SOME OPTIMUM WEIGHING DESIGNS
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Unaversity of Bombay
1. Introduction and summary. Suppose we are given N objects to be weighed
in N weighings with a chemical balance having no bias. Let
z;; = 1 if the jth object is placed in the left pan in the ¢th weighing,
= —1 if the jth object is placed in the right pan in the ¢th weighing,
= 0 if the jth object is not weighed in the ¢th weighing.
The Nth order matrix X = (x,;) is known as the design matrix. Also let y;
be the result recorded in the 7th weighing, ¢; be the error in this result and w;
be the true weight of the jth object, so that we have the N equations

Tawy, + Tow2 + - + Ty = yi+ €&, t=1,---,N.

We assume X to be a non-singular matrix. The method of Least Squares or
theory of Linear Estimation gives the estimated weights (#;) by the equation

» = (X'X)"'X'Y,

where Y is the column vector of the observations and # is the column vector of
the estimated weights.
If o is the variance of each weighing, then

Var (@) = ()(’)()—-l¢72 = (czi)"'z’

where (¢;) is the inverse matrix of (X'X).

An expository article reviewing the work done in weighing designs is given by
Banerjee [2].

Kishen [4] treats the reciprocal of the increase in variance resulting from the
adoption of any design other than the most efficient design, with mean vari-
ance o°/N, as the efficiency of the design. This efficiency can be measured by

N
1 / z; Ci; .

Mood [5] gives an alternative definition for the best weighing design. In his
view the best weighing design should give the smallest confidence region in the
Wi(¢ = 1, -+, N) space for the estimates of the weights. Hence a design will
be called best if the determinant of the matrix (c¢;;) is minimised.

In this paper we follow Kishen’s definition in obtaining the best weighing
designs.

Hotelling [3] proved that for the best weighing design ¢;; = 1/N and ¢;; = 0
(¢ # 7). The weighing designs for which ¢;; = 1/N and ¢;; = 0 are best in the
sense of both Kishen and Mood. Later Mood proved that the above property is
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satisfied by Hadamard matrices. Plackett and Burman [6] have constructed
Hadamard matrices, Hy, up to and including N = 100, excepting N = 92.
It may be remarked here that a necessary condition for the existence of Hy
is N = 0 (mod 4), with the exception of N = 2. It is not known whether this
condition is sufficient or not.

In this paper, the best weighing designs are obtained in the cases (i) N is odd
and (ii) N = 2 (mod 4) subject to the conditions:

i) The variances of the estimated weights are equal; and

ii) The estimated weights are equally correlated.

The 2nd condition here is the same as that of Banerjee [1].

2. Some theorems relating to the best weighing designs. With the condi-
tions made above (X’X) matrix takes the form

r A cee 2
(2.1) ? r e A

).\ L
Now

det (X'X) = {det (X)}?,
=(r—N"Yr + AN — 1)}.

Therefore,
(2.2) det (X) = £(r — )Y 2%y 4 AN — D}

The det (X) is real and not equal to zero. Hence we have

(2.3) r> A\
and
(2.4) r+ AN — 1) > 0.
Relation (2.4) holds good when X is non negative and A = —1. In the latter
caser = N.

Therefore, in this paper, we consider only the values of r and X\ satisfying
r>Nz0, orr =N, A= —1.

When the matrix (X'X) is of the form (2.1), the variance of the estimated
weight is

{r 4+ NN — 2)}d°
(r—N{r+2@ - 1}’
Therefore, the efficiency of the weighing design is

(r —N{r+ NN — 1)}
Nir + 2V — 2)]

(2.5)

(2.6) = f(r,\), say.
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Lemma 2.1.

1) Letr = N. Then \ cannot be even (including zero) when N is odd and \ can-
not be odd (including —1) when N is even.

ii) Let r = N — 1. Then X cannot be even (including zero) when N is odd and
\ cannot be odd when N is even.

Proor. Let z; and z; be any two column vectors of the design matrix X.

i) When r = N, ziz; will have N terms each term being either +1 or —1.
Since z:x; = A, amongst the N terms {N — |\|} terms sum to zero. Hence N
and |\| should either be odd or even and the statement follows.

ii) Whenr = N — 1, xlx, will have N terms each term being 41 or —1 or 0.
Since zix; = \, amongst the N terms (N — \) terms sum to zero. If N is odd
and \ is even (N — \) will become odd and the (N — \) terms cannot sum to
zero unless there is a single zero term. z; and x; will contribute a single zero term
to z.x; when and only when the zeros of z; and z; are in the same row. This is
also the case for any two columns of X. Hence, if N-is odd and \ is even, we get
a row of zeros in X, and in this case det (X) = 0, contrary to our-assumption.

Therefore, A cannot be even when N is odd.

Similarly we can show that A cannot be odd when N is even.

THEOREM 2.1. When N 1s odd the best weighing design X s that for which

"N 1 o1

roL..
xx=|1 N 1

1 1 --- N

Proor.

f(N,1) — f(r,\)

_2N -1 _ (r = Nf{r+ AN — 1)} r, \ are positive, r > A,

2N N{r +x(N - 2)} ’ orr=N,A= —1.

@7 _ @N = 1)V — 2\ + @N — Dr — 2" + 2n\ — 2(r — NV — 1)>\
2N{r + \(V — 2)}
_ (N — AN — 2r+ 2 —1) + @V —2r = 1)(r =)
N{r + A\(N — 2)} 0,

when r < N.

MA=1DN —-2)+NON=-1)

when r = N. (2.8) is again greater than zero for all values of A excepting zero in
which case it is less than zero. But Lemma 2.1 proves that A cannot be zero
since N is odd. Hence the best weighing design in this case has efficiency f(N, 1).
The theorem is thus proved.
TueoreM 2.2. When N = 2 (mod 4) the best weighing design X s that for which

X'X = diag {(N — 1), (N — 1), -+, N terms}.
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Proor.

N-=1) _ =N{r+ 1N -1)}

SN —1,0) — f(r,\) =

N Nir+ N —2)} ’
r, X are positive,r > \,orr = N, A = — 1.
r(N—=1)4+ (N —=1)(N—=2)A—r(r—2n)
-V -DG =M

Nir + NN — 2)}

r(N—r+x—1)+ AN —-1)
(N—r+)\—r-.2)>0
Nir + AN — 2)} ’

whenr < N.

AN=1)+N=1)(A—2)x
Nir+\® — 2)} ’

when r = N. (2.9) is greater than zero when X = 2 and A = —1 and it is less
than zero when A = 0 or 1.

Lemma 2.1 proves that A = 1 cannot exist and it is known that the Hadamard
matrix cannot exist in this case and A cannot be zero.

Therefore, the best weighing design in this case has efficiency f(N — 1, 0).

The theorem is hence proved.

(29) SV =1,0) = fr,0) = ¥

3. Py matrices.
DEerFinNiTION 3.1. A Py matriz is an Nth order matriz with elements +1 and
—1 such that

PyPy = (N — 1)Iy + Exv,

where Iy is the identity matriz of order N and Ewn is an Nth order matriz with
posttive unit elements everywhere.

It is obvious from theorem 2.1 above that the Py matrix is the best weighing
design whenever it exists and N must be odd.

THEOREM 3.1. A necessary condition for the existence of Py is that
d+1

N=2

where d ts an odd integer. l

Proor. det {PyPy} = {det Py}’ = (2N — 1)(N — 1)"". Therefore det
(Py) = (2N — D}V — 1)¥ P2 Also since Py is a matrix with integral
elements det (Py) is an integer.

‘Hence (2N — 1) should be a perfect square. Let

9N —1=4"
&+ 1
2

N =
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Since N 1is an integer, d is an odd integer and thus the theorem is proved.
TaeoreM 3.2. If a Balanced Incomplete Block Design exists with parameters

v =b*=N, r*=Fk"=(N=xd)/2 N=(N==2d+1)/4

then, by changing the zeros into — 1’s in the incidence matrix of the incomplete block
design, we get a Py matrix.

Proor. Let the column vectors of the incidence matrix after 0’s are changed
to —1 be p1, P2, -, Pn.

The negative contribution to pip; = 2(r* — A*) = (N — 1)/2 (7, j =
1,2, ---,N;i 5 7).

Therefore, the positive contribution to pip; = (N + 1)/2. Hence pﬁp,- = 1.
Thus the theorem is established.

4. Sy matrices. Williamson {7] proved that when
N =9p"+1,

where p is an odd prime and & is a positive integer su¢h that p* = 1 (mod 4),
then a symmetric matrix Sy exists such that

SySy = (N — DIy,

where 1 ~ is the Nth order identity matrix. In that case the Sy matrix can be
taken as our best weighing design. The construction of the Sy matrices is based
on Galois Fields and the Leger.dre function {, and it is discussed in detail in [7].

6. Numerical examples. Now we construct some designs that belong to the
Py and Sy series. Among the designs given below, Ps is proved to be the best
design by Mood. A similar type of Sg is constructed by Banerjee [1] intuitively.

-1 1 1 1 1
1 —1 1 1 1
1 1 1 -1 1
1 1 1 1 -1
Variance of each estimated weight = 20°/9. .
Covariance of each pair of estimated weights = —o¢°/36.
Efficiency = 9/10.
0 1 1 1 1 1
1 0 1 -1 —1 1
1 1 0 1 -1 1
Ss=11 1 1 0 1 -1
1 -1 -1 1 0 1
1 1 -1 -1 1 0

Variance of each estimated weight = ¢°/5.
Covariance of each pair of estimated weights = 0.
Efficiency = 5/6.
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0 1 1 1 1 1 1 1 1 1
1 0 1 —1 1 —1 1 —1 1 —1
11 0 1 -1 1 1 -1 -1 -1
1 —1 1 0 -1 1 —1 —1 1 1
. 1 1 -1 -1 0 1 -1 1 1 -1
S =
1 —1 1 1 1 0 —1 1 —1 —1
11 1 -1 -1 -1 o0 1 —1 1
1 —1 —1 -1 1 1 1 0 -1 1
1 1 -1 1 1 -1 -1 -1 0 1
1 -1 -1 1 -1 -1 1 1 1 0
Variance of each estimated weight = ¢°/9.
Covariance of each pair of estimated weights = 0.
Efficiency = 9/10.
1 -1 1 -1 1 1 1 1 1 -1 1 1
1 —1 —1 1 -1 1 1 1 1 1 —1 1
1 1 —1 —1 1 -1 1 1 1 1 1 —1
1 1 1 -1 -1 1 —1 1 1 1 1 1
-1 1 1 1 —1 —1 1 —1 1 1 1 1
1 —1 1 1 1 -1 -1 1 —1 1 1 1
Py = 1 1 —1 1 1 1 -1 -1 i -1 1 1
1 1 1 -1 1 1 1 -1 —1 1 —1 1
1 1 1 1 —1 1 1 1 -1 -1 1 —1
1 1 1 1 1 —1 1 1 1 —1 -1 1
-1 1 1 1 1 1 —1 1 1 1 —1 —1
1 —1 1 1 1 1 1 -1 1 1 1 —1
L—1 1 -1 1 1 1 1 1 —1 1 1 1
Variance of each estimated weight = 2¢°/25.
Covariance of each pair of estimated weights = —¢°/300
Efficiency = 25/26.
[0 1 1 1 1 1 1 1 1 1 1 1 1 17
1 0 1 -1 1 1 -1 -1 -1 -1 1 1 -1 1
1 1 0 1 -1 1 1 -1 -1 -1 -1 1 1 —1
1 -1 1 0 1 -1 1 1 -1 -1 -1 -1 1 1
1 1 -1 1 0 1 -1 1 1 -1 -1 -1 -1 1.
1 1 1 -1 1 0 1 -1 1 1 -1 -1 -1 -1
Sy=|1 -1 1 1 -1 1 0 1 -1 1 1 -1 -1 -1
1 -1 -1 1 1 -1 1 0 1 -1 1 1 -1 -1
1 -1 -1 -1 1 1 -1 1 0 1 -1 1 1 —1
1 -1 -1 -1 -1 1 1 -1 1 0 1 -1 1 1
1 1 -1 -1 -1 —1 1 1 -1 1 0 1 -1 1
1 1 1 -1 -1 -1 -1 1 1 -1 1 0 1 —1
1 -1 1 1 -1 -1 -1 -1 1 1 -1 1 0 1
1 1 -1 1 1 -1 -1 -1 -1 1 1 -1 1

Variance of each estimated weight = ¢°/13.

Covariance of each pair of estimated weights

Efficiency = 13/14.
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