OPTIMUM DESIGNS IN REGRESSION PROBLEMS
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Cornell University

1. Introduction and Summary. Although regression problems have been
considered. by workers in all sciences for many years, until recently relatively
little attention has been paid to the optimum design of experiments in such
problems. At what values of the independent variable should one take observa-
tions, and in what proportions? The purpose of this paper is to develop useful
computational procedures for finding optimum designs in regression problems of
estimation, testing hypotheses; ete. In Section 2 we shall develop the theory for
the case where the desired inference concerns just one of the regression coeffi-
cients, and illustrative examples will be given in Section 3. In Section 4 the theory
for the case of inference on several coefficients is developed ; here there is a choice
of several possible optimality criteria, as discussed in [1]. In Section 5 we treat
the problem of global estimation of the regression function, rather than of the
individual coefficients.

We shall now indicate briefly some of the computational aspects of the search
for optimum designs by considering the problem of Section 2 wherein the in-
ference concerns one of k regression coefficients. For the sake of concreteness, we
shall occasionally refer here to the example of polynomial regression on the real
interval [—1, 1], where all observations are independent and have the same
variance. The quadratic case is rather trivial to treat by our methods, so we
shall sometimes refer here to the case of cubic regression. In the latter case we
suppose all four regression coefficients to be unknown, and we want to estimate
or test a hypothesis about the coefficient a; of 2°. If a fixed number N of observa-
tions is to be taken, we can think of representing the proportion of observations
taken at any point x by £(x), where £ is a probability measure on [—1, 1]. To a
first approximation (which is discussed in Section 2), we can ignore the fact
that in what follows N¢ can take only integer values. We consider three methods
of attacking the problem of finding an optimum £:

A. The direct approach is to compute the variance of the best linear estimator
of a; as a function of the values of the independent variable at which observa-
tions are taken or, equivalently, as a function of the moments of £. Denoting
by u: the sth moment of £, and assuming ¢ to be concentrated entirely on more
than three points (so that a; is estimable), we find easily that the reciprocal of
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in the case of cubic regression.

The problem is to find a £ on [—1, 1] which maximizes this expression. Thus,
this direct approach leads to a calculation which appears quite formidable. This
is true even if one uses the remark on symmetry of the next paragraph and
restricts attention to symmetrical £, so that u; = 0 for 7 odd. For polynomials of
higher degree or for regression functions which are not polynomials, the diffi-
culties are greater.

B. The results of Section 2 yield the following approach to the problem:
Let ¢o + ¢z + cz” be a best Chebyshev approximation to z° on [—1, 1], ie.,,
such that the maximum over [—1, 1] of |&* — (¢ + &1z + c®)| is a minimum
over all choices of the c;, and suppose B is the subset of [—1, 1] where the maxi-
mum of this absolute value is taken on. Then £ must give measure one to B,
and the weights assigned by £ to the various points of B (there are four in this
case) can be found either by solving the linear equations (2.10) or by computing
these weights so as to make £ a maximin strategy for the game discussed in
Section 2. Two points should be mentioned:

(1) In the general polynomial case, where there are k parameters (k = 4
here), the results described in [10], p. 42, or in Section 2 below imply that there
is an optimum ¢ concentrated on at most k points. Thus, even if we use this re-
sult with the approach of the previous paragraph, we obtain the following com-
parison in a k-parameter problem in Section 2:

Method A: minimize a nonlinear function of 2k — 1 real variables.

Method B: solve the Chebyshev problem and then solve k — 1 simultaneous
linear equations.

The fact that the solution of the Chebyshev problem can often be found in the
literature (e.g., [2]) makes the comparison of the second method with .the first
all the more favorable.

(2) Although the computational difficulty cannot in general be reduced further,
in the case of polynomial regression on [—1, 1] there is present a kind of sym-
metry (discussed in Section 2) which implies that there is an optimum £ which is
symmetrical about 0 and which is concentrated on four points; thus, in the case
of cubic regression, this fact reduces the computation under Method A to a
minimization in 3 variables, but Method B involves only the solution of a single
linear equation.

C. A third method, which rests on the game-theoretic results of Section 2,
and which is especially useful when one has a reasonable guess of what an opti-
mum ¢ is, involves the following steps: first guess a £, say £* and compute the
minimum on the left side of (2.8); second, if this minimum is achieved for
¢ = c*, compute the square of the maximum on the right side of (2.9); then, if
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these two computations yield the same number, £* is optimum. If one has a
guess of a class of £’s depending on one or several parameters, among which it is
thought that there is an optimum £, then one can maximize over that class at
the end of the first step and, the maximum being at £* go through the same
analysis as above. This method is illustrated in Example 3.5 and Example 4.
Of course, the remarks (1) and (2) of the previous paragraph can be used in
applying Method C, as in these examples.

In the example of cubic regression just cited, the optimum procedure turns
out to be £(—1) = £(1) = 3§, £(3) = £(—3%) = % It is striking that any of
the commonly used procedures which take equal numbers of observations at
equally spaced points on [—1, 1] requires over 38% more observations than this
optimum procedure in order to yield the same variance for the best linear esti-
mator of a; (see Example 3.1); the comparison is even more striking for higher
degree regression. The unique optimum procedure in the case of degree A is
given by (3.3). .

The comparison of a direct computational attack, analogous to that of A
above, with the methods developed in Sections 4 and 5 for the problems con-
sidered there, indicates even more the inferiority of the direct attack. In par-
ticular cases, e.g., Example 5.1, special methods may prove useful.

Among recent work in the design of experiments we may mention the papers
of Elfving (3], [4], Chernoff [5], Williams [11], Ehrenfeld [12], Guest [13], and
Hoel [15]. Only Guest and Hoel explicitly consider computational problems of
the kind discussed below. Our methods of employing Chebyshev and game
theoretic results seem to be completely new. The results obtained in the ex-
amples below are also new, except for some slight overlap with results of [13]
and [15], which is explicitly described below.

We shall consider elsewhere some further problems of the type considered in
this paper.

2. The optimum design relative to 1 out of % regression coefficients. Let
fi, =+, fr be k real-valued functions on a given space . Throughout this sec-
tion we assume a topology is given on X in which

(2.1) X is compact; fi, - - -, fi are continuous.
We also assume
(2.2) fi, -+, fr are linearly independent on oC.

Since we will be considering a regression problem in which the f: are known
functions and Y_; a.f; is the regression function, (2.2) is really only an assump-
tion of identifiability of the a; which will avoid trivial circumlocutions. Without
some assumption like the first part of (2.1), there may trivially exist procedures
which estimate some of the regression coefficients with arbitrarily small variance,
as can be seen in the example of estimation of the slope of a straight line on X =
real line. The assumption of continuity of the f; can be somewhat weakened, as
will be clear from our proofs.
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We consider the following regression setup: For any point 2 (value of the in-
dependent variable) in %, one can observe a random variable Y, for which

k

(2‘3) EYZ = Z a,fi(ilf),

1
Var(Y,) = o,

where @ = (a;, ---, ax) is the vector of regression coefficients, an unknown
element of @. The value of ¢* will usually be unknown. (The case where ¢” can
depend on 2z in a way which is known except for a proportionality constant will
be discussed in the last paragraph of this section.) An integer 7 is given (usually
n > k), and the experimenter must select a collection X = (21, -+, %) of n
points in & at which the independent random variables Y, , - -+, Y., are to be
observed. The z; need not be distinct, but if 7 # j and x; = x; we shall still,
without confusion, write Y., and Y,; for two independent random variables.

Any X can be viewed as a measure 7 on X which assigns to each point v a
mass equal to the number of z; in X which are equal to z. Dividing this measure
by n, we obtain a discrete probability measure ¢ on & which assigns to each
point of & a measure equal to an integral multiple of 1/n. In the present section
(a similar discussion applying in Sections 4 and 5), we shall be concerned with
choosing a ¢ (hence, an X) to maximize a quantity of the form

(2.4) min fm H.(x)n(dx) = min fm nH.(z)¢(dx),

where the form of H. is determined by the problem at hand. The fact that £ can
only take on multiples of 1/7 as its values makes this problem of maximization
quite unwieldy in general. We shall treat, instead, a problem whose solution will
sometimes give a solution to the original problem and which will usually give a
good approximation to the latter: Find a probability measure £* on X for which the
right side of (2.4) 7s a maxtmum: i.e., we maximize (2.4) with no restriction on &.
Of course, the maximum does not depend on 7. Thus, if n is such that n&* takes
on only integral values, this yields an exact solution 5 to the original problem.
We shall see in Sections 3 and 5 that, in two typical examples, £* takes on only
values which are multiples of 1/(2k — 2) (Example 3.1) or 1/k (Example 5.1),
so that this situation is not vacuous. Moreover, there will typically be a £* which
is concentrated on approximately k points; thus, when n¢* does not take on only
integral values, obvious integral approximations 7’ to n&* will yield values of
(2.4) whose ratio to the maximum tends to 1 as n — « (it is easy to give a
bound on the difference of this ratio from unity). Thus, the characterization of a
single £* which yields an almost optimum design for all large n, in distinction to
finding the best £ which may depend in a complicated fashion on n, seems to be
of practical value.

We therefore define = to be the space of all discrete probability measures
£ on . We could, more generally, specify a Borel field 8 on & and let E be the
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class of all measures (®) on &; however, in all of our applications (see Theorem
2) it will suffice to let ® consist of countable sets and their complements.

In the present section we are concerned with statistical inference about the
single parametér a. , where all a; are assumed unknown. We shall give a precise
definition of optimality in the next paragraph. What this definition means is
that we restrict ourselves to designs for which o is estimable (i.e., for which
there exist linear unbiased estimators of a, ; in practice, of course, n will have to
be suitably large for there to exist such designs), and seek a design for which the
linear unbiased estimator of a; with minimum variance (best linear estimator,
or b.le.) has a variance which is 4 minimum over all designs, within the ap-
proximation noted two paragraphs above. It is well known that such a design is
optimum for problems of point estimation of a; if the Y. are assumed to be
normal, in the sense that (for example) it yields a minimax procedure for any of
a wide variety of weight functions; when the distributions of Y, are assumed to
belong to any larger class, the same result holds for the squared error loss func-
tion. For problems of interval estimation and hypothesis testing or m decisions,
similar optimality results hold under normality if ¢* is known. If ¢° is unknown,
such results hold provided every design for which a; is estimable yields as many
degrees of freedom to error as does the design we obtain; see Example 3.4 in
Section 3 for further discussion.

We now define precisely the term “optimum” as used in this section. There
are a few preliminaries. In the original description of a design, let X be a design

for which ay is estimable. Let h;, - - -, hx_; be numbers such that the function
& =fi— > 57! hif; is orthogonal to f; for ¢ < k in the sense that

(2.5) Z_lf,.@,)f;“(x,) =0, i<k
Let a* = (ar, ---, ar) be such that Z'{ aifi = D5 talf + arfr; thus, ar

= a . For the least squares setup in terms of a*, the orthogonality of fr to the
fi for © < k makes the last of the normal equations

(2.6) 2 [t @)lal = 3 fi(a)Y-, ,
sothat ¢® timesthe reciprocal of the variance of the b.l.e. of ai = axis 2, [fz (z.)I>.
Since fi is orthogonal to fi, - -+ , fi_1, this last sum is just the square of the
distance of the n-vector (fi(x1), - - -, fe(x.)) from the linear space spanned by
the vectors (fi(ay), - -, fi(xn)) for 7 < k, namely,
k—1

(2.7) min 2 {fi(z,) — Zlcifj(xr)]Q;

c i=
where we have written ¢ for (¢1, - -+, ce). Since (2.7) is ¢ times the inverse

of the variance of the b.l.e. of ax, a design X will minimize that variance if it
maximizes (2.7). Thus, finally, in terms of the probability measures ¢ we have
introduced above, we make the following

DEFINITION. A measure £ in = is said to be an optimum design (for the pa-
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rameter a,) if
min /[fk(:v) — 2% fi(@) e (da)
(2.8) ’
= ngearx nclin /[fk(x) — 2277 fi(2)T (dx).

For any & in E, the ratio of the left side of (2.8) (with & for £*) to the right will be
called the efficiency e(§) of &.

Of course, the practical meaning of efficiency is that, if one design has r times
the efficiency of the second design, then the latter requires r times as many ob-
servations as the former in order to obtain the same value for the left side of (2.4).
We note that it is a consequence of this definition that an optimum design is
optimum for all values of ¢°.

The form of (2.8) is very suggestive of a game, and we shall exploit that fact
presently. However, the main aspect of our techniquefor computing an optimum
£* has nothing to do with the game formulation, so we treat that aspect first.
Our technique is to throw the main computational difficulties into a Chebyshev
approximation problem, which can often be solved by standard methods and
which, for many important {f;}, even has a solution which can be found in the
literature. We shall call ¢* = (cf, --- , Ci) a Chebyshev coefficient vector if
S5 ¢ff; is a best approximation to fr on & in the sense of Chebyshev, i.e.,

in the uniform norm:
k—1 k—1

(29)  min max fe(z) — E;cffj(rv)l = max |fi(@) — Zlc}*fj(x)l-

Let m(c*) denote the right side of (2.9), and let B(c*) be the set of points z for
which | fi(z) — D ¥ elf;(z)| = m(c*). Our first result gives a simple geometric
sufficient condition for a £ to be optimum ; this is valid even without the conditions
that yield the game-theoretic results of Theorem 2.

THEOREM 1. If ¢* 15 Chebyshev and §(B(c*)) = 1 and

(2.10) [Ui@) = T4 @) fil@)z (d) = 0
for ¢ < k, then & is optimum.

Proor: According to (2.10),2 % "¢} f, is the projection relative to & of fr on
the linear space spanned by fi, ---, fi1. Hence, for any element ¢ of =,

min [1fi(2) = T4 f;(2)Pt (dx)
= [Uie) = T4 f (P (a0
(2.11) | ‘
= (e 2 [((e) = T4 ()P (do)
2 min f[fk(rc) — 2 e () (da),

which proves the desired result.
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The question arises as to whether there always exists a £ which satisfies the
hypotheses of Theorem 1 and whether, in fact, the conditions of the theorem are
also mecessary for a £ to be optimum. There also arises the question of whether
we can find a useful bound such that there is an optimum £ which assigns positive
probability to at most the number of points given by this bound. These questions
can be answered directly algebraically, but since the results we require already
appear in the literature in connection with the analysis of certain games, we
shall therefore consider the following zero-sum two-person game associated with
the design problem: player 1 (resp., 2) has X (resp., C = Euclidean (k — 1)-space)
as his space of pure strategies; the payoff function is K(z, ¢) = [fi(z) —
> %1 1(x)])%; the space of mixed strategies of player 1 is =, while that of player 2
is immaterial, since the convexity of K in C implies, according to Jensen’s in-
equality, that for any randomized strategy of player 2 there is a nonrandomized
strategy which is at least as good for all . Of course the important thing is that
an optimum (maximin) strategy for player 1 represents an optimum design.
We now state the simple modifications of certain results of [6] which we require.

LeEmMA. The game of E vs. C is determined, player 2 has a nonrandomized mini-
max strategy c*, and player 1 has a maximin strategy £* which is concentrated on at
most k — p points, where p is the dimensionality of the convex set of nonrandomized
minimax strategies of player 2.

Proor: Let Cy be the set of all ¢ for which ¢'c = D '¢; < N*, and let Cy be
the complement of Cx. Since the f; are linearly independent, there is a finite
subset H of X such that, for everyc with ¢’c = 1, 2_5 ‘c:f:i(z) is nonzero for at
least one z in H. Hence, if ¢ assigns positive probability to each x in H, we
clearly have | Y _57"¢;D zen fi(x)€ ()| > € > 0 for all ¢ such that ¢’c = 1, and
thus this absolute value is > Ne for ¢’c = N°. Since f; is bounded, we conclude
that inf..c, K(¢, ¢) — » as N — «. Hence, there is an N’ such that for any
cin Cy- there is a ¢’ in Cy- with sup;K (£, ¢’) < sup:K (%, ¢). Thus ¢* is minimax
if and only if ¢* £ Cx» and ¢* is minimax when the space of player 2 is restricted
to Oy . Since Cy is compact and K is continuous, the game of X vs. Cy is de-
termined, and there exists, for all N > N’, a minimax strategy ¢* which we can
take to be-a fixed member of Cy: . Let p be the dimension of the (convex) set of
such minimax strategies in Cy.. There also exists a maximin strategy £n for
the game of = vs. Cy, and by [6] we can for N > N’ take £x to be concentrated
on at most k — p points. Let & = [(j — 1)& + £1/j. Clearly, for each j there
is an N such that K(¢;, ¢*) < K(¢,, ¢) for all ¢cin C'N,- . Thus, since £} is maxi-
mal with respect to ¢*, we have, for N; > N,

sup inf K(£¢, ¢) = inf K(¢;,¢) = inf K(§;, ¢)

EeE ceC ceC ceCNy
(2.12) 2 (1 - 1.) inf K(& ,c) = (1 - 1.) K(& ,c*)
] ceCNj ]

=!<1 - }) sup K(¢, ¢*) = (1 — }) inf sup K(§,¢c).
¢

& ceC
Letting j — «, we $ee that the game of = vs. C is determined, that c* is minimax,
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and that if {£} is a subsequence of the {£f} which converges to a limit £* which
is concentrated on no more than £ — p points (such a subsequence and limit
exist, by the compactness of X) and ¢” minimizes K(£*, ¢), we have
sup inf K(¢, ¢) = lim inf K(¢;,,¢) < lim K(¢j;, ")
eC i+ ceC 1>

& C

(2.13)
= K(&, ") = inf K(&%, ¢),
so that £* is maximin. Thus, the lemma is proved.

We mention in passing several other related points: The bound k¥ — p is
indicated in [6] not to be the best possible and is reduced under conditions (c*
in the boundary of a compact C) for which it is difficult to find general counter-
parts here. Also, it is evident that c* is unique (p = 0) if K(«, ¢) is strictly
convex in ¢, but strict convexity is clearly not a useful condition in our problem.
If % is not compact or the f; are not continuous, suitable assumptions will still
imply determinateness, but the other results will have to be stated in terms of
e-optimum strategies.

The above lemma indicates one method for trying to compute a £*: For
simplicity, assume p = 0 or that we have no knowledge of p. The £’s on X which
are concentrated on at most k points form a (2k — 1)-parameter family. One
can thus, in principle, maximize min K (£, ¢) with respect to these 2t — 1 pa-
rameters and obtain an optimum £*. As we have indicated in the introduction,
this is usually an unrewarding task, and the method indicated in Theorem 1
seems far superior in practical examples. The consequences of the lemma for the
method of Theorem 1 may be summarized as follows:

TureoreM 2. If £ is maximal with respect to c* while c* is minimal with respect
to &, then & is optimum and c* is Chebyshev. Every optimum £ satisfies the conditions
of Theorem 1 for every Chebyshev c*. There exists an optimum £ concentrated on at
most k — p points, where p is the dimensionality of the Chebyshev vectors.

Proor: The Chebyshev vectors clearly coincide with the minimax strategies.
If £ is maximin and ¢* is minimax, then determinateness implies that ¢* is mini-
mal with respect to £, i.e., minK (¢, ¢) = K(&, c*). Thus, 21 'cif; is the pro-
jection, relative to £, of fi, on the linear space spanned by fi, - - -, fi1, so that
(2.10) clearly holds. Since, by (2.11), max min K(¢, ¢) = [m(c*)]’ is the value
of the game, £(B.,) = 1. The last assertion of the theorem is taken directly from
the lemma, while the first is a general result in the theory of games. We note
that any optimum £ must give measure one to the intersection of all B(c*) for
¢* Chebyshev. ‘

We have mentioned, in Theorem 1 and in the second paragraph below the
proof of the lemma, two computational approaches. The first sentence of Theorem
2 indicates a useful approach if one can make a good guess of £: guess a ¢ and
compute min K (¢, ¢) = K(¢, ¢') (say); compute max.K(z, ¢'); if these two
are equal, then ¢ is optimum. This is an approach which is standard in game
theory and which has proved useful in many examples; it sometimes helps to
let £ depend on a few parameters, with respect to which one maximizes
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min K (¢, ¢). A comparison of the various methods for obtaining an optimum §¢
was given in an example in Section 1.

In the next section we shall give several examples of the computation of
optimum ¢’s. We shall not bother to list in detail all of the standard results in
approximation theory which are useful in such computations. We mention here
for future reference only the classical generalized Chebyshev theorem [2, p. 74],
which states that if & is a compact real interval and if no nontrivial linear com-
bination of fi, - - -, fx—1 has more than k¥ — 2 zeros (in this case, these f; are
called a Chebyshev system), then the Chebyshev vector ¢* is unique and is char-
acterized by the fact that there are at least k points at which f, — D i ¢f f;
attains its maximum absolute deviation from zero, the maximum being taken
on with successive alternations in sign. (The literature contains generalizations
of this result to other spaces.)

Before proceeding further it is relevant here to point out the following connec-
tions with earlier results: '

1) Elfving [3] considered the special case where X contains a finite number of
discrete points. It follows from his elegant geometrical argument that the opti-
mum £ is concentrated on at most k points and satisfies (2.10).

2) Consider the case of polynomial regression (X a closed interval of the real
line, fi(z) = «'). Then p = 0 by the Chebyshev theorem cited above. Theorem
2 then says, inter alia, that there exists an optimum £ concentrated on at most
k points. This result (for this important particular case) is already well known
in the theory of moment problems ([10], p. 42). It holds identically in o> If it
did not hold for all ¢ it would be useless in our problem when ¢% is unknown.
This result holds even when (2.18) below is true, with fixed v.)

We now give a simple result on the uniqueness of the optimum £*.

TaeOREM 3. If & is a compact real interval, fi, - - - , fx—1 ©s a Chebyshev system,
and B(c*) conlains exactly k points, then the optimum £* is unique.

Proor: Let 21, - -+, 2x be the ordered members of B(c*), and let @ be the
(k — 1) X k matrix whose (7, 7)th element is (—1)f:(z;). Let ¢ denote a k-vec-
tor whose jth component is the number £(z;). According to (2.10), which, by
Theorem 2, is necessary, and the Chebyshev theorem cited above, any optimum
£ must satisfy

(2.14) Q& = 0.

(Of course, it must also satisfy £(B(c*)) = 1.) Now, Q has rank k — 1, since,
if it had smaller rank, a nontrivial weighted sum of rows of @ would be 0 and
the f; could not be a Chebyshev system. The linear equations (2.14) thus have
a one-dimensional set of solutions £, and clearly at most one of these can be a
probability measure. This completes the proof.

If B(c*) consists of more than k points, an analysis like that above will give
information on how large the class of optimum &’s can be.

Remark on symmetry (invariance): As we have indicated in Section 1, it will
sometimes be easy, as in the case of polynomial regression, to infer that there
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is an optimum £ with some symmetry property. Formally, suppose that there is
a group @ of transformations on & such that for each ¢ in G there is a transforma-
tion g’ on @ such that, writing (g’a). for the sth coordinate of ¢’a, we have (¢’a);, =
ax for g in G and

(2.15) 2oafi(x) = 2.(g'a)fi(gr)

for all x and all (a1, ---, ar). (One may let ¢’ act on the vector of functions
f: instead of on @.) Then the problem in terms of the parameters (¢g’a); and the
independent variable gz coincides with the original problem. Hence, if £ is opti-
mum for the original problem, it is also optimum for the above problem in
terms of gx and hence the measure £, defined by

(2.16) £(A) = £(g74)

is optimum for the original problem in terms of x. Suppose for the moment that
@ contains a finite number, say L, of elements. Write

(2.17) E= 2 &/L
geq

It is easy to prove that, if £ is optimum, then so is £; in fact, this is obvious sta-
tistically, since the variance of the average of L b.l.e.’s from the L independent
experiments £, with N/ L observations each cannot be less than that of the b.l.e.
from £ with N observations (since £ can be broken up into such experiments),
but is clearly equal to the variance of the b.l.e. from £ based on N observations.
Thus, we have:

There exists an optimum design which is symmetric with respect to (invariant
under) G.

The analogous result can be proved for G compact or satisfying conditions
which yield the usual minimax invariance theorem in statistics; see, e.g., [7].

The fact that there exists an optimum symmetric design and an optimum
design concentrated on (e.g.) k points does not imply the existence of an opti-
mum design with both of these properties. For example, if X = [—1, 1], k = 2,
fi(z) = 1, and fo(z) = a°, there is an optimum’ design concentrated on the two
points 0 and 1, but the only symmetric design requires the three points 0, —1,
and 1. However, in the event that g’ does not act (as it does in the example just
cited) as the identity for every g, we may be able to obtain some simplification.
For example, without discussing the most general possibility, let us suppose that
Q is a set of integers containing k and such that (¢’a); = a; for all g if j € Q,
while D_,(g'a); = 0 for j not in Q. Consider the problem of finding an optimum
design £ on the space of equivalence classes of X under the equivalénce z ~ z’
if 2 = gz for some g, where the regression function is ;e aif;(z) (at the
equivalence class of x). If there are g integers in @, there is by Theorem 2 an
optimum 7* concentrated on at most ¢ points. This 7* corresponds to a unique
symmetric (with respect to G) measure £* on X, and it is easy to see that (2.10)
is satisfied for all ¢ < k. Thus, if there are L elements in G, this £* is concentrated



OPTIMUM REGRESSION DESIGNS 281

on at most gL points. For example, in the case of polynomial regression of even
degree h (= k — 1) on [—1, 1], G contains two elements and the set Q. corre-
sponds to the ¢ = 1 + h/2 even powers, and we obtain that there is a symmetric
optimum £ concentrated on at most A 4 2 points. The actual case (see Ex. 3.1)
is that there is a symmetric optimum £ concentrated on £ = h 4 1 points; the
previous argument did not give the best result because 7* gave positive prob-
ability to the equivalence class of ‘0, which corresponds to only one point of .
The best result could, however, be obtained using another argument: since,
according to Theorem 3, the optimum ¢ is unique, our discussion of two para-
graphs above implies that it must be symmetric, and it is thus concentrated on
h 4 1 points. Similarly, one could conclude that there is a symmetric optimum
design concentrated on h 4 1 points when & is odd, either by using Theorem 3,
or else by invoking an obvious modification of the previous argument for the
case when (g’a)r = = ai. A similar result holds in the setup of Ex. 3.5.

Remark on heteroscedasticity and variable cost: Suppose the second line of (2.3)
is replaced by

(2.18) Var(Y,) = [v(z)s],

where v is a known positive continuous function on X. To avoid trivialities,
assume v(z) bounded away from 0. Then, replacing Y, by Y2 = Y,/v(z) and
fi(z) by fi () = fu(z)/v(z), it is clear that the entirc discussion of this section
goes through exactly as before (i.e., assuming (2.3)) since the a; for which
EY, = > a.fiz) are the same a; as those for which E Yy = Y a7 (z), and the
latter setup satisfies the original condition (2.3) of this section.

If there is a cost c(x) of taking an observation at the point x, and the total
cost rather than the total number of observations is to be kept constant, it is
easily seen that an optimum design is obtained by going through the analysis of
this section with »(z) above replaced by v(z)lc(x)]""

Similar remarks will apply to the problems considered in Sections 4 and 5.

3. Examples of optimum designs in the case of Section 2.

Ezxample 3.1. Polynomials on [a, 8]. One of the most important practical exam-
ples is that where % is the closed finite nondegenerate interval [a, 8] of reals,
k = h + 1 for some h > 0, and f;(z) = 2’ ' for1 £j = h + 1; we hereafter
write bj_1 =aj;, b= (bo, oy, bh), dj_l = C5, and d = (do, e, d;,-l). ThUS,
assuming that the regression function is a polynomial of degree <h, we may want
to test the hypothesis that it is actually of degree <h — 1, i.e., that b, = 0. (In
Section 4 we consider the possibility of testing that the degree is <h — m
where m is specified). We first note that we can write

2o bi’ = i bil(2x —a — B)/(B = @)
where b, = (B — a)/2"b, ; since (22 — a — B)/(8 — a) takes on values in
[—1, 1], an optimum strategy for arbitrary [, 8] is immediately obtained by an

obvious change in location and scale from an optimum strategy in the case
[—1, 1], and we may hereafter limit our attention to the latter. Next, we note
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that &, 1s obviously not estimable unless £ gives positive probability to at least
h <+ 1 points (of course, in practice we need n > h + 1 if ¢* is unknown and n =
h + 1if ¢° is known). Hence, by Theorem 2 (or by the result of [10] cited in
Section 2) there exists an optimum £ concentrated on exactly (A + 1) points.
We shall actually find a unique £* which satisfies (2.8) and gives positive prob-
ability to exactly o + 1 points.® Thus, the phenomenon concerning degrees of
freedom in the estimate of ¢° which was discussed in the sixth paragraph of
Section 2, and which is illustrated in Example 3.4 below, cannot occur in the
present example.

The unique Chebyshev d* (i.e., ¢*) is well known in this example: 2" —
Zﬁ“ld*xj is simply the hth Chebyshev polynomial (see, e.g., [2]),

— 20 " diz’ = 27" cos(h cosx)
=2Mlr + (@ = D" + [z — & =)™}

Moreover, m(d*) = 2'", and this extreme value is attained in magnitude (with
successive alterations in sign) by * — Dt 'dfz; at the k + 1 points

(3.1)

(3.2) z, = —cosj;:, 0<j=h
Thus, B(d*) consists of these A + 1 points. Moreover, the above d* is the unique
Chebyshev vector, since :co, z', -+, 2" form a Chebyshev system.

According to Theorem 3, the optimum £* is unique. We now show that the
unique optimum £* is

£ (—1) = £X(1) = 3h,
(3.3) £ (cosf;;{> = 1/h, 127=h-1

To prove this, we shall verify (2.14) for ¢ = £*, since this is just (2.10), which
by Theorems 1 and 2 is necessary and sufficient for an optimum £, Since the
d)’s of (3.1) are zero if j + h is odd, the polynomial of (3.1) is clearly orthogonal
(with respect to £*) to x‘ when ¢ + & is odd. When ¢ + & is even, we can combine
the weights £¢*(—1) and £* (1) and rewrite (2.14) as

(34) ’Z_f (—1) (cos —J>t = 0.

Since cos‘d can be written as a linear combination of cos 9, cos(t — 2)0, ---,
it suffices to prove (3.4) with cos’ (wj/h) replaced by cos (7jx/h), where h + r

3 For h = 1 and 2, the solution is given in [14]. The general solution (3.3) of the problem
of Example 3.1 for a design optimum in the sense of Section 2, is also given in the abstract
[11] of the apparently contemporaneous work of E. J. Williams. The methods of this author
are probably different from ours because he does not seem to use probability measures £.
The authors are indebted to H. L. Lucas for calling their attention to [11] which appeared
after submission of the present manuseript.
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1seven and 0 £ r £ h. But for such » we have
h—1 . jh-——l 1
> (=1)7 cos (rjm/h) = Re\Z exp [jin(1 + r/h)] ]
=0 7=0

_ 1 — exp [in(h 4+ )] | _
= Re {1 —exp [tv(1 + r/h)]} =0

(3.5)

It is interesting to compare the design £* of (3.3) with the often used design
£ (say) which assigns measure 1/} to each of the values (2e — M — 1)/
(M —1),i=1,2,---, M;thus £ takes an equal number of observations at
each of M equally spaced points ranging from —1 to 1. Of course, M/ > k. For
such a design with M observations on the interval [0, M — 1], Fisher [8, p. 133]
has calculated the left side. of (2.4) to be (h!)‘M(M* — 1)(M* — 4)
<o (M* — B')/(2h)1(2h 4 1)! To obtain the corresponding quantity for the
interval [—1, 1], we must divide by [(M — 1)/2]", and we must divide also by
M in order to obtain the left side of (2.4) with n replaced by &"".
Since [m(d*))* = 2°™, we obtain for the efficiency (see the definition following
(2.8)) of &

4h—2 | 4 h 2 - 2
(3.6) e(Eh'M) — 2 (h.) M 1

@hr)12h 4+ Dz (M — 1)

The best choice of M varies:itish + 1if h = 1or 2, h + 2if h = 3, ete. For
the often used procedure £, we have

. pam 2" ()"

(3.7) € (Eh ) = Wm .
Of course, (3.7) becomes 1 for & = 1, since £* = g*for h = 1;for h = 2, (3.7)
becomes 8/9, for k. =. 3 it is 256/405 (the best procedure, £*°, has efficiency .72),
etc.; for large h, by Stirling’s approximation, it is approximately =°°h" 2" ™",
which goes to zero very rapidly. For £ ¥ with M — «, the efficiency (3.6)
approaches 27 (k!)*/(2h)!1(2h + 1)!, which as b — = is approximately /8.

To the experimenter who protests at the above comparison that the design
£ for some M > h is more to his liking than is the £* of (3.3) because the
former will permit him to estimate regression coefficients a; up to ay_; (instead
of up to a.), we can only answer that his problem is not the one of the present
example, that he is probably using a method of ihference (to ‘‘choose the poly-
nomial of correct degree’”) whose properties are questionable, and that a precise
statement of his decision problem would probably lead to a procedure far superior
to £ In Sections 4 and 5 we shall consider some other related problems which
may be what the experimenter is faced with, rather than the problem of the
present example. The problem of “fitting the polynomial of best degree’’ is more
unwieldy, depending strongly on the somewhat arbitrary choice of losses which
are to be assigned to errors in estimation as compared with the penalty for using
a polynomial of large degree.
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Ereample 3.2. An cxample where p > 0. It is easy to construct examples where
the p of Theorem 2 is not 0 as it is in the case of a Chebyshev system. We illus—
trate the situation with a very simple example. Suppose X = [—1, 1], k = 3,
fl(:) =1, fo(x) = 2%, fs(x) = 2 + 1. The expression z + 1 — ¢; — e’ has
within [—J 1] derwahve equal to 0 at © = %¢if | ¢ | = % and is monotone on
X if | ¢ | 1. Thus, a routine computation of max, |2z + 1 — ¢ — e’ |
leads to 't,ho conclusion that any ¢ with ¢; + ¢ = 1 and | ¢; | £ % is Chebyshev;
ie.,, p = 1. Hence, b — p = 2, and indeed the design £* for which £¢*(—1) =
£*(1) = }is optimum. The heurt of the matter is that (1, z°) is not a Chebyshev
system and that is is possible to estimate a; optimally without estimating a,
at all.

Example 3.3. An example where the optimum £* is not unique. There are many
obvious examples of this kind, as we have indicated in the paragraph following
the proof of Theorem 3. For example, one simple example is given by X =
[=1, 1],k = 2, fi(x) =1, fo(x) = 1 + sin 10 2 (any ¢ which assigns measure
3 to cach of the sets where sin 10 z = 1 or —1 satisfies (2.10)); an even more
trivial one is &k = 1, fi(x) = 1, where every strategy is optimum.

Ezample 3.4. An cxample where a nonoptimum & may be preferable. This example
illustrates the phenomenon alluded to in the text, wherein a design £ which is
not optimum in the sense defined in Section 2 may be preferable to an optimum
design £* for use (e.g., in testing a hypothesis about as) because the latter yields
one less degree of freedom for the estimate of ¢*. Let € be a fixed small positive
number, and suppose that & consists of the three integers 0, 1, and 2, that £ = 2,
and that fi(2) = 2° and fo(z) = 1 + (1 + e)a. It is easily computed that the
Chebyshev ¢*is 1 4+ 3¢/5, that B(c*) consists of the points 1 and 2, that m(c*) =

+ 2¢/5, and that the optimum £* is given by £*(1) = 1 — £*(2) = 4/5. Thus,
the efficiency of the design which takes all observations at x = 0(£(0) = 1) and
estimates a; in the obvious way, is (1 + 2¢/5)"; when e is small, this is more
than offset by the extra degree of freedom for estimating o* (e.g., 4 for the latter
design against 3 for £*, when 5 observations are taken), for the problem of test-
ing a hypothesis about a, or giving a confidence interval on a; .

Fxample 3.5. A multidimensional example. Let X be the set of all points (z; , z2)
in the Euclidean plane for which | &, | £ 1 and | 25 | < 1. Let £ = 6 and suppose
that the functions f; are, in order. 1, 1, 2, 21 , 25 , and 21z, ; thus, for example,
we may be testing the hypothesis that a quadratic function of two variables has
no interaction term aerizs, i.e., that as = 0. An easy approach to obtaining an
optimum ¢ is the third method mentioned in Section 2: An obvious guess of a £
which might be optimum is that measure £ (say) which assigns probability 1 to
each corner of the square . Thus, writing ¢; + ¢4+ + ¢s = ¢, we see that K (¢, ¢)
is symmetric in each of the variables ¢z, ¢3, and & (which are the only quantities
on which it depends), so that min K(¢, ¢) = K(¢,¢’) = 1 is attained for any
¢’ for which es = ¢; = ¢ = 0. Let ¢” have all five of its components equal to zero.
Then, clearly, max.K (x, ¢”) = 1. Thus, by the discussion following Theorem 2,
we have proved that £ is optimum. Another way of verifying the optimality of
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¢ is to note that, in the terminology of the remark on symmetry of Section 2,
( is the group of symmetries of the square, and an analogue of the last argument
mentioned there for the case of polynomial regression with % odd obtains ¢ from
the optimum design 7* which assigns mass 1 to (1, 1) for the problem of esti-
mating as on 0 < x < y < 1 when the regression function is asry. We note that
only as, as, as, and a; + as + as are estimable for this design. The fact that
only four linearly independent estimable linear parametric functions exist here is
reflected in the fact that, in the notation of Section 2, p = 2. This can be seen
by noting that, if ¢’ = (e + 8,0,0, —¢, —d), where e and § are sufficiently small,
then max.K (z, ¢’) is still equal to unity, so ¢’ is Chebyshev.

Other examples. Many other examples of optimum designs can be obtained
from the extensive literature on Chebyshev approximation problems. For ex-
ample, Section 37 of [2] can be used to obtain such a design for the setup of
Example 3.1 wherein fj is altered to fr(z) = 1/(x — ¢) with ¢ > b.

4. The case of several regression coefficients. We consider now the setup
of (2.1)-(2.3) (see also (2.18)) in the case where we are interested in inference
about more than one of the a;. In some estimation problems, a treatment like
that of Section 5, wherein the behavior of the function D _a.f; rather than that
of the a; themselves is considered, will seem appropriate. However, in most prob-
lems of testing hypotheses, as well as in many problems of estimation (especially
where the inference is not about all of the a;), the treatment of the present
section may seem appropriate.

We must first choose a criterion of optimality of a design for a problem of
estimation or testing hypotheses about s of the a; , say ax—s11, - - - , @ . Of course,
it is easy to specify a loss function and a criterion (minimax, ete.) for choosing a
design and associated decision procedure; but, as shown in [1], such a simple
criterion as that of maximizing the minimum power of a test on an appropriate
contour (M -optimality) will usually lead to most unwieldy computations. Even
the corresponding local criterion on the power near the null hypothesis (L-opti-
mality) will lead to difficult computations. Two other criteria considered in [1]
are D-optimality and E-optimality. In the present setting, n being fixed, a
design d* is said to be D-optimum if @t_s41, - - -, ax are all estimable under d*
and if, among all designs for which these parameters are estimable, denoting by
o'V 4 the covariance matrix of the b.le.’s of these parameters when design d is
used, det V, is a minimum for d = d*. A design is said to be E-optimum in the
above setting if the maximum eigenvalue of V, is a minimum for d = d*. The
relevance of these criteria for problems of testing hypotheses and of estimation
was indicated in [1] and the reference cited there. It was shown that D-optimality
is generally more meaningful. There is an additional reason why this is so in
problems of the type considered here: Consider the polynomial setup of Example
3.1 for any value £ > 2(h > 1) and s > 1. It is clear that the change of scale
1’ = hx does not leave invariant the criterion of E-optimality: a change in the
scale of measurement can change the E-optimum design. This is unsatisfactory
from both an intuitive point of view (the optimum design depends on the choice
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of a unit of scale) and from a practical one; one would have to table optimum
designs in such problems, as a function of @, 8. (A similar remark, of course,
applies to L-optimum and A/-optimum designs.) On the other hand, D-optimality
is invariant under such transformations. The same result is true under a change
of origin (or a change of both scale and origin) in this polynomial example:
D-optimality is invariant, but E-optimality is not.

Thus, although D-optimality is not an appropriate criterion in all problems, for
the reasons given in the previous paragraph it seems reasonable to investigate
this criterion as a first attack on the problem of finding optimum designs. We
shall thus develop a method for obtaining D-optimum designs in the remainder
of this section, except that we shall indicate briefly at the end of this section how
various other criteria can be treated similarly.

Proceeding as in Section 2, let h;; be numbers such that, for 7 = & — s <,

the functions f; are orthogonal to the functions fi' = f, — ',‘:i Fe,f; in the sense

of (2.5), i.e.,

(4.1) 2 fi(@a)fi (2) = 0, iSk—s<t
r=1

Then, as in the discussion of (2.6), we see that ¢* times the inverse of the covari-
ance matrix o'V, of best linear estimators of Gis1 AR a; has elements
St @i (@), k—s<i,j<k Fort>k—s let fi* =ff — D, <@ufs be
orthogonal to f7 for k — s < j < t. Since the linear transformation which takes
the f into the fi*, k — s < t < k, has determinant 1, and since Y _.f7 " (a,)
P 2) =0ifk —s <17 <j,we obtam

(4.2) det Vit = IT 205 (21

i>k—s

Now, /¥ is clearly f; minus the projection of f; on the linear space spanned by
fi,fey + -+, fim . Thus, the 7th term in the product of (4.2) is just the expression
of (2.7) with k replaced by 7. Finally, then, making the same approximation as
in Section 2 regarding the representation of the class of all designs by the class
of all probability measures £ on &, we have demonstrated, to within this approxi-
mation, the validity of the following definition, wherein ¢ denotes a vector
(c(’) oo, i) of j — 1 components:

DEFINITION. A measure £ in E s said to be D-optimum (for the parameters

Qs s ** 5 ) of

min f [fi(z) — i@ (2)le* (d)

1>k—s el

(4.3)
= max mm f[f,(w) — Z ¢ f(2)1 (de)

teE 7>k—s c(1)

Of course, (4.3) reduces to (2.8) in the case s = 1. When f is a constant, a &
which is optimum for s = k — 1 is also optimum for s = k.
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We note that it is a consequence of this definition that an optimum design is
optimum for all values of ¢".

For the special case where s = & and & consists of £ points, it is easy to prove
that the unique optimum £ puts mass 1/k on each point. For if 4 is the matrix
whose (%, ) element is f:(x;) and B is the diagonal matrix with £(z;) the diagonal
element in the jth row, an optimum design maximizes det(4BA’) = (det A)’det B.
This argument has been employed by Hoel in the problem considered by him;
see Example 4 below.

The methods of Section 2 do not directly yield anything here for the general
problem. The analogue of Theorem 1 is essentially empty, since the various
B(c?)’s for ¢ Chebyshev will not in general coincide. The game-theoretic
approach is inapplicable because the product on the left side of (4.3) is not
linear in £*; moreover, the product of the integrals (before minimizing over the
¢) is not convex in the ¢'”’s, since 4*’ is not a convex function of « and v. The
following analysis will, however, yield a method for obtaining an optimum ¢£.

Forj > k — s, let

(44) Fi() = min [17,(2) — 3 eP5:(0)f% (d).

In s-dimensional FEuclidean space R’, let S be the set of all points
F(§) = (Fr_epr (§), -+, Fr(%)) for £ in E. Although S may not be convex, it
possesses the following “upper convexity”’ property, which is all we require: For
any & and & in = and any A with 0 < A < 1,

(4.5) Fi(My 4+ (1 — N&) = NFi(h) + (1 — NF (&)

for allj > k — s. In fact, (4.5) is an 1mmed1ate consequence of the linearity in
¢ of the integral of (4.4).

Let wi_s41, - - - , U be the coordinate functions of R’. For § > 0, let G’s be the
set, of all points in R with all coordinates positive and [[;u; = 5. Let Gs be the
subset of G5 where H]u, = 8. We note that G; is convex. Suppose that S is
closed (this is easily proved from (4.4) if ® is large enough so that = is compact;
the modification which is needed if = is not closed is trivial, anyway), and let
do be the ]argeé't value of § such that G5 and S have a nonempty intersection.
(Such a & exi&ts since S has points with all coordinates positive.) If T is the
convex hull of 'S, property (4.5) implies that & is also the largest value of § such
that G5 and T have a nonempty intersection. Hence, applying the separation
theorem for G;, and T, we conclude that there is a hyperplane L with positive
direction cosines such that L separates G5, and S. Thus, any point F(£*) in
G, N S clearly max1mlzes IL,F; (¢) (ie., that &* satisfies (4.3)); and, for posi-
tive numbers A, for which L is given by Z)\ U = constant, that point maxi-
mizes D ,)\,F ; (£). Finally, since all points of G, are extreme, L intersects G5, in
exactly one point, as does therefore S.

Before summarizing the above results, we note that, for A = (Ae—eq1, =, M)
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with all A\; > 0, the payoff function
(4.6) K\ (z, ¢) = Zk 1fi(z) — ZC ? fu@)T,
where ¢ = (%™ ... ® )), satisfies all of those conditions satisfied by the
function K of Section 2 which were used in the proof of the game-theoretic
results of the lemma there. Thus, that lemma is valid when K is replaced by K\.!
The function K, is of course no longer in a form suitable to make use of Cheby-
shev approximation results. However, for any A, if ¢x is minimax for the payoft
function Ky, we can still characterize maximin £)’s in terms of the set By(cx )
(say), defined to be the set of z for which Ki(z, ¢x) achieves its maximum.
With this interpretation of symbols, the analogue of (2.10) is proved here ex-
actly as in (2.11).
We have thus proved that following,® where C now stands for the set of vectors
¢ = (™M), ., ¢®) and &f = {c{”*} stands for a vector of this type:
THEOREM 4. The game of = vs. C’ with payoff function K, is determined. If &\
©s maximal with respect to ox while ox is minimal with respect to &y , then &\ 1s mazxi-
min. Thus, if o is minimaz and

(4.8) E(BA()) =
and
(49) [Ui@) = & 5@ s (@) = 0

fori <jandk — s < j =k, then &\ 1s maximin, moreover, every maximin &
satisfies (4.8) and (4.9) for every minimaz cx . There is, to within a mults iplicative
constant, a unique value \* of \ such that HJQ(E;\) ts @ maximum for A = A*
and some £« . Those &xs which maximize HiFi(Ep), and no other £’s, are optimum.
F (&) s the same for any oplimum Exs.

We now consider an example.

Example 4. Consider the setup of Example 3.1, where (see the end of the
second paragraph of the present section) we may suppose @ = —1, 8 = 1.
Suppose k = 3 (b = 2), and s = 2; as we have remarked earlier, the optimum
design obtained below will also obviously be D-optimum for the case s = 3. An

¢ That part ot the lemma which concerns the number k — p is valid when k is replaced
by 1482k — s — 1)/2 (= 1 4+ number of components of ¢) in the statement of the lemma.
However, this is of no use to us since it may be:that no maximin strategy on the specified
number of points is optimum. For example, in the set-up of Example 5.2 below with s = &
= 2, one can verify that the A* of Theorem 4 is (15/4, 1), and that any &* with first and
second components equal is maximin, but only (4/15, 4/15, 7/15) is optimum.

It is trivial that the optimum strategy need be concentrated on no more than
1 + k(k 4 1)/2 points. For the criterion of optimality (4.3) involves ¢ only through the
elements (5.2) below of the matrix M (¢£). These matrices form a convex body of dimensional -
ity at most £(k + 1)/2, spanned by matrices of £’s concentrated on a single point Hence
any M () is a linear convex combination of at most 1 + k(k + 1)/2 extreme elements.

8 See also footnote 6.



OPTIMUM REGRESSION DESIGNS 289

elegant solution to this problem for general k and s = k, has been given by P. G.
Hoel [15] (see also Example 5.1 below). The case s < k¥ — 1 does not seem to
yield to his attack. The present problem is discussed here as an 111ustrat10n of
our methods We may take 1 and v for the components of A, and write K,y (z,d) =
(z — do) + y(a® — diz — di )? 1n place of K, . For ﬁxed ¥, One may guess that
there will be a maximin strategy &, of the form £,(=1) = (1) = ay, £,(0) =

1 — 2a,, for some «a,. With respect to such a £, , the minimal strategy (Wthh
must merely satisfy the orthogonality relation (4. 9)) is 0bv1ously do = di = 0,
ds = 2a, . Forthischoiced, (say) of d, we obtain K (57 , dy) = ¥[2ay — 4a’) +
2a, . This is maximized by a, = min (%, (y +1)/4y), and for the strategy &,+
corresponding to this value of a, we obtain

(v + 1)*/4y if y>1,
(4.10) min K, (£ ,d) =
A 1, if y=<1.
On the other hand,
(4.11) mgn max K'.,(x, d) < max K'.,(x, dy).

Since K '., (z, d,) is convex in z°, its maximum is attained at either z* = 0 or =
1, and an easy computation shows that the right side of (4.11) is in fact equal to
the right side of (4.10). Thus, we have proved that E: is maximin. Finally,
Fy(E3)F5(£%) = 4a%(1 — 2a,), which is maximized by a, = %. Thus, an opti-
mum design for this problem is £(—1) = £(0) = £(1) = 1. Of course the opti-
mum designs for a given set of f; will depend on s, as exemplified by the different
results obtained in Example 3.1 and Example 4. '

We shall now mention briefly methods for obtaining designs which are opti-
mum in two other senses. Although it is not difficult to characterize E-optimum
procedures in stmple examples, they often seem much harder to calculate than
D-optimum ones. Somewhat easier is the characterization of that design which
minimizes the maximum eigenvalue of the covariance matrix of best linear esti-
mators of the regression coefficients of the f+* (the regression function being
expressed in terms of the f, for ¢ £ & — s and of the fi * for ¢t > k — s); i.e., of
LaV 4Ly where Ld is a square matrix with ones on the main diagonal and zeros
above it. (The f, depend on the design, which indicates the intuitive weakness
of this crlterlon however, as pointed out in [1}, the criterion of E-optimality,
which has often been considered in the literature, suffers from a similar short-
coming.) Again making the approximation that we do not restrict n¢ to be
integer-valued, this criterion amounts to finding that # which maximizes min >,
F;(§), i.e., if & is the largest value of & for which the orthant H; = {min;u; = 8}
intersects S nonvacuously, those ¢ for which F (&) isin Hy N S are the optimum
procedures with respect to this criterion. Another criterion which has been con-
sidered in the literature, especially in estimation problems, is that of minimizing
the “average variance”, o’s " trace (V). Defining F; (¢') to be the expression
of (4.4) with the sum in the integrand taken only from 1 to k — s, this criterion
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amounts to m1mm1z1ng Dok FT(E). Replacing S by the set of points F*(£) =
(Fr_on1 (&), -+, Fx(£)), and restricting the sum over 7 in (4.6) to values <
k — s, this amounts to finding the maximin £’s for a X with all components equal.
These maximin £’s for the original S and K> (with all A; equal) would of course
mlnlmlze the average variance of the b.le.’ ’s of regression coefficients of the
i e., would minimize the trace of LdVde Criteria like that of minimizing
the average variance are subject to the same criticisms as E-optimality.

Remarks. As in the problem of Section 2, one can prove that the symmetry
condition (2.15) and the obvious analogue of the condition of the line above
(2.15) imply the existence of a symmetrical optimum £ for any of the criteria
considered in the present section. For example, from (4.5) it follows at once
that, if £ is D-optlmum then the symmetrical £ defined by (2. 17) 1s also D-opti-
mum. Remarks analogous to those of Section 2 on the number of points at which
a symmetrical optimum £ will be concentrated, clearly hold in the problems of
this section. We note that the choice of the form of E., in Example 4 is motivated
by symmetry considerations, although the optimum weights must be computed
in any approach.

The remark concerning the modification of (2.18) applies also to the problems
of this section.

6. Estimation of the whole regression function. In the setup described by
(2.1-(2.3), suppose the problem is one of estimation concerning all the a; . One
approach has been indicated in Section 4. Another approach is to think of the
problem not as one of estimating the parameters a,, but rather as one of esti-
mating the entire function Y a.f;. Thus, if g is the estimate of Y a.f:, it is
desired -to make some measure of the average deviation of g from Y a.f; small
in some sense, by choosing an appropriate design. The most obvious possibilities
of such measures are perhaps (1) sup.EW (sup. | g(z) — D a:f: (z) | ), where
W is nondecreasing; (2) the integral with respect to some measure u on X of
sup.EW (| g(z) — Daifi(z)|); (3) the supremum on % and @ of
EW(|g(z) — D a: (z) | ). Of these three possibilities, the first is perhaps the
most meaningful for most applications (with perhaps the inclusion of a weight
function A(z) multiplying | g(z) — D a:f: (z) | ) butis computationally much
more difficult to treat than the others; the second possibility is by far the easiest
computationally, but is least satisfactory from a practical point of view because
of the necessity of choosing y—for example, if & is a line segment, the optimum
design will not be invariant under homeomorphisms of &, if u is always chosen
to be Lebesgue measure; the third possibility is a compromise between the first
two and, as a ﬁrst attack on the problem, is what we consider in this section,
with W(t) = #. We note that a remark of [9, p. 215] indicates that Box and
Hunter are considering the second approach for certain polynomial multiple
regression problems when W(t¢) = ¢ and u is Lebesgue measure on a Euclidean
set. We note that it is a consequence of all three definitions of optimality dis-
cussed in this paragraph that an optimum design is optimum for all values of o°.
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We shall not have to concern ourselves here with the choice of the function g:
for example, the remarks of Section 2 extend here to show that, for a given de-
sign, if @ is the b.le. of a, then $ups.oBa[ Y a:f: (z) — g(z)) is a minimum for
g(z) = D_dif: (x). We therefore assume this choice of g in what follows. Thus,
we are led to consider the minimization with respect to the design d of the
expression

(5.1) max E[Xi(b: — a)f(2)f = o max f()'Vaf (),

where we have written f(z) for the vector of fi(z)’s. Using again the representa-
tion of a design as a measure £, the analogue of V, is the inverse of the matrix
M (&) whose (7, j)th element is

(52) ms(®) = [ 1(@)@)e(da).

Thus, making an approximation like that of Section 2 in not requiring n¢ to be
integral, we define a design £* to be optimum for the problem of this section if
M (£*) is nonsingular and

(5.3) max f(z)'M (") f(z) = min max f(z)' M (§)” f(2).

It seems more difficult here than in Section 2 to give a useful general comput-
ing algorithm. We now describe one device which seems useful in many examples.
Let D; be a non-singular matrix such that the vector g; = D.f consists of func-
tions g;; which are orthonormal with respect to £; it is clear that such a D,
exists for any £ in E for which M (£) is non-singular. Since the (7, j)th element of
DM (E)Dg is the integral with respect to & of g;,g¢,; , We obtain

(54)  f(@)'ME)7f(x) = ge(z) (DM (E)De) "ge(x) = i lges ()

(Since the left side of (5.4) does not depend on Dy, neither does the right side;
thus, in searching for a ¢ which minimizes the maximum with respect to x of
(5.4), it suffices to consider for each ¢ only that D; and g; which are computa-
tionally most convenient.) Since the g¢,.’s are orthonormal with respect to &,
the integral with respect to £ of the last expression of (5.4) is k, and this cannot
be greater than the maximum with respect to z of (5.4). Thus, a sufficient con-
dition for a given £ to be an optimum design is

(5.5) max ;[gsn(x)]z = k.

Of course, a necessary condition for (5.5) to be satisfied is that £ give measure
one to the set of x where Z[gg,,- (z)]’ = k, and it is useful to keep this in mind
in examples.

Suppose (5.5) is satisfied for a £ concentrated on k points, say z1, ---, Zx .
Then the & X k matrix whose (7, j)th elementisgy :(z ,-);5'(3: ]! has orthonormal
rows and, hence, orthonormal columns: D g «(z;)I%; = 1for 1 < j < k.
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Hence, E;- > 0, and by (5.5) £ = 1/k. Hence, each £; is 1/k. We summarize
our results.

THEOREM 5. If (5.5) holds, then £ is optimum.® If (5.5) holds fora & concentrated
on k points, then & gives measure 1/k to each of these points. )

If the setup is that of Example 3.1 it follows from the results of [10] cited in
Section 2 that there exists an optimum # concentrated on exactly k points. This
will not be true in general (see Example 5.2 below).

In the special case where % consists of k points, the argument of the paragraph
preceding the present theorem, applied to the distribution &; = 1/k,j =1, - -+ , k,
shows that (5.5) is satisfied for this distribution, and hence the latter is optimum.
Combining this with a remark which follows (4.3) we conclude that, when &
consists of k points, the design which puts mass 1/k on each point is the unique
optimum design according to both the definition (4.3) for s =*k (the problem
of Section 4) and the definition (5.3) (the problem of the-present section).

Example 5.1. The setup of Example 3.1. It is possible to solve this problem by
our methods and such a solution was given in the original draft of this paper.
In the meantime, however, a solution has been published by Guest [13], so that
there is no point to repeating the details of our solution. An earlier discussion by
Smith [14] gave details of designs up to k¥ = 7. The optimum design assigns mass
1/k to the points +1, —1, and the roots of L;’.(x) "= 0, where Ly, is the derivative
of the Legendre polynomial. (5.5) is satisfied ([13], equation (10)). It therefore
follows from Theorem 6 below that this design is also optimum in the sense of
definition (4.3) for s = k (problem of Section 4) for this setup; i.e., a special case
of Theorem 6 asserts that Hoel’s design [15] is the same as that of Guest [13].7
This last fact was noted by Hoel through an examination of the explicit results
in the polynomial case.

Ezxample 5.2. This example illustrates the use of Theorem 5 where the opti-
mum ¢ is concentrated on more than & points and does not give equal measure to
all of them. Let & = 2 and let X consist of three points. Thus, we hereafter write
the f; and £ and S as triples, where S(z) = 2. [g:.:(z)]". Suppose f; = (1, 1,0)
and f» = (0, 1, 2). For ¢ = (%1, &, &), we obtain easily

= (&ifs + 46k + 465) (& + 46, & + 48, 45 + 45)

We have ZE,- S; = 2, identically in £. Suppose & = 0, & > 0, & > 0. Then either
1) 8; = S;,in which case {2 = & = $and S; > S: = 2, or 2) max (S:, S;) > 2.
Thus, in either case max;S; > 2. A similar argument applies if either of the other
£/’sis 0, and two £/s can obviously not be 0. Thus, max;S; can be 2 only if all &;
are positive and all S; are equal to 2. The unique optimum £ is thus easily seen
to be (4/15, 4/15, 7/15).

¢ The converse of this statement is true. In fact, it will be proved in a subsequent paper
(the results were obtained too late for inclusion in the present paper) that the following
three statements are equivalent: (a) the design £ is optimum in the sense of Section 4 with
s = k; (b) the design £ is optimum in the sense of Section 5; (¢) the design ¢ satisfies (5.5).
7 This is a special case (for polynomial regression) of the result described in.footnote 6.
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It is obvious how to give examples like those of Section 3 where the optimum
£ is not unique, ete.

The argument just after (2.17) is easily modified to apply to the expression on
the left side of (5.1), so that we can again conclude that there exists an opti-
mum symmetrical £ if (2.15) and the obvious analogue of the condition of the
line above (2.15) hold. The question of the number of points at which an opti-
mum symmetrical # will be concentrated is difficult, as is the corresponding
question for general optimum ¢&.

The modification of (2.18) can be made in the problem of this section, exactly
as in Section 2.

We shall conclude this section with a result which sheds some light on the
connection between the problem of Section 4 for s = k and the problem of the
present section. This result has already been cited in Example 5.1.

TureoREM 6.8 If the design which puts mass 1/k on each of k points satisfies
(5.5) and s optimum in the sense of (5.3) (problem of Section 5), then this design
18 also optimum in the sense of (4.3) (problem of Section 4) with s =

Proor: Let & be a design, optimum in the sense of (5.3), such that & assigns
mass 1/k to each of the points z;, -+ -, zx in %, and such that (5.5) is satisfied
for £ = & . Since a design optimum for the problem of Section 4 with s = k
is invariant under a linear transformation on the f;, it will suffice to prove that
% is optimum for this problem assuming f; = gz,,; ; henceforth we make this
assumption. Thus

(5.6) max Zﬁ(x) =k
and
mii(%) = 8,

and we have to prove that & maximizes det M (£). Now from (5.6) for any &
we have

2omi(t) Sk
and hence

det 3 (¢) < [Imau(s) <1 = det M(&)

This proves the theorem.
The authors are obliged to Professor G. Elfving for helpful comments.
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