — s)/n)) will be a linear function in y whose
derivative is equal to —c. Therefore the derivative of (30) for any value of
y < Z.(8), is equal to ¢(1 — @) + dL.(y | s)/dy. It may also be shown that
both the right and left hand derivatives of (30) exist and are equal at the point
Z.(s), and we conclude that

L. (y | s) ~0

A when y = Z.(s) .
Iy

(31) c(1—a)+

Now let us examine the equation which gives Z,+1(s(n — 1)/n). Similarly as
with (30) we know that Z,.:(s(n — 1)/n) minimizes

— © -1
cy+L"*‘<y‘nn IS>+°‘fo ¢n+2(y—g,<2+1)s+ni1>

¢n+1<2’n;ls)dg-

If we evaluate this function at y = F,41(s(n — 1)/n) subtract the value for
y = &npa(s(n — 1)/n) — &, divide by 8, and use the following consequence of
the convexity of Cnyz: Crya(y — &.) — Caye(y — 8 — £,.) = —cd, then we
obtain the conclusion

(32)
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-1 n—1
OLny (a‘v’n_l (’n s) , s)

Since the right hand side of this equation is an increasing function of its first
argument, it follows that £,41(s(n — 1)/n) is less than the solution of the equa-
tion

aLn+l (y’ 1—_-:._1. s)
(34) 0=rc(l—a)+ " ’
]

and therefore by (29) it follows that £.(s) is less than the solution of (34).

We shall show that this last statement is false, thereby proving the theorem.
In other words, we shall show that the solution of (31) is always strictly greater
than the corresponding solution of (34). In view of the specific nature of the
functions involved this will be correct if we can show that

n—1
aLn+l (y " S)
_ > aLngz; | s) or, see (19) ,
v n—1 !
- fosanﬂ(‘finn s>d£>£¢n(£|8)d5, for y>0.

The proof of (35) is quite simple and again makes use of the monotonicity pre-
serving property of densities with a monotone likelihood ratio. Since the charac-
teristic function of the interval (0, y) is a monotone decreasing function of £,
it follows that

Y
f Pntl (E
0
is a monotone decreasing function of s, and therefore
v n—1 f Y n—1 T
>
£¢n+1($ Py S>df= 0¢n+l(£l n S+n_1>df
0 L y
f ﬁn+le—(n— )wse——rw [f e—Ewr<E) df} f(w) dw
— 0 0

f ﬂne—(n—l)wse—wrf<w) dw
0

_, f Bn+le—(n~l)w6 I:f e—E“’r(E) dfjl f(w) do
n . s) dg == 0

f ﬂne_("—l)wf(w) dw
0

or

‘/ On1 (E l n—1 8) df'f ﬂne~(n—l)wse—wrf(w) dew
0 0

(36) " ) ,,
n+l —(n—Dws —rw —fw
;fo B e e [fo e r(§) dé]f(w) dw,
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with strict inequality holding for some values of 7. If we multiply both sides of

(36) by r(7), integrate with respect to 7, from zero to infinity, and remember
that [ e “r(r) dr = 1/B(w), we obtain

Y _1 © n—1 —(n=1)ws
f0¢n+1($lnn 8>d£'j; B e " (w) do

> [ g [ [ e ds] F) de,

which is the same as (35). This completes the proof of Theorem 3.

(37)

4. Asymptotic properties of the critical numbers. The sequence of past de-
mands may be used to estimate the true demand distribution with increasing
accuracy as the number of time periods becomes large. It seems reasonable to
expect, therefore, that the critical number Z.(s) will, for large n, be quite close
to the critical number Z(s) obtained by assuming that the mean demand is s.
We shall, in this section, demonstrate that Z,(s) does indeed tend to Z(s), and
then establish an asymptotic expansion of the form £,(s) ~ Z(s) + (a(s)/n),
with a(s) given by (7). The proof of this fact will depend on obtaining certain
asymptotic expansions for the a posteriori density of w, given that the demand in
the first n — 1 periods has a mean of s.

We shall summarize the necessary asymptotic results in the following two
lemmas, without proof. In each case, the proof is a relatively straight forward
application of Laplace’s method for the evaluation of exponential integrals [5],
[8]. The a posteriori density of w, given that & + --- + &1 = (n — 1)s, is

Ign-—-l (w)e—(n—l)waf(w)
(38) j; Bn-—l(w)e—(n—l)waf(w) dw

=fn(wls) ’

and the maximum likelihood estimate of w is given by the solution of the equa-
tion
(39) dlolgif(w) —s,
which we shall also write as w(s). We shall only consider those values of s for
which 0 < s < lim, .0 (8'(w)/B(w)).

LemMMA 4. ¢.(E]s) — o(£] w(s)) uniformly in every finite & interval, if

f(w(s)) > 0.

The proof of this fact may be obtained by minor modifications of the argu-
ment presented on p. 283 of [8].

LemMmA 5. Let f(w) and h(w) have continuous 2nd derivalives in some neigh-
borhood of the point w(s), and let f(w) > 0. Then

a (£
j: h(w)falw]| s) do ~ h(w) + 1 dw (02h>

R
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where ¢* = —d’ logB/dw’, and the coeflicient of 1/n is evaluated at the point w(s).
If only the first term is required, then continuity of h and f are sufficient.

This lemma may be demonstrated by an application of Laplace’s method
[5].

Let us apply these results to verify that £.(s) — Z£(s). The proof depends
on the following simple observations. Let us consider an inventory problem in
which the true value of w is revealed after n — 1 demands are experienced. In
this situation the expectation of the  discounted costs from the nth period on-
wards is

(40) [t Clz,w)fn(w]|s) dw,

where C(z, w) is the cost for the sequential inventory problem, when the true
value of the parameter is known to be w. It is possible, however, to use in this
situation the strategy defined by the critical numbers Z,(s) which are optimal
in the statistical problem. If this strategy is used it disregards the information
which is made available as to the true value of w, and consequently the expected
cost incurred by the use of such a strategy will be greater than (40). This cost
is, of course, C,(z, s), and therefore [¢ C(x, w)fa(w|s) dw £ Cu(z, ).

On the other hand the following situation may be considered. Let us assume
that after (n — 1) demands have occurred, no additional demand information
will be made available to the decision maker. In this case the minimum ex-
pected cost from the nth period onward will be the same as the non-statistical
problem with a demand distribution given by ¢.(£|s). If we denote this cost
by C"(zx | s), then clearly

(41) I T O, ) fulw | 8) do < Co (z,5) < O™z, s) .

By Lemma 5, we see that [¢ C(x, w)fu(w]|s) dw tends to C(z, w(s)). In
order to appy Lemma 1, we must verify that ¢.(£|s) — ¢(£|w(s)) uniformly
in every interval, and that the means converge. The first part of this statement
is implied by Lemma 4, and the second part by an application of Lemma 5 to
the function k(w) = B(w) [ te **r(£) dt. We have therefore demonstrated

Lemma 6. If f(w(s)) > 0, then C.(x, s) — C(zx, w(s)).

It is a simple consequence of this lemma that &.(s) — Z(s).

We have therefore established

TueoreM 4. Under the assumption that f(w(s)) > 0, we have £.(s) — Z(s),
Z(s) being given by (6).

We now address ourselves to the problem of showing that the asymptotic
expansion for £,(s) given by (7) is indeed valid. Our first result is embodied
in the following lemma.

LeEMMA 7. For any fized value of x,

0= L. (z.(s) |8) +c¢(1 — ) = o(in(s) — Fnp (n ; 1 s)) ,asn— o,
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In order to demonstrate this lemma, we consider the cost function Ch(z, ).
According to Lemma 2, and its proof, we have

—c = L (%(s) | 8) — ac +
(42) aﬁm[g—x(]ﬁul( 2 (s) —E,S'f‘g >+C]¢’n(fls) dt.

The integrand on the right hand side vanishes for all £ with
En(s) — £ < Znaa(s + ((§ — 8)/n)),

and is positive for other values of £. For N — «, we know that &y (s) — Z.(s),
and lff > .’E,,(S) - in+1(s(n - 1)/"); then jn(s) - E < jn+l(s + ((E - S)/n))
(This follows from Lemma 3.) Therefore for N large, the integrand vanishes
for ¢ > Zn(s) — Zns1(s(n — 1)/n) + 6, where 6y — 0 as N tends to infinity.
Therefore, since the integrand is a decreasing function of ¢ (Lemmas 2 and 3),
we may write

og'fom[a% ‘Z+1( () — ks 20 >+c]¢n(s|s)dz

1?)+6~'8)
(2 et (20,

ORI N CORE W (=

“1)4.d)

If € is any positive number then

a‘l ,.+1( Y(s), 8)+c

< l{ T (z;%s) + o 1 ) Cot (m)

€

(44)

) e

If we substitute this in (42) and let N — o, we obtain 0 = L,.(:T:,.(s)l s) +
(1 — a) 2 =8, (%n(s) — Tuna(s(n — 1)/n)| s) multiplied by

1{0,,“ (:E,.(s) + e,n ; 1 s) — Copa :En(s),n — 1 s)} + ¢

For n large ®,(u|s) < Kgu for s away from 0 and Max (8'/8)(w). Also (1/¢)
{ -+ } + c approaches (1/¢){C(Z(s) + ¢ w(s)) — C(&(s), w(s))} + ¢, which
may be made arbitrarily small. This proves the lemma.

Lemma 7 is not sufficient to demonstrate the main result of this section,
except under certain cases. Let us suppose that there exists a subsequence of
{Zo1(s(n — 1)/n)} which is greater than or equal to Z(s). For this sequence
Zn(8) — ZTpp(s(n — 1)/n) £ Z.(s) — &(s), and Lemma 7 may be rephrased
as L (Z.(s)|8) + ¢(1 — a) = 0fZ.(s) — Z(s)}. Then

Ln(2(s)] s) + ¢(1 — @) + [£.(s) — &(8)1Ln(£(s) + 6 ]s)
= 0{2_:,,(8) - .’E(S)},
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where 6, — 0. But
Z(s8)

LL(&(s) |s) = —p + (h +p>fo enlt]s) dt

(h + p) 8w (L gi)

~ —p + (h 4+ p)®(z(s) |w(s)) + of?

by Lemma 5, and L, ((s) + 6. |s) — (h + p)e(Z(s)]| w(s)). Smce

(1 —a) —p+ (h+ p)2(E(s)] w(s)) =
(equation 6) this demonstrates the asymptotic expansion for £,(s), given in
(7).

In order to demonstrate the asymptotic expansion for Z.(s), in general, we
shall find it necessary to show that these functions satisfy a Lipschitz condition
of order 1. This is dependent upon the following lemma.

Lemma 8. Let s be any point between zero and Max, (8'/8)(w). Then for n
sufficiently large 8°Cn(x, s)/dxds exists except perhaps at the point x = Zn(s)
and s bounded from below, independently of N.

The existence of 9°Ch(x, s)/dzds follows directly from its definition. From
equation (25) we see that

0;
2 N
(45) 2C» _ I:

I (s)

<

6C’n+1 E — 8 .

oe, «[ (s - g+ttt @)
>

Tn(s).

The function

vof a0n+1<x_g’s+s )(p,,(gls)dé

is decreasing in s, so that its derivative with respect to s is negative, for all
values of . We may therefore write

T I CET TP =) PP

for all . Now let us assume that we can find a sequence of functions F,(z | s)

which satisfy the equations
f Fn+1(x—£,3+£ >¢n(£,s)d£:|y

oF, [
47
(47) ds _ 0s

and are increasing in z and decreasing in s. Then it is a simple matter to show
that 8°Ch/dxds = 9F,/ds, and this will furnish us with the required bounds.
It will be sufficient to obtain a solution to the equation

(48) F.(z,8) = (h 4+ p)®.(z|s) + afo Frp1 (@ —&s+ _EA__> ea(E|8) dt,

for = > 0.
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This equation may be shown to have the following solution. Define q;‘k)'(:g | w)
to be the the k-fold convolution of the demand distribution, and define

(49) M(z,0) = (h+ p) 2 d*™P (x| w).
k=0
Then

fm (Be™)" M (2| w)f(w) dw
(50) - F.(z|s) =2

R for z =0,

[ 6 1() ds

and equal to zero for x negative. This function may be substituted directly in
(48) to demonstrate that it is indeed a solution. It may also be verified directly
that F,(z | s) is increasing in x and decreasing in s.

In order to demonstrate Lemma 8 it is sufficient to show that dF,.(x | s)/ds
is bounded from below as n becomes infinite. Now

oF (n—1) f gl VM (x | 0)f(w) dw
lim — = lim 2

n>w O n->o © —wa\ n—"
S fo (86™)" " (w) deo

(=) [ )M @)fw) do [ (B ef () d

[ 61w do [ 61w do
In this form we may apply Lemma 5 directly, and conclude that

Fn L (n—1) [w<s>M<:v!w<S>> +0 @)]

ds
—n—1) [M(x | w(s) + 0 (%)] [“’(s’ +0 GL)]

The application of Lemma 5 merely requires that M (x | w) have a continuous
second partial derivative with respect to w. But by direct calculations

~ 0(1).

i%w_) = B(w) {—f foz e r(§) dt + [ (8 — m)’er(¢) dé},

< 26°(w), and similarly
Ow?

0 (2 | )
Ow?

< 2(k + 1)d*(w).
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This proves Lemma 8.

LemMA 9. For any s and 8 sufficiently small there exists a constant k such that
Za(s + 8) — Zu(s) < kd.

Again we consider the cost functions Cy . We have

o =% (51, 0

aC’Z

In(s +8),8) + [Za(s) — Zn(s + 8)] —C’"(y 8),

where y’ is some intermediary point. Again this is equal to

60,.
X

(£ha + 8), 8+ 9) = 5708 (&(s + ), 9)

+ [22(s) — Z0(s + a)] C”<y,s)

In other words
[Zn(s + 8) — a‘c‘ﬁ(S)] . = (y,8) = —-8 Cn (’"(s+ 8),5).

But 9°/02°C’(y', s) is positive, and is in fact larger than Ly (y’ | s) (see (22)).
Also —3°C%/dxds is positive, and by Lemma 7 is bounded, first as N — o
and then as n — . This proves the lemma.

Now let us give a proof of the general asymptotic expansion of the critical
numbers. The method of proof is quite similar to that given above when

Tapa(s(n — 1)/n) 2 i(s),

and depends on showing, by means of Lemma 9, that Z.(s) — Z(s) = O0(1/n).
Consider the sequence Z,(s) and assume first of all that there exists an in-
finite sequence of subscripts n, so that

(51) Za,(8) = Tn,a(s),

with the reverse inequality holding for the other terms in the sequence. Then

0 é in,(s) - jn,+1 (nr — 1 8)
Ny
_ _ _ _ n, — 1
= £,,(8) — Zn,41(s) +{xn,+1(8) - xn,+1< - 8)}
< ks ‘
=

We use the techniques given above, based on Lemma 7, to show that #(s) —
Zn,(s) = O(1/n,). Now let us consider any subsequence Z,.(s) all of whose ele-
ments are <&(s). Then if n, £ n’ £ n,.4. we have Z,x > Z,,,, and &(s) —
Z./(s) < K/n,4yu < K/n'. Therefore for any such subsequence Z(s) — Z.(s) =
0(1/n). For any subsequence all of whose terms are =Z(s), it is a trivial matter
to show, using Lemma 7, that Z.(s) — Z(s) = O(1/n).
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On the other hand if we cannot find an infinite subsequence of the type de-
seribed in (51), then we must have Z,(s) monotone decreasing, after awhile.
Then £,(s) > &(s) for n sufficiently large. This is enough to show directly from
Lemma 7, that £.(s) — &(s) = 0(1/n).

We have therefore shown that Z.(s) — &(s) = O(1/n), regardless of any
assumptions as to the form of the sequence &,(s). Then

5(8) — B (’i =1 s) [a(s) — 2(s)]

+ 12() — Fun(s)] + [z,.+1<s> - (" == s)]

o)

If we apply Lemma 7, the general asymptotic expansion is obtained.
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