ASYMPTOTIC MINIMAX CHARACTER OF THE SAMPLE DISTRIBUTION
FUNCTION FOR VECTOR CHANCE VARIABLES

By J. Kierer! anp J. WoLFowiITZ?

Cornell University

Summary. The purpose of this paper is to prove Theorem 1 stated in Section 1
below and Theorem 2 of Section 6 and the results of Section 7. These theorems
are the generalizations to vector chance variables of Theorems 4 and 5 and
Section 6 of [1], and state that the sample distribution function (d.f.) is asymp-
totically minimax for the large class of weight functions of the type described
below. The main difficulties are embodied in the proof of Theorem 1 (Sections
2 to 5), where the loss function is a function of the maximum difference between
estimated and true d.f. The proof utilizes the results of [2] and is not a straight-
forward extension of the result of [1], because the sample d.f. is no longer “dis-
tribution free”’ (even in the limit), and hence it is necessary to prove the uni-
formity of approach, to its limit, of the d.f. of the normalized maximum deviation
between sample and population d.f.’s (for a certain class of d.f.’s). The latter
fact enables us essentially to infer the existence of a uniformly (with the sample
number) approximately least favorable (to the statistician) d.f., by means of
which the proof of the theorem is achieved. Theorem 2 (Section 6) considers
loss functions of integral type, and more general loss functions are treated in
Section 7.

1. Introduction and preliminaries. The problem of finding a reasonable
estimator of an unknown distribution function (d.f.) ¥ in one or more dimen-
sions is an old one. In the one-dimensional case the first extensive optimality
results were obtained in [1]. It was shown there that, although a minimax pro-
cedure for sample size n may depend on the weight function as well as on n,
the sample d.f. ¢ is asymptotically minimax as n — o« for a very large class of
weight functions which includes almost any weight function of practical interest.
Also, an exact minimax procedure is extremely tedious to calculate in most
practical cases, and is less convenient to use in practice than is ¢ . Moreover,
one can obtain from [1] a bound on the relative difference between the maximum
losses which can be encountered from using ¢ or the actual minimax procedure,
and for many common weight functions this bound indicates that ¢ is very
close to being minimax for fairly small values of n.

For dimension m > 1 the minimax problem presents difficulties which are
not present when m = 1. (An outline of the main ideas and difficulties encoun-
tered in the proofs when m = 1 or when m > 1 will be given in Section 4; the
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proof there is completed in Section 5; additional considerations for various weight
functions are outlined in Sections 6 and 7.) These difficulties stem from the fact
that neither ¢» nor any other known procedure which seems a reasonable candi-
date for optimality, has the distribution-free property possessed by ¢} when
m = 1. This fact has led investigators of the problem when m > 1 to try (un-
successfully) to find reasonable distribution-free procedures. Such investigations
now seem to have been aimed in the wrong direction; for the main result of the
present paper is that ¢x is still asymptotically minimaz for a large class of weight
functions, even though it is no longer distribution free.

The proof of the result just stated presents new difficulties far greater than
those encountered when m = 1. In order to describe these difficulties briefly, let
us suppose for the moment that the risk function is the expected value (under
the true ) of n'* times the maximum absolute deviation between estimated
and true d.f. The computation of this risk function or its limit as n — =« for the
sequence of procedures ¢ (or any other reasonable sequence procedures) is
known to present formidable difficulties, even for very simple continuous F
(e.g., the uniform distribution on the unit square when m = 2). Our method
of proof circumvents such a computation by showing that, when n is suitably
large, the risk function of ¢ is changed arbitrarily little from what it would be
if the maximum deviation were taken over a large but finite set of points instead
of over all of m-space (this uses a result of [2]). Thus, the problem is reduced
to a multinomial problem, similar to the reduction of [1] when m = 1, and we
can circumvent the explicit computation of the risk there in a manner like that
used in the multinomial casein [1], and which will be described in Section 3 below.
But there remains another difficulty: in order to use a Bayes technique like that
of [1] to prove the asymptotic minimax character of ¢, we must show that there
is a d.f. F; at which the risk function of ¢ is almost a maximum for all sufficiently
large »; i.e., that the location of some approximate maximum does not “wander
around” too much with n. Because of the distribution-free nature of the chance
loss (for many common loss functions) under ¢ when m = 1, the existence of
such an F; was automatic there (any continuous d.f. could be used) ; for m > 1,
our proof requires the result of Lemma 1 of Section 2 below to obtain the existence
of such an Fs, at least when F is restricted to belong to a class of d.f.’s which in
Section 5 is seen to be dense enough in an appropriate sense to yield the desired
result. Once such an F; is known to exist, a sequence of approximately least
favorable a priori distributions can be constructed for the approximating multi-
nomial problem in the manner of [1]; this will be described in Section 4.

Aside from the difficulties described in the previous paragraph, the proofs of
minimax results when m > 1 are very similar to those when m = 1. Therefore,
rather than to repeat all of the details of [1], in each of Sections 4, 6, and 7 we
will first describe the idea of the proof and then will indicate the modifications
needed in the proof of the corresponding section of [1] to make it apply when
m > 1.

We now give the notation used in this paper. m will denote any positive integer,
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fixed throughout the sequel. & denotes the class of all d.f.’s on Euclidean m-space
R™, and ° denotes the subclass of continuous members of §. Let D be any sub-
class of the space of real functions on R™. For simplicity we assume § C D,
although it is really only necessary that D contains every possible function of the
form S, (defined below), for all n and 2. Let B be the smallest Borel field on D
such that every element of § is an element of B and such that, for every positive
integer k, real numbers ai, ---, ax, and m-vectors #, ---, t, the set
{glgeD;gt) < ar, --+, g(tx) < a} is in B. (For example, we might have
D = § and B the Borel sets of the usual metric topology.) Let ©. be the class
of all real functions ¢, on B X R™" such that ¢.(- ;z) is a probability measure
(B) on D for each z in R™" and such that ¢,(A ;-) is a Borel-measurable function
on R™ for each A in B.

We now describe the statistical problem. Let Z;, - -+, Z, be independently
and identically distributed m-vectors, each distributed according to some d.f.
F about which it is known only that F ¢ & (or §° or some other suitably dense
subclass of F). The statistician wants to estimate F. Write Z W= (Zy, e, Za)
and 2™ = (21, -+, 2a), where z;-¢ R™. Having observed Z™ = 2™, the statis-
tician uses some decision function ¢, (a member of ©,) as follows: a function
g ¢ D is selected by means of a randomization according to the probability meas-
ure ¢, (- ™) on D; the function ¢ so selected (which need not even be a member
of F) is then the statistician’s estimate of the unknown F. It is desirable to
select a procedure ¢, which may be expected to yield a g which will lie close to
the true F, whatever it may be; the precise meaning of “close” will be reflected
by a weight function W, (F, g) which measures the loss when F is the true dis-
tribution function and g is the estimate of it. The probability of making a deci-
sion in A when ¢, is-used and F is the true d.f. is

(11) pro(8) = [ 9u(8, 2)F (&™),

which, as a function of A, will be a probability measure on D (see the next para-
graph). Denoting expectation of a function on D with respect to- this measure by
Er.s, (the symbol Pr 4, is used analogously, and the subscript ¢. will be omitted
when it is not relevant), the risk function of the procedure ¢. is defined by

(1.2) rn(Fy ¢n) = EF.QMW"(I’Y) g)’

i.e., it is the expected loss when F is true and ¢, is used. A sequence {¢n} of pro-
cedures is said to be asymptotically minimax relative to a sequence W, of weight
functions and a subclass ¥’ of F if

sup ru(F, ¢0)
13 lim —£2 =1
( ) n-x 1nf SUB Tn(F, ¢n)

$neDn FeF

(We note that this is a stronger property than that obtained by suppressing
the supreme operation in the numerator and asking that the upper limit as
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n — o be =1 for each F; this latter asymptotic property is much easier to
verify than (1.3).) A nonrandomized decision function is one which for each
2™ assigns probability one to a single element (depending on z™) of D. By
¢ we denote the nonrandomized procedure which chooses as decision the “sample

df.” S, defined by

S,(z) = n' (number of Z, < 2,1 £ ¢ < n),

where as usual Z £ z means that each component of Z is < the corresponding
component of z. We shall not explicitly display the dependence of the chance
function S, on Z.

Obvious measurability considerations arise in connection with (1.1), (1.2),
etc. These are handled exactly as in Section 1 of [1].

We can now state the main result of this paper, whose proof will occupy the
next four sections (modifications and extensions are considered in Sections
6 and 7). -

TuEOREM 1. Suppose W.(F, g) = W(n'* sup.|g(z) — F(2)|), where, for
r = 0, W(r) s continuous, nonnegative, monotonically nondecreasing, not identically
zero, and satisfies

(1.4) fo rW(r)e"”;"'2 dr < =

where cy, is given by (1.8). Then (%} is asymptotically minimaz relative to { W}
and 5.

Before listing the results of [2] which will be used in the present paper, we
introduce some additional notation. When Z; has d.f. F, define

D, = sup |S.(z) — F(x)]
zER™

and
G.(r; F) = Pe{D, < r/n''%.

For k a positive integer, write Ax' for the subset of (k + 1)™ points in the m-
dimensional unit cube I™ = {2 |0 £ 2 < 1, z ¢ R™} for which each coordinate
is an integral multiple of 1/k. Write

Dn,k = SuI?n |Sn(1:) - F(Z)I

zeA]

and
Gn.k(“ F) = PF’{Dn,k < ;572}

We also write
G i(r; F) = im G, (r; F);

n—+%

the existence of this limit follows from the multivariate central limit theorem.
Finally, let §* be the class of d.f.’s F which are in §° and for which each one-
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dimensional marginal d.f. of F' is uniform on I'. Clearly, if Z, has d.f. F in 5°,
we can perform continuous transformations on the components of Z; , so as to
make the result have a d.f. F* in §* without changing G, . This fact will be
used in the sequel.

The results of [2] which will be used in the present paper are the following
(some of these results hold with little or no modification for F in &, but we need
them here only for ¥ in §*):

A. (Theorem 2 of [2].) For F in §*, there is a d.f. G(- ;F) such that
(1.5) lim G.(r; F) = G(r; F)

n->on

at every continuity point of the latter. Moreover, for F in F*,

(1.6) lim G, x(r; F) = G(r; F)
k-»%0

and (obviously)

(1.7) lim Goi(r; F) = Ga(r; F).
k>0

B. (Theorem 1 of [2].) There are positive constants c and c., (independent of
n, F, and r) such that, for F in §* all n, and all » = 0,

(1.8) 1 —G.(r;F) < chemom™®,

Further remarks on possible values of cm are contained in [1] and [2].
C. For each F in § there is an F, in §* such that, for all #» and r,

(L.9) Gu(r; F1) £ Gu(r; F).

('This is fairly obvious; see [2] for further discussion.)

Of course, (1.8) and (1.9) also hold in the limit; i.e., with the subscript n
deleted.

D. (A consequence of (3.11) of [2].) For all F in 3*, and for each d > 0,
(1.10) Gux(r;F) — G (r + d; F) < %k—l- ckexp { —csd’k?) +§;(%+ %) ,
where the c¢; are positive constants depending only on m.

A further result of [2] will be given in Lemma 2 of Section 2, after some addi-
tional notation has been introduced.

In most of the arguments of this paper we will be dealing with F’s which are
in §°. To simplify the discussion in such cases, we shall always assume that, for
every real number ¢ and integer j, at most one Z; has its jth coordinate equal
to t. The probability that this be not so is zero.

2. Uniformity of approach of G, to G in the subclass .. The purpose of this
section is to prove Lemma 1 (stated below), which will be used in Section 4 to
prove the existence of an F; with the properties described in Section 1, when F
is restricted to belong to a suitable subeclass . of . This and the multinomial
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result of Section 3 will then be used in Section 4 to demonstrate Theorem 1
with § replaced by .. The proof of Theorem 1 is then completed in Section 5
by showing that F. is suitably dense in § as ¢ — 0. Thus, although by far the
greatest amount of new effort needed to prove Theorem 1 when m > 1 over what
is needed when m = 1, is contained in the arguments of the present section, the
reader who is interested mainly in the ideas of the statistical proof may read the
statement of Lemma 1 and then go on to Section 3.

We first introduce some notation which will be used in this and subsequent
sections. Let € be a small positive number and let » be a positive number, both
of which will be fixed in the present section. Other ¢’s with subscripts will be
used in this paper to denote positive variables which will approach zero. The
symbol o(1 | €;) is to denote a quantity which, as ¢; approaches zero, approaches
zero uniformly in all other relevant quantities. Sometimes the latter will be
explicitly indicated. Thus o(1 | ¢; | n, F) denotes a quantity which approaches
zero, uniformly for all n (sometimes for all large n) and for all F (either in &
or in some indicated subclass), as e; — 0. The symbol o(1 | ¢;, n | F) denotes a
quantity which approaches zero as ¢; — 0, n — o, uniformly in F (either in &
or some indicated subclass). The symbol o(1 | n | F) denotes a quantity which
approaches zero as n — «, uniformly in F (either in & or some indicated sub-
class). The symbol o(1 | d, N(d) |-,-) is to mean a quantity which approaches
zero as d — 0 while n stays larger than a suitable function N (d) of d (which may
change in various appearances of the symbol, although we shall sometimes use
N, N’, ete., to denoté several such symbols which arise in the proof of the same
lemma,), and the approach of this quantity to zero is uniform in all other relevant
quantities, which may be indicated where the dots are. The symbols
o(1] e, N(e) |-, ) and o(1 | k, N(k) |-, ) (with k — «) will be used simi-
larly. Finally the symbol 6 will always denote a generic quantity <1 in absolute
value; two 6’s in different places need not be the same. The quantity d will
always be >0.

Let . be the subclass of those d.f.’s F in §* which have a Lebesgue density
fr in the subset of all points in I™ where at least one coordinate is =1 — ¢, and
such that 1 < fr < 2 almost everywhere in this region. The proofs of this section
actually hold when &, is replaced by a somewhat larger class; but this is of little
importance, the main use of Lemma 1 being to prove Theorem 1. (The relation-
ship of F. to F. will be stated in Section 4.)

LeMMA 1. We have, for each fized m,

(2.1) |Gu(r; F) — G(r; F)| = o(1|n|F ¢5,).

The proof of Lemma 1 will require several supplementary lemmas. The proofs
for all m > 1 are essentially the same, but the proof is most easily written out
and followed in the case m = 2. Hence, throughout the remainder of-this section
we shall carry out all proofs in the case m = 2. The modifications in the statements
and proofs which are necessary when m > 2 will usually be completely obvious;
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and we shall explicitly mention, at appropriate points in the argument, those
modifications which are not completely obvious.

Thus, we can write in coordinates Z, = (X, , Y,) and z = (z, y), throughout
the remainder of the section. (In most of the corresponding arguments for the
case of m components, z will stand for the first m — 1 components of z, and y
will stand for the last component of z.)

The idea of the proof of Lemma 1 is that (1.10) should somehow be used to
prove Lemma 5, which, by a suitable uniformity result (Lemma 7) on the ap-
proach of the multinomial distribution to its limit, will yield (2.1). What is
needed to obtain Lemma 5 from (1.10) is Lemma 4, the idea of which is that if
n'?|8.(2) — F(z)| attains the value r somewhere, then it is very likely to attain
the value r + d somewhere, if d is small; it is the structure of F. which is used,
in (2.18), to prove this.

For 0 < ¢ < 1 we define the events

(2.2) Li(e) = { sup |8.(2) — F(2)| = »/n""%,
0<z<e€;
0=ys1

and

(2:3) Ly(a) = [ sup_ [Su(z) = F(2)| 2 r/n'"%.
1Cazys1

(For the case of vectors with m components, the supremum in (2.2) is taken over
the set where at least one of the m — 1 components of z is < ; in (2.3), it is
taken over the set where all m components are =1 — ¢ .)

The next two lemmas lead up to Lemma 4.

Lemma 2. We have

(24) Pelli(a)} = o(l]a,n|F e5*),
and
(25) PF{L?,(EI)} = 0(1 I €, Nn | F ¢ 5}*)

ProoF. An upper bound on the probability of L;i(e) can be obtained from
equations (3.6), (3.9), and (3.10) of [2], if, in the latter, we set h = 0,7 = 1,
k = 1/& (the relevant argument of [2] is valid even if k is not an integer), d = r.
We obtain

Pe{Li(a)} < 1 + ¢, exp {—cr'f2ea’”}
n
(2.6) 16 2 €
+F<36; + i) = (/(1‘61,7’1‘ F’C:’f*).

We shall now use an argument like that by which (2.22) of [2] was proved, in
order to prove (2.5). The event L:(€) implies the occurrence of at least one of
the following events:
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1-¢;<z=<1
l—e;Sy<1

L; ={ sup | (number of Z,, - -, Z, which satisfy

"
0= X;=<2,y=<Y:=<1)— expected number | = rz;_z}’

Ly = { sup | (number of Z;, -+ -, Z, which satisfy

l1—-¢;<z<1
2.7) B >
= X;£1,y= Y, =< 1) — expected number| = m_g_}’
Li = { sup | (number of Z,, ---, Z, which satisfy
L
2= X;=1,0=Y;= y) — expected number| = %}

The random variables in the original sequence {Z}- all have the same distribu-
tion as Z; = (X, Y1). Apply the argument by which (2.4) was obtained for
sequences all of whose members have the same distribution as each of the follow-
ing, in order: (1 — ¥;, X3), (1 — X;,1 — Y1), and (1 — X;, Y:). We obtain
that

(2.8) Pe{Ls} = o(1] &, n|F e5*), i=1,2 3.

Hence (2.5) is verified.
Define the events

1
(2.9) Li(e) = { S0P |8a(2, 1) — 2l < m}
and
(2.10) Li(er) ={ _sup [8.(2) — F(2)] 2 1{1‘72}
O_S_lll=§l__::“l

From (1.8) we obtain that
(2.11) PF{L3(61)} =1~ 0(1 Ié]l n, F 85*).

Write L(e) = L3(e) N Ly(e;). Whenever L(¢) occurs we can define chance
variables H and T as follows: H = h,e S A < l,and T = t,0 <t <1 — ¢,if

(2.12) |Sa(h, t) — F(h, t)] 2 r/n*
and
(2.13) |Sn(W, t) — F(W, )| < r/n'?

ponent case, b’ has all m — 1 components = ¢ and h can be specified by any
rule which does not depend on y for y > ¢, and such that (2.12) holds.) Thus,
if a horizontal line y = ¢’ is swept upward starting at ¢’ = 0, the line y = ¢is

fora < 1,05t <taswellasfor g < b < b, t' = t. (In the m-com-
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the first for which (2.12) can hold, and % is a well-defined value such that it
does.

LemMa 3. We have, for some N(d) and ¢ = d"*,

(219) A s 15,0 = Rl 2 TEE )

=1—0(1|d,N(d)|Feg.).

Proor. We suppose that
(2.15) S.(H,T) — F(H, T) = r/n"?
and we will prove that, conditional on L(&) occurring, the probability that
(2.16) Su(H,y) — F(H,y) 2 (r + d)/n'"

forsomey, T < y < 1,is1 — o(1|d,N(d) | F & F.).. This will be enough to prove
(2.14), for (a) if the left member of (2.15) is greater than r/n"* the result we
want to prove is a fortiori true, and (b) if the left member of (2.15) is < —r/n'?,
it is proved, in the same way as below, that the probability (conditional on
L(&) occurring) that the left member of (2.16) be <—(r + d)/n'? for some
y, T <y =<1l,is1—o(l]d,N(d)|F e5.).

Define

n = n(Sn(H, ]-) - Sn(H; T))y

H-FHT) °

na(g) = n(Sa(H, y) — Sa(H, T)).
From (2.9), (2.10), (2.15), and the definition of &, , we have, in L(e&), if & < ¢,

(2.17) g =

1/2
(2.18) m=n(H —-F(H,T)) + 07:— — ' > né/2 — n'? (;1— + r),
1 1

which goes to © asn — « (uniformly in H and T < 1 — ¢), and is thus arbi-
trarily large for n > some N’'(&). Using (2.15) we find that (2.16) is equivalent
to
m(g) _ ng(H — F(H,T)) _ dn'”

m n = m ’
From (2.18) we obtain that the probability that (2.19) occur for some 7,
0 < 7 £ 1,is = the probability that, for some 7,

(2.19)

- —1 -2
(220) nz(y) —g= 2d €1 + 461 Y

m = qb2 ni2”’

provided that ¢ is small enough and n > a suitable N1(«).
Now set

(2.21) q = d'*
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and suppose that d is small enough that (2.20) holds when ¢ is given by (2.21).

Let {W(t),0 <t < «} be the separable (Wiener) process with independent,
normally distributed increments, W(o) = 0, E(W(t)) = 0, Var (W(t)) = t.
Given H, T, and n, , the left member of (2.20) clearly is distributed as the differ-
ence between a sample d.f. and the uniform d.f. on the one-dimensional interval
0 < 7 < 1, when the sample d.f. is that of n; independent, uniformly distributed
random variables. It follows from [3] and [4] and the fact that n; — « asn — «
that, under (2.21), the conditional probability (given that L(e) occurs) that
(2.20) hold for some 7 approaches, uniformly in &, , as n — o,

(2.22) P{W(t) 2 2d™ + (24" + 4d7")t for some ¢ > 0}.
The latter is, by [4], equation (4.2),
(2.23) exp { — 2(2d¥*)(24"* + 4d7'*)}

which approaches one as d — 0. Hence, for d sufficiently small and n > some

N(d), the conditional probability (given that L(e&) occurs) that (2.16) holds

for'some y > T is arbitrarily close to 1, uniformly in &, . This proves (2.14).
LemMa 4. We have, for some N(d),

(2.24) G.(r +d; F) — G.(r; F) = o(1|d,N(d) | F ¢5F.).

Proor. Substituting (2.21) into (2.2), (2.4), (2.9), (2.10) and (2.11) (none
of which previously depended on d in any way), and using Lemma 3, we have
(225) Prlir=  sup AVn|S.(2) —F(z)|Sr+d}'=0(1]|d,N@)|FeF.),
where of course the N (d) may differ from that of Lemma 3. Now, the definition
of &. is such that, by interchanging the roles of z and y, we obtain, in the same
way that (2.25) was obtained,

(2.26) Prir = sup Vn|S.(2) — F(2)| S r+d} = o(1|d,N(d) | FeF.).
0<z<1—dl/4
0Zy<1

(In the case of vectors with m components, there are m — 2 additional analogues
of (2.26).) Finally, substituting (2.21) into (2.5) and combining the result with
(2.25) and (2.26), we obtain (2.24).

Lemma 5. We have

(2.27) 0 = Gui(r; F) — Gu(r; F) = o(1 |k, N'(k) | F € F).

Proor. The left side of (2.27) is trivial. Adding (1.10) and (2.24), we have
Gui(r; F) — Gu(r; F) £ o(1]d, N(d) | F £5.)

+ ckexp {— ¢ k"% + c/d'k + cik/n + ci / d'n.

Let ¢ > 0 be given arbitrarily. Let d; > 0 be such that the first term on the
right side of (2.28) is <¢/3if d = di and n > N(dy). Let k; be such that the

(2.28)
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sum of the next two terms on the right side of (2.28) is <€'/3 when d = d, and
k> ki .Fork > ki, let N'(k) be >N(d:) and be such that the sum of the last
two terms of (2.28) is <¢/3 whend = dyand n > N'(k). Then, putting d = d; ,
we have that the right side of (2.28) is <€ when & > k; and n > N’(k). Thus,
Lemma 5 is proved.

The discussion which immediately follows, as well as Lemma 6, leads up to
the proof of Lemma 7.

There are k* cells into which I” is divided by the lines z = i/k, y = j/k,
7,7 = 0,1, -+, k. (There are, of course, k™ cells in the case of vectors with m
components.) Number the cells as follows: The cell boundedbyz = (¢ — 1) / F,
x=1d/ky= (j—1)/k,y=7j/k, isto be called the (7, j) cell. Write

mri; = Pr{Zy € cell (4,7)}.

Write (¢,7) < (4,7) if &' < 4,7 = j, and write (¢',j") < (4,7) if (', 7)) = (4,7)
and either ¢/ < j or 5 < j. Let H be any collection of cells. For any fixed
(%0, jo) not in I, there clearly exist integers c;; (depending only on H and
(%0, o)) such that we can write
(229) Flio/k,jo/k) = 2 exF(i/kj/K) + 25 esmri,

(i) £ (0d0) i) £Godo)

({9)eH (53) ¢H

identically in F (i.e., in the 7r;;).

Let €2 > 0 be given. Call the cell (7, j) regular if mr;; = e and (¢,7) # (k, k).
Call the cell (3, j) singular if mr;; < e and (4, j) #= (k, k). Let Hr be the col-
lection of regular cells, let (7o, jo) be singular under F, and let the c;; be as in
(2.29). Denote a summation over the region (3, j) < (%0, jo), (%, 7) € Hr by
> (Fi0d0) Then, clearly,

(2.30) |F (io/, jo/k) — 22" eiiF (ifk, j/k)| < h(k)er,

where h is a suitable positive function of k alone, which can be chosen so that
(2.30) is valid for every e, every F, and every (%, jo) singular for such an F;
here the Hr depends on the F and e being considered, but the c;; depend on
these quantities only through Hz .

Define Qr (&) to be the probability that

|S.(i/k, j/k) — F(i/k, j/k)| < r/n'' for all (¢, j) in He,
(2.31) | >0 18, (i/k, §/k) — F(i/k, §/k)]| < r/n'*
for all (¢, j) 5~ (k, k) and not in Hp .

The proof of the next lemma is actually valid when * is replaced by the class
of all d.f.’s on I”.
LemMmA 6. We have

(2.32) |Qra(e) — Gui(r; F)] = o(1] e, N(e) | F £ F*).
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Proor. Define, for (4, jo) singular,

(2.33) U = 8.(%/k, jo/k)

and

(2.34) V = i, S (i/k, j/k).

Let B be the event defined by

(2.35) B={|(U-V)—-EU-"V)| < &"*/n'3.

Now, U — V is just the last sum of (2.29) with s;; replaced by n™" (number of
Zy, -+, Z, falling in cell (¢, j)). Hence, U — V has variance <h'(k)e/n,
where h' is a suitable positive function of k. Thus, by Chebyshev’s inequality,
(2.36) Pe{B} > 1 — W (k)a".

Of course, the definition of B depends on F, was well as on (%0, Jo) ; but, again,
h’ can be chosen so that (2.36) holds for all F. Consider the events

(2.37) A, = {|U — EU| = v/0'* |V — EV| < r/n'"}
and
(2.38) A; < {|U — EU| < r/0'? |V — EV| = r/n"}.

The definition of these events also depends on F and (7 , jo). Define Pr, = Pp{A}},
t = 1, 2. We are first going to show that, for all F for which (%, 7o) is singular,

(2.39) Pre = 0(1| &, N(e) | F £ 5*%), fort = 1, 2.

In proving this, let W stand for U in the case ¢t = 1 and for V in the case t = 2.
Then W is 7~ times the sum.of n independent, identically distributed random
variables, each bounded in absolute value by some constant L (independent
of F). Let o” be the variance and 85 the absolute third moment about its expected
value of each summand (i.e., of W — EW when n = 1). Now, if ¢* < &,
Chebyshev’s inequality yields P, < 7 *&'®, so that (2.39) is verified in that case.

On the other hand, if ¢* = &%, by (2.36) we have
Pr. £ Pe{BN A} + Pe{B} < Po{BN A} + K (k)&
(2.40) S Pefr =\ W —EW| = r 4+ &} + W (k)a?
< Pr/o S 0\ W — EW| /o = r/oc + &™) + W (k)™

By the Berry-Esseen estimate (see, e.g., [5]) and the fact that 8;/¢° < L/o, we
have from (2.40) for all F for which ¢* = eé’s,

(241) Pr S K(K)&" + & + eln'Pg"",

where c; is a positive constant. Thus, (2.39) is proved.
Lemma 6 follows at once. from (2.39).
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The proof of the next lemma is also valid when F* is replaced by the class of
all d.f.’s on I*.
LEMMA 7. For any fized positive integer k, we have

(2.42) |Goi(r; F) — Gup(r; F)| = o(1|n|F & F*).

Proor. Let ¢ > 0 be given arbitrarily. Choose e; so small and N (e) so large
that, for this value of ¢ , the left side of (2.32) is < /4 for all F whenn > N(e).
We shall show below that, writing Qr(e) = lim,.« Qr »(€), we have

(2.43) |Qr(e2) — Qrn(e)| < €3/2

for n sufficiently large, uniformly in F. Hence, we shall have, for n sufficiently
large, uniformly in F, that the left side of (2.42) is no greater than

|Goi(r; F) — Qr(e)| + |Qr(e2) — Qrn(e2)]
+ IQF.n(Q) - Gn,k(T; F)l < 63/4 + 63/2 + 63/4 = e,

and (2.42) will be proved.

We shall now fix H and prove that (2.43) holds, uniformly in all F for which
Hy = H, for n sufficiently large. Since k is fixed, the number of possible choices
of H is finite, so that Lemma 7 will be proved.

Consider the joint distribution of the n'/*(S.(i/k, j/k) — F(i/k, j/k)) for all
regular (z, j), which, as n — «, approaches a multivariate normal distribution.
Since 7ri; 2 e for any regular point it follows that the determinant of the covari-
ance matrix of the n'*(S,(¢/k,j/k) — F(i/k,j/k)) (for regular (,7)) is bounded
away from 0 (and, of course, from « as well) by a function of e, uniformly in
all F for which Hr = H. It follows from [6], page 121, that the maximum of the
absolute value of the difference between the joint d.f. of these n**(S,(i/k, j/k) —
F(i/k,j/k)) and their limiting multivariate normal d.f. is less than 1M (&),
where M is a real function of e only. The maximum of the density of this limiting
normal d.f. is a real function only of €, say M’(e). Thus, the statements in the
last two sentences are uniform in all F for which Hr = H.

It follows from (1.8) that the probability of a sufficiently large cube C in the
space of the n''*(8.(i/k,j/k) — F(i/k, j/k)) (for all regular (7, 7)) which
is centered at the origin, is greater than 1 — ¢;/12 uniformly in F and n. Hence
this is also true of the limiting multivariate normal d.f. of the n'*(S,(¢/k, j/k) —
F(i/k, j/k)).

Consider the region R in the space of these n*(8.(i/k, j/k) — F(i/k, j/k)),
which is defined by (2.31) and whose probability is Qr,.(e:). The region RN C
is a bounded polyhedron and can be approximated from within by a finite
union R; of “rectangles” with sides parallel to the coordinate planes, such that
the volume of the region R, = [(RN C) — Ry] is <e, where ¢ > 0 is such
that M’ (e2) < e3/12. The set R can be covered by a finite union E; of rectangles
with sides parallel to the coordinate planes whose total volume is <2 . Let m;
be the number of rectangles in R; , and m; be the number of rectangles in E; .

(2.44)
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The probability of R, according to the limiting normal d.f. is less than
(245) 264M,(€2) < 63/6.

The probability Pr{R,} of the region R, according to F is <Pg{R;}, which, by
the aforementioned result of Bergstrom [6], differs from the probability of R;

according to the limiting normal d.f. by less than 4msM (e)n~ ">, Hence,

(2.46) Pr{Rs} < &/6 + 4msM (&)n "

Also, by.Bergstrom’s result just cited, the probability of R, according to the
limiting normal d.f. differs from Pg{R,} by less than 4m,M(e&)n "*. Since the
sum of this and the second term in the right member of (2.46) can be made
less than /6 by making n sufficiently large, it follows from the present para-
graph and the previous two paragraphs that (2.43) holds for n sufficiently large,
uniformly in all F for which H» = H. This completes the proof of Lemma 7.
Proor or LEmMMa 1. Let s > 0 be chosen arbitrarily. Choose k' such that the
right side of (2.27) is <e&/3 for k¥ = k' and » > N'(k’). In particular,
0 £ Gow(r;F) — G(r; F) £ /3. Choose N to be >N’(k') and such that, for

k = K, the left member of (2.42) is <e/3 for n > N’. Then, for n > N’ and
all F'in §., we have

Gu(r; F) — G(r; F)| = |Gu(r; F) — Gupe(r; F)|
+ [Grw (r5.F) — Gopr(r; F)| + [Gop(r; F) — G(r; F)| < .

Since ¢ was arbitrary, Lemma 1 is proved.

(2.47)

3. The multinomial result. We have mentioned in Section 1 that the main
results of this paper are obtained by approximating the original problem by an
appropriate multinomial problem. In the present section we summarize the
needed multinomial results which were obtained in [1], and sketch the ideas
of the proofs, unencumbered by the tedious details of [1]. Actually, we do not
need the full strength of the results of [1], which are broader than those of
Lemma 8 below in that, in the derivation of Section 3 of [1], the calculations were
carried out in fine detail in order to obtain an error term which can be used
to calculate an upper bound on the departure of #» from minimax character (in
view of the lack of knowledge about the distribution of D, , it seems more diffi-
cult to obtain a useful bound of this kind when m > 1). In fact, if one does not
bother to obtain an error term, it is obvious how to shorten considerably the
proof of the multinomial result in Section 3 of [1], and we shall see that this
simple multinomial result without error term rests mainly on a result of v.
Mises ([7], especially pages 84-86) which is almost forty years old.

We now introduce the needed notation. Let A be a positive integer and let
B, be the family of (A + 1)-vectors 7 = {p,, 1 = 7 < h + 1} with real com-
ponents satisfying p, = 0, > pi= 1. Let B, be a specified subset of B, - By can
actually be fairly arbitrary in structure; to avoid trivial circumlocutions, we
shall suppose in this section that Bj is the closure of an h-dimensional open
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subset of Bj, although it will be obvious that Lemmas 8, 9, and 10 hold much
more generally. Let T = {T{”, 1 <4 £ h + 1}, a vector of h + 1 chance
variables, have a multinomial probability function arising from » observations
with & + 1 possible outcomes, according to some x in B ; i.e., for integers
x; = 0 with 2i" z; = n,
(31)  PAT™ =z, 1Sish+1) = — M po ity

Zy!e e Tpga!
Let L be a positive integer, let v; be an (A + 1)-vector, 1 < 7 < L, and let
pi = vyir (scalar product) be corresponding linear functions of =, 1 £ ¢ £ L.
To avoid trivialities, we assume at least one p; is not constant on By . Let &, be
the class of all (possibly randomized) vector estimators of p = {p;,1 < 7 £ L},
the weight function (which depends on n) being the simple one for which the
risk function of a procedure ¥, in &, is

(3.2) 1 — Poyfldi — pif < r/0% 1 24 < L,

where r is a positive value and we have written d = {d; , 1 < ¢ < L} for the
vector of decisions. Let ¢ be the nonrandomized estimator whose ith com-
ponent is viT™ /n (the allowable decisions may be restricted to v/ for = in B,
with only trivial modifications in what follows). Finally, a point = in B, is called
an interior point if all its components p; are positive, and if it has a neighborhood
(in By) which is a subset of By . The required multinomial result is:

LemMA 8. For any interior point =* of By there is a sequence {£.) of a priors
distributions on By, converging in distribution to the distribution which gives prob-
ability one to = and such that {¥y} is asymptotically Bayes relative to {£,} asn — o,
uniformly for 0 £ r £ R for any R < o« ; i.e., such that, uniformly in such r,

f Pollor — 7iT®/n| > 1/n% 1 < i < L} £a(dr)

(3.3) lim =1.

e Winf Py Ald: — pd > r/n'?,1 < ¢ < L} £.(dw)
n€&n

Of course, continuity considerations show that the positive (since not all p; are

constant) limit of the numerator of (3.3) is obtained by putting # = #* instead

of integrating with respect to £, , and then using the multivariate central limit

theorem to compute the limiting probability.

The idea of the proof of Lemma 8 is very simple. Let T'* be the (nonsingular)
covariance matrix of the limiting h-variate normal distribution of
W' (7 T — p¥), 1 £ 4 £ h, when # = 7*. Let € be a small positive value
and let £ be the uniform a prior: distribution in the (solid) sphere of radius e
about 7* in B . (e is small enough that this sphere consists entirely of interior
points.) According to the result [7] of v. Mises, for any #” in this sphere, with
probability one when T is distributed according to #”, the a posteriori density
function of n'*(p; — T{"/n), 1 £ ¢ £ h (calculated assuming £ to be the a
preore distribution) will tend to the h-variate normal density with means 0 and
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covarance matrix I'” (corresponding to #”) as n — . If the a posteriori density
were really normal with the stated parameters, it would follow at once from a
result [8] of Anderson that the a posteriori probability of the event

(3.4) (W p; —dil s 7,1 <4< L}

(this probability is unity minus the a posterior: risk) is a maximum for
d = v'T™ /n, since the region (3.4) is for each d a convex symmetric (about a
point depending on d) subset in the space of the & variables n'’*(p; — T{"/n)
(considering the latter to be unrestricted in magnitude). Since the actual a
posteriori density is almost normal (with high probability as n — o), ¢4 will be
asymptotically Bayes. Finally, let £, be the £ just described when ¢ = €, , where
€n g0es to zero slowly enough that the above result still holds for ¢% as n — o.
(For example, ¢, = n~ “ with 0 < a < 1. The crucial consideration is that the
radius n'%¢, of the set of possible values of n'*(w — #*) approach infinity with
n, as will therefore the radius of the set of possible values of n'/*(x — T /n)
w.p.1 under &, . The asymptotic problem is thus approximately one of estimating
the mean of a multivariate normal distribution with known constant covariance
matrix, when the mean can take on any value in an appropriate Euclidean
space).

The actual proof—the precise handling of the approximations mentioned
above, the uniformity in r, etc.—may be handled as in {1] or by complementing
with appropriate estimates the argument of [7], but the main idea is really the
simple one of [7].

The reason for wanting Lemma 8 in its stated form with the sequence {£.}
shrinking down on #* has to do with the problem of multinomial minimax esti-
mation for the risk function (3.2). Let #° be the value of & at which the positive
limit b (as n — ) of the continuous risk function of ¥ is a maximum. Since
the p; are not all constant, for any § > 0 there will, by continuity, be an interior
point 7* of By, at which the limit of the risk function of ¢ is at most (1 + 8)b.
From Lemma 8 and the sentence following (3.3) we conclude:

Lemma 9. (Y%} is asymptotically minimazx relative to Bi and the risk function
(3.2).

We next consider a generalization of this result to other weight functions
which are nondecreasing functions of max; |d; — p.|. Of course, the risk function
is defined in the usual way. (A Bayes result analogous to Lemma 8 can be proved
in the course of the demonstration, but we shall not bother to state it.) Let
Co and C be positive constants such that,

(3.5) Pon max vi|T™/n — 7| 2 1] < Coe™®"*

for all r, all n, and all = in B, . The existence of such positive constants (which
depend on h and the structure of B;'.) follows from well known results on the
multinomial (or, in fact, the binomial) distribution; in Section 4 we shall actually
refer to (1.8) for appropriate values of these constants.
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LemMA 10. Let W (r) be a nondecreasing real function of r for r = 0, not identi-
cally zero, and satisfying

(3.6) ‘Lm W(r)re " dr < o.

Then {$%} is asymptotically minimaz relative to By, and the weight functions
(37) Wa(x, d) = W(n"* max |o; — dil).

The proof of Lemma 10 can be carried out, starting from scratch, along lines
like those of Lemma 8. An easier proof, which was given in [1], rests upon the
idea of reducing the proof essentially to that for the simple weight function al-
ready considered in Lemma 8. Specifically, if the a posterior: distribution of the
variables n'/*(p; — T{™/n) were actually normal with means 0 and the appropri-
ate covarance matrix, then d; = viT™/n, 1 < i < L, would minimize the a
posteriors risk; for, if this choice of the d; did not minimize the a posterior: risk
and if H, and H, were respectively, the d.f.’s of n/* max; |o; — di| for the above
choice of d; and for a better choice, we would have

[ we) o — B > o,

which is easily seen to imply that H,(7') < Hs(r') for some r’, contradicting
Anderson’s result cited previously (i.e., when the error terms are included, this
contradicts the result of Lemma 8). The details of the proof are contained in
Section 4 of [1].

We note that Lemma 10 exemplifies a principle which is of more general use
in statistics: If one can verify suitable (asymptotic) Bayes results for an ap-
propriate class of simple weight functions, the results will automatically hold
for a general class of monotone weight functions..

We remark that Anderson’s result can be used to prove the result of Lemma
10 for a larger class of weight functions, namely, every function of n'*(d; — p;),
1 = 7 £ L, which is symmetric about the origin and which for each real value ¢
has a convex (or empty) set for the domain where the function is <c.

4. Proof of Theorem 1 when & is replaced by .. Define F. to consist of every
df. in ° which gives probability one to I™ and which can be realized as the d.f.
of Z1 (say) when Z; has a d.f. in §. and Z; is obtained from Z; by continuous
n}onotonic tra,nsformations on the individual coordinate functions. ,Thus,
Fe D F., but §. includes d.f.’s which are not in F*. Clearly, for any F’ in &, there
is an F in &, such that G,.(r; F) = G.(r; F’) for.all n and r.

In this section we use the results of Sections 2 and 3 to prove the following

Lemma 11. For m a posttive integer, suppose that

(4.1) Wa(F, g) = W(n'"sup, |[F(z) — g(2)]),
where W (r) for r Z 0 is continuous, nonnegative, nondecreasing in r, not identically
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zero, and satisfies (1.4). Then, for each € with 0 < e < 1, {p%} is asymptotically
minimaz relative to {W,} and 5. .

Proor. We divide the proof into three paragraphs; e is fixed in what follows.

1. By (1.4), (1.8), the last sentence of the first paragraph of this Section, and
Lemma 1, the function r,(F, ¢x) approaches a bounded limit as n — o, uni-
formly for F in 3. . (This limit is positive, by the known results in the case
m = 1.) Hence, for any & > 0, there is a d.f. F; in F. and an integer N such
that

(42) sup ra(F, ¢%) < (1 + 8)ra(Fs , ¢%)

for n > N; . Define

(4.3) rui(F, ¢a) = Er %W(n”2 sup [F(z) — g(=)D),
so that k

(44) rac(F, ¢7) = fom W (r)d, Gy (r; F).

Since 7, < 7, it follows from (4.2) and the arbitrariness of § that Lemma 11

will be proved if we show that

(4.5) hrl&;nf hT..ionf ¢1r£1§) sup rac(Fy ¢) = ,1‘1:2 r(Fs, pn).
2. Define -

(46) = [ WdGasr F)

and

(47) = [ W60 ).

L,et €F:,k be the subset of . consisting of every absolutely continuous d.f. in
F. which has a density function which is a constant on each of the k™ open
m-cubes of side 1/k in I™ whose corners are points of Ay’ . From equations (1.4)
through (1.8) and the fact that F; ¢ *, we have

(4.8) lim 7 (Fs , %) = Tk
and
(4.9) lim r,(Fs, ¢%) = r* = hm Tok .

Let F be that member of F. for which F5,(2) = Fs(z) whenever z ¢ A7'. Clearly,
for each k and n,

(4.10) Tok(Foi, ¢n) = Tuu(Fs, 7).
From equations (4.6) through (4.10) and the fact that Fu C 5. , we see that
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(4.5) will ke proved if we show that, for each fixed k > 1,
(4.11) lim inf inf sup ru(F, ¢a) = lim ra(Fa, 7).

n>0  ¢neDn FeFo

Since a sufficient statistic for ., based on Z™ is the collection 7™ of k™ real
random variables which are equal to the number of components of Z‘™ taking
on values in each of the k™ cubes just described, we may replace D, in (4.11)
by the class D, x of decision functions depending only on T7™* . But the definition
of rn. then shows that the left side of (4.11) may be viewed as the limiting
minimax risk associated with the problem of estimating certain linear combina-
tions of multinomial probabilities. If we put A + 1 = k™ in Section 3 and think
of the p; as being assigned to the k™ cubes and think of the L = (k + 1)™
quantities p; as being the values of the unknown d.f. at the (k + 1)™ points in
A%, then the left side of (4.11) without the limit in #» may be identified with the
minimax risk f01 a multinomial problem with the setup of Lemma 10. (We
shall discuss B;, and the C of (3 5) in the next paragraph.)

3. Fix k > 1. For any F in $., , let 7» be the associated multinomial proba-
bility vector whose components are the p: described in the previous paragra,ph
Let By be the set of all such 7r in F. . From the definitions of ¥, and &, it is
clear that By is a closed convex h-dimensional subset of the h-dimensional set
B, , and thus satisfies the requirements of Lemma 10. For the p; defined in the
previous paragraph, we can clearly take the ¢ and Cy of (3.5) to be the c,, and
cm of (1.8). Hence, from Lemma 10, for each k, we have for the multinomial
problem of Section 3-where By and the p; are as described above and the function
W is that given in the statement of Lemma, 11,

(4.12) lim inf sup 7'(m, ¢,) = lim sup v (m, 3,

n>0 Ynely TEB} n->w weBj
where we have written » for the risk function in the multinomial problem.
Since ' (wr, ¥n) = ru(F, %) and since the left sides of (4.11) and (4.12) are
equal because of the correspondence of &, to D, , of 7 to r, and of B to SY:,k ,
we see that (4.11) follows from (4.12). Thus, Lemma, 11 is proved.

6. Completion of the proof of Theorem 1; passage to the limit with e. We now
complete the proof of Theorem 1 by showing that F. is suitably dense in F*
(and hence that F. is suitably dense in §°) as ¢ — 0. We require two lemmas to
do this.

As in Section 2, the proof of the next two lemmas is very similar for all m > 1,
but is most brleﬂy written out when m = 2. For simplicity of presentation, we
shall therefore again write out the details only in the case m = 2, and shall state
explicitly all modifications for the case m > 2 which are not completely obvious.

Let 5" denote the class of all d.f’s on I” (in the general case, on I™). For
F ing and 0 < ¢ < 1, define

(5.1) _
Fla,y) =1 —eF (x,1) +2(y —1+¢, y>1 -«
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We shall not display the dependence on e of the bar operation defined by (5.1).
If F £ * and we perform the bar operation of (5.1) on F to obtain F and then,
interchanging the roles of z and y, perform the bar operation on F to obtain F*
(say), we clearly have F* ¢ F.. (In the case of chance vectors with m com-
ponents, F* is obtained after m such steps.) Let Z;, ---, Z. be independent
chance vectors with the common d.f. F, let S, be their sample (empiric) d.f.,
and define

D, = sup |8n(2) — F(2)|.

Also, define m, = m(n, €) to be the greatest integer <n(1 — ).
We now prove the following lemma:
LemMa 12. We have

P#HD, < r/n' £ Pp{Dn < [r(1 + €) + 7]/ m'}

5.2
(5:2) +o(1| ¢ N(e) |1, Fed).

Proor. Let C* be the event
18a(1, 1 — ) = (1 = o < a3,
From Chebyshev’s inequality we obtain
(5.3) PefCY =1+ o(1|e|n, Feg).
For small ¢ we have

_ n(l — ¢)
n(l — €) + Onl/2%/4

1/4, 1/2

(54) 1 < 4e"/n".

Hence, when C* occurs and e is small,

__nrl=—¢ | s e
Since
we have ’ ’
~ (1 — 8(2) _ 5 \_‘_ (1—2¢
(5.7) D, =z ey -———————Sn(ly T F(2) 1 _————S"(l, =l

Also we have, fory < 1 — ¢,
(5.8 ¥ {n% 2)

Hence the conditional d.f. of the first term on the right side of (5.7), given that
nS.(1, 1 — ¢) = m/, is the same as the d.f. of (1 — ¢)Dn . In what follows
define M’ = nS.(1,1 — ).

n8a(l,1— & = m'} —FG) /(=9 =Flay/ (- 9).
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If m, and m, are two positive integers with m; < ms, we can think of S, as
being obtained by adjoining (m; — m;) random vectors Z; to the set of m; random
vectors Z; which gave rise to a corresponding realization of Sn, . Hence, ¢ de-
noting a value with 0 < ¢’ < 1, the corresponding values of Sn,(2) and S»,(2)
differ for all z by no more than

|Sm2(z) —_ Sml(z)l = mlSmn(z) + 0’(m2 - ml) _ Sml(z) < (7n2 —_ ml) )
Ma my

Thus, in C*, where [M’ — m| < n'* é’* 4+ 1, we have that for each possible
value of Dn. there is a corresponding set of values of Dy’ of the same probability
(these sets corresponding to different values of D,, arising from disjoint sets in
the space of sequences {Z}) with Dn < Dux' + 26/ m™ provided m >
some M (e).

From (5.3), (5.5), (5.7), (5.8), and the discussion of the previous paragraph,
we have ’

P#{D, < r/n"*}
Pe{(l — @Dp < (r + 4é™) / '} + PF{C*}

< su
(59) - |m'—ml<nll)/2¢1/‘+1

1/4
< P,{D,,. < ’(_li_‘_)_il‘_} +o(1] e N(e) |1, F e,

m1/2
which proves Lemma 12.
We now prove
Lemma 13. For W satisfying the assumptions of Theorem 1, we have

(5.10) sup ra(F, ¢3) = sup r.a(F, ¢n) + o(1] ¢ N'(e)).
FeJF* Felq

Proor. Define m’ = m/(n, ¢) to be the greatest integer <(1 — ¢)’n. Using
Lemma 12 a second time (with a trivial modification since m’(n, €¢) may differ
by unity from m{m(n, €), €|) to go from F to.F*, we have at once, for any W
satisfying (1.4) and the other assumptions of Theorem 1,

(5.11) ra(F* ¢3) 2 ' (F, ém') + 01| ¢ N(e) | F & §).

From (5.11) and the fact that F* ¢ &, if F ¢ *, we have

(5.12) sup r(F, %) = sué) Tw'(F, ém') + 0(1] ¢ N(¢)).
FeFg FeF*

Now, as in the first part of the proof' of Lemma 11, we have that r,(F, ¢%)
approaches a bounded limit as n — <, uniformly for F in &. . Hence,

(5.13) sup r,(F, ¢:) = sup 7 (F, ¢:a’) + o(1 ]| n),
FeF FeFe

where o.(1 | n) denotes a term which, for each ¢, goes to 0 as » — « (not neces-
sarily uniformly in €). From (5.12), (5.13), and the fact that ¥ C §*, we obtain

(5:14)  suprw(F, o) = supru(F, o) + o(1|e (o).
FeF* FeF ¢
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Since the possible values of m’ for n > N”(¢) include all integers .
>N"(e)(1 — ¢)® — 1 = N'(e) (say), Lemma 13 follows from (5.14).

LemMma 14. The statement of Theorem 1 holds with § replaced by F°.

Proor. We have previously alluded to the fact that, if Z; has a d.f. F in §°,
then by appropriate monotonic transformations on the individual coordinates
of Z; we can obtain a random vector Z; (say) such that Z ! has d.f. F’ (say) in
5* and G.(r; F') = G.(r; F) for all r and n. Hence,

(5.15) sup 7.(F, ¢%) = sup r.(F, ¢7).
: FeJe FeF*
Moreover, in the same way we have

(5.16) sup 7.(F, ) = sup ra(F, ¢2).
FeF ¢ FeF,

Lemma 14 now follows at once from Lemma 11, (5.16), Lemma 13, (5.15), and
the fact that §. < g°.

Proor oF THEOREM 1. Theorem 1 now follows immediately from Lemma 14
and (1.9).

We remark that the proof of Theorem 1 is clearly valid when & is replaced
by a suitably large subset.

It is not really necessary to prove Theorem 1 by using (1.9) and proving
the result first for ¥° (in Lemma 14). For Lemma 13 clearly holds if in (5.10)
we replace $* by §' and F. by the class of d.f.’s obtained by substituting &' for
F* in the definition of &. ; one can carry through the arguments of Sections 2
and 4 with this altered definition of F. (appropriate results from [1] still hold),
and obvious analogues of (5.15) and (5.16) then yield Theorem 1.

In Section 7 we shall discuss various modifications of Theorem 1 obtained by
altering the way in which W depends on F(z) — g(z).

6. Integral weight functions. Since for m > 1 the procedure ¢ does not have
constant risk for F in F° and any common weight functions of the form given in
equation (5.1) of [1], there is no longer any special reason for considering weight
functions for which the dependence on F of the integrand is of the form con-
sidered there. Therefore, to make the proof of this section as simple as possible,
we shall consider here the analogue of the special case of Section 5 of {1] wherein
W (y, z) does not depend on z, relegating the consideration of more complicated
weight functions to Section 7. Our result is

TaEOREM 2. Let W(r) be a monotonically nondecreasing nonnegative real func-
tion of r for r = 0 whach is not identically zero and which satisfies

(6.1) f W(r)re™ dr < .
0
Then {¢n} is asymptotically minimax relative to 5° and the weight functions

(62) WF,0) = [ WF(z) = g(@)]) dF(2).
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Proor. As in Section 5 of [1], the proof of this theorem is essentially easier than
that of Theorem 1, since it is centered about the one-dimensional asymptotic
result (6.12) (for each z). The analytic details are often like corresponding ones
of Section 5 of [1], to which we shall consequently sometimes refer. The proof
will be conducted in four numbered paragraphs.

1. From (6.1) and the uniformity of approach to its continuous limit of the
d.f. of n'*[S,(2) — F(z)] for all z for which & — |F(z) — 4] > & > 0 and all
F in §° (the F-measure of this set of z approaches 1 as & — 0, uniformly in F),
we conclude at once from (6.1) that 7,(F, ¢%) has a bounded limit uniformly
for F in §°, and thus that (4.2) is satisfied with 5. replaced by §°, for some F;
in ° (of course, 7, is now to be computed using (6.2)). We can clearly suppose,
and hereafter do, that F; is a d.f. on I™. Let F o denote the class of d.f.’s defined
in paragraph 2 of the proof of Lemma 11, with ¢ = 0; thus, the Bi of paragraph
3 of that proof now coincides with the Bj, there.

2. As in Section 5 of [1], we shall let {£.} be a sequence of a priori probability
measures on B, (we shall think of Fo and By interchangeably), and we shall
write P¥{A} for the probability of an event expressed in terms of 7"* = 7™
when the latter has probability function

P{T" =", 1<i< h+1)
(6.3) 1 " o ;
[ — (n) _ 4(n < ;< )
d(k, n, Z) B;,,f(z’ T)PK{T; L, 127=h+ 1} dflm(ﬂ'),

here P, is defined in (3.1) and f(z, ) is the Lebesgue density at z (in I™) of the
df. F(-,7) in Fon corresponding to a given « in B, ; d(k, n, z) is chosen to make
(6.3) a probability function. We take f(z, ) to be constant on the interior of
each of the k™ cubes in I™; this determines (6.3) for all z with all irrational
components (hereafter called irrational z), to which such z we may limit all
further discussion. For each such z and possible value ¢™ of T'"*, we define

64)  ninlz, 0,67 = [ EW(ng(e) — Fe, m)]) dethalm,2, &),
Bp
where, for Borel subsets B of By,

f(z, w)P,{t(")} dtn ()

(6.5) tia(B, 2, t™) = =2 ;
[ 16, 0P dguntr)

h
we have used P,{t'} to denote the function’of (3.1).

For each n and k, if F is restricted to be in Fox , we may, as in Section 4, restrict

our consideration to procedures ¢ in D,k . Denoting expectation with respect
to P¥ by E¥ , we have as in (5.10) of [1],

(6.6) f r2(F, ¢) dbn = f E¥rin(z, ,T") d(k, n, 2) dz,
m
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where dz denotes the differential element of Lebesgue measure on I™. For fixed
n, k, 2, and £, let rpn(2, ) denote the infimum of (6.4) over D, . In order
to prove Theorem 2, according to (6.6) and the discussion of paragraph 1 of
this proof, it clearly suffices to show that, for some {£:.},

(67)  lim lim f Elrin(z, ¢, T™?) d(k,n, 2) dz = lim r.(F5, ¢3).
—>00 n-»00 VI™M n->00

3. Fix k. Let 7 be such that F(z, ) = Fs(z) for z in Ay. We may assume
ms 1S an interior point of B ; for, if 75 were not an interior point, letting Fy =
(1 — &)F; + & U where U is the uniform d.f. on I™, we see easily that the right
side of (6.7) can be decreased by at most a quantity which approaches 0 as
8’ — 0 if F; is replaced by F; there; we could thus replace 7 by the interior
point = corresponding to F; (for &’ small but positive) in what follows. Let
£in,mn = 1,2, --- | be a sequence of a priori measures on B, which “shrink down”
on s as the £, of Lemma 8 shrink down on 7*; e.g., £. is uniform on a sphere
~U* about ms . It follows at once that

of radius n
(6.8) lim d(k, n, 2) = f(z, 7s)
at all irrational 2. Suppose we show that, for any irrational z and any ¢ > 0,

there is an N = N(e, 2, k) such that, for n > N, Py assigns probability at least
1 — e to a set of T™* values for which

(6.9) Ten(2, T™®) + ¢ > f W(y)q(y, a(z, k)) dy,
where q(y, 0) = (2nd”’)™* exp (—4*/2¢’) and where o(2, k) is continuous
in z and

(6.10) a(z, k) = F(z, ma)[l — F(z, 7a)] + o(1]k]|2) = &

Then, writing V (2, k) for the expression on the right side of (6.9), we will clearly
have (from (6.10), (6.1), and the continuity of ¢q)

lim ro(Fs, ¢%) = [ _lim V(z, ) dFy(2)

n-»00

(6.11) = lim . V(z, k) dFs(z)

k>0 VI
=1lim | V(s k)f(z, ms) de.
k>0 Y IM™

Thus, an application of Fatou’s lemma to the left side of (6.7) shows that (6.11)
and (6.8) will imply (6.7). Thus, it remains to prove (6.9) for the appropriate
values of the arguments there.

4. The proof of (6.9) is similar to that of Lemma 8. For fixed z, the expression
of (6.5) is like the a posteriori probability measure of = when &, is the a priori
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measure, except for the factor f(z, ). In fact, by the shrinking property of
£ as m — o« and the nature of f(z, v), one obtains in the manner of {7] (see
[1] for details) that, for any ¢ > 0 and for n suitably large, with probability
>1 — ¢ under P}, the joint density according to &, of the quantities 7, =
n*(p; — t”/n), 1 £ ¢ £ h (where we have written = = (p1, -, DPrs1)),
in a spherical region of probability >1 — ¢ under &, , is at least (1 — ¢) times
the appropriate normal density for which the #%; have means 0, var
¥i = psi(1 — ss), cov(Fs, 7;) = —ps:ps; (the ps; being the components of ma).
For ¢’ > 0, an elementary computation (the details being like those of [1],
p. 661, except that now m > 1) then shows that, for a fixed arbitrary irrational
2, the corresponding distribution of n'*[F (2, #) — Ja(2)], where J, i(2) is the
obvious best linear estimator in D, of F(z, w) for 7 in For (not in general S,(z),
unless z ¢ A7), has, with probability >1 — ¢” under P, an absolutely con-
tinuous component the magnitude of whose Lebesgue density is at least

(6.12) (1 =€) q(y, o(2, k))

on the interval —1/¢” < y < 1/¢”, where o(z, k) is continuous in z and satisfies
(6.10). Since ¢” is arbitrary, (6.9) follows easily from (6.12) and the trivial
one-dimensional case of [8] (see [1] for details; the argument here is easier, since
we have not yet included the additional dependence of W on other quantities
as in [1] and Section 7 below). Thus, Theorem 2 is proved.

It is clear that Theorem 2 remains valid if §° is replaced by a suitably large
subset. Further generalizations will be discussed in the next section.

7. Other loss functions. We list a few of the extensions of Theorems 1 and 2
which may be proved by the same methods with only minor modifications and
no essential new difficulties in the proof. In fact, our treatment of the case m > 1
(compared with the argument of [1]) has been concentrated on the difficulty
engendered by the nonconstancy of r,(F, ¢»), and that nonconstancy (in the
counterpart of modification F, below) is the only real new difficulty in any of the
corresponding generalizations of Section 6 of [1] (the difficulty is more trivial
there, where m = 1 and the nonconstancy is easier to deal with than in Theorems
1 and 2 above).

A. In Theorem 2, the form of W may be extended. For m = 1, the more general
form W(n'*|F(2) — g(2)|, F(2)) was considered in Section 5 of [1]. The same
form can be considered here, but perhaps the dependence on the second variable
is no longer so natural; it may be replaced or supplemented, for example, by a
dependence on the value of the marginal d.f.’s at the point z. The regularity
condition which must be imposed on W in order for our method of proof to hold
is, in any event, exactly the obvious analogue of that of Section 5 of [1]. For
example, continuity and an appropriate integrability condition (the analogue of
(5.5) of [1]) is more than enough.

B. In Theorem 2, W can be replaced by a measure (rather than a density)
in the second argument of the W of A above (or its replacements, just above).
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For example, when m = 2, one might be interested only in the estimation of the
deciles of the marginal d.f.’s F, and F, (say) and, at each decile r of F;, the
deciles of the d.f. F(r, y) / Fi(r) (and its counterpart with z and y interchanged).

C. An analogue of Theorem 2 (with any of the modifications noted above) for
F rather than F° is perhaps not too natural (see [1] for further comments), but
can be given under suitable assumptions. An analogue of Theorem 1 or Theorem
2 for the class of purely discrete d.f.’s (e.g., on R™, or on the integral lattice
points of R™) can also be given; for example, the former essentially follows from
the fact that there is a discrete d.f. at which ¢7 has almost the same risk as at
F; when n is large (see (1.4) through (1.8)).

D. In Theorem 1, one can replace D, by sup,[|g(z) — F(2)|h(F(z))], where
h is a suitably regular nonnegative function whose dependence on F(z) may be
replaced, e.g., by a dependence on the marginal d.f.’s, as in A above; a linear
combination of such functions can also be employed. If h takes on only the
values 0 and 1, this modification amounts to taking the supremum of the devia-
tion over a suitable subset of R™ whose description depends on F.

E. In Theorem 1, one could consider the measures P, Q, , and g* corresponding
to F, S., and g, and could let W depend on sup.|P(4) — g*(A)| where the
supremum is taken over a suitable family of sets, e.g., rectangles with sides
parallel to the coordinate axes. This presents no new difficulties.

F. The function & of D above, the second argument of W in A above, and the
integrating measure of (6.2), can all be changed so as to depend only on z and
not on F(z) (or they can depend on both). This requires no new arguments, only
obvious regularity conditions as on p. 664 of [1]. It is again the existence of an
F; which is the crucial point.

G. The remarks on the sequential asymptotic minimax character of ¢% for
suitable weight functions, which are contained on pp. 664-665 of [1], hold here
without change.

H. Obvious combinations of the types of dependence of W, on F and z which
occur in Theorems 1 and 2 and in the previous remarks can be considered with
no essential new difficulty. In fact, the asymptotic minimax character of ¢ seems
to hold for a very general class of weight functions. The discussion of p. 664 of
[1] indicates the possible breadth of that class, but we are even further than we
were in the case m = 1 of [1] from being able to give a single simple, unified proof.
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