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1. Summary. In this paper, the known methods of linear estimation are ex-
tended to various cases of censored samples from multivariate normal popula-
tions. The two estimators considered correspond to the minimum variance and
the ‘alternative’ estimators treated by Gupta [3] and Sarhan and Greenberg [4],
[5] for univariate samples. It is found that the ‘alternative’ estimator has im-
portant applications in multivariate samples, being easy of computation and of
low variance.

2. Introduction. During recent years, the estimation of population parameters
from censored samples has received considerable attention. Gupta [3] found
both maximum likelihood and linear estimators for the mean and standard
deviation of a univariate normal distribution using a sample from which a
number of the largest observations had been censored. The maximum likelihood
‘method of estimation was used in the more general case of censoring from a multi-
variate distribution by Cohen [1], who laid emphasis on samples restricted to a
fixed region of possible population values rather than on samples with a fixed
number of observations missing; but his results also apply to the latter case
after minor modifications (Watterson [8]).

The advantages of maximum likelihood estimators are well known, the most
important being the properties of asymptotic efficiency and unbiasedness. But
for estimation from small censored samples neither the bias nor the exact vari-
ance can be calculated for these estimators, and the actual computing of the
estimates is considerable, involving iterative solution of the likelihood equations.

In contrast, linear estimation has the following advantages. Firstly, for most
parameters it is possible to obtain unbiased estimators and to calculate their
variances, and secondly, linear estimates are easy to compute once the coeffi-
cients have been found. Further, for certain special cases Gupta has shown that
linear estimators are not substantially less efficient than those obtained by maxi-
mum likelihood.

These reasons have given a motivation for further study of linear estimators,
and Gupta’s original methods have been generalised to doubly censored samples
(having both large and small values missing) from univariate normal and ex-
ponential distributions (Sarhan and Greenberg [4], [5], [6]). The theory is here
further extended to linear estimation from multivariate populations with censor-
ing effective on interior as well as extreme variates in the sample.
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LINEAR ESTIMATION IN CENSORED SAMPLES 815

3. Censored samples. Consider a k-variate normal population, the moments
of the variates being determined by the parameters

pi = E(z:), oi=Cov(zi,2;), 4,j=12 -,k

From this population a sample of size n is drawn, containing in all n X k vari-
ables. Suppose the sample is ordered with respect to one variate, say z, , so that
it may be represented by

Ty < <o < T
Loq1) » Ty, L2(n)
L) » Tr(2) » ctty Lk(n) »

where a bracket on the second subscript indicates the association of the variable
with the corresponding ordered variable having no such bracket. Note that the
associated variables are not necessarily in increasing order of magnitude.

We define a censored sample as one having some or all observations missing
from a number of the vectors of the ordered sample. For definiteness, censoring
will be subdivided into three distinct types, each of which have practical applica-
tions.

Type A: Censoring effective on all variates of certain sample vectors,

Type B: Censoring of associate variates only,

Type C: Censoring of the ordered variate only.

We shall not restrict the missing observations to belonging to the first or last
vectors, but of course these cases are included in our formulation. Samples cen-
sored from one end only are chosen to typify the three types of sample from a
singly censored bivariate distribution.

A. The 5 tallest trees out of a group of 20 are removed for milling. Their heights
and mean diameters are measured so that an estimate of the volume of timber
remaining in the group may be made. The two measured variates form a type A
sample.

B. The examination scores of 17 students are known, but only the best 12
students are allowed to proceed to the next year of the course. The associated
variate, the examination scores after one year’s study, is thus censored, but the
ordered variate is completely known.

C. Densities of several metal alloy specimens are measured, and each specimen
is then subjected to fatigue testing. Supposing that the specimens are set in opera-
tion simultaneously, the population parameters may be estimated sequentially
as the specimens fail, but at each stage the sample available will be censored
with respect to the ordered variate ‘time to failure’, whilst the associated ‘density’
is completely known. In fact, the first estimates may be made after only two
failures.

4. Linear estimation. For these types of samples, the estimation of all possible
parameters may be inferred from the univariate and bivariate cases, which will
therefore be treated in detail.
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(a) Univariate case. The estimation of the parameters u; and /oy for the
ordered variate has been carried out by Gupta [3] and Sarhan and Greenberg
[4], [5] in the most usual cases of single and double censoring. For the ordered
sample

< 2 < o0 < Tgn
define
(1) w = oiiB(zu — p),  Oim = o1t Cov (211, Z1m)

as being the means and covariances of ordered standard normal variables. The
values of u; and v;,, are tabulated by Teichroew [7] and Sarhan and Greenberg
[4] respectively, for samples of size n < 20. Suppose now that some of the ordered
sample variables are missing; then a linear estimator will have the form D a;zy;
where the summation extends over all values of ! for which observations are avail-
able. (This summation convention will be adhered to throughout the paper).
The mean and variance of this estimator are, from (1),

(2) E(Qawy) = mQ e + Vo) em,
(3) Var (D amy) = auZZaz ol .

If we choose a; 50 that > a; = 1, D am; = 0, then Y auzy; is an unbiased
estimator for g ; similarly, if D a; = 0, X_am; = 1, then D_a;zy; is an unbiased
estimator for 4/oy; . Obviously, these conditions do not determine the coefficients,
and we may impose the further restriction that the variance (3) be made a
minimum. Sarhan and Greenberg [4], [5] tabulate two sets of values a;; and ay;
such that Yy and D asy; are unbiased linear estimators for g and 4/on
of minimum variance, in the particular cases of singly and doubly censored
samples of size n < 15.

For the more general case where observations may be missing from the interior
of the sample, no tables have been constructed since the number of possible
sample types is of order 2" for each n, and the task of computing and tabulating
the coefficients even for reasonably small n would be excessive. Instead, an al-
ternative estimator can be constructed with simple computational properties
and which is not very less efficient than the optimal one. Gupta [3] suggested
for single censoring that instead of minimising the variance (3), the coefficients
obtained by minimising Y i subject to the unbiasedness conditions gave an
estimator of low variance. In our case, suppose there are p out of the n variates
observable, and write @ = p~*D>_u;. Then with

1 a(u — %) _ Uy — u
(4) Bu=p — S (um — @) Ba = S (um — 0

we find that D @21 is an unbiased estimator of u; , 2 Bz is an unbiased es-
timator of \/oy, and D S5 and D B3 are minimum subject to D Bu = 1,
D Bums = 0and > Bn = 0, D_Buu; = 1. The relative efficiences of these ‘alterna-
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tive’ estimators compared with the best linear estimate can be found by com-
paring variances calculated according to (3). In the case of singly and doubly
censored samples, Sarhan and Greenberg [4], [5] have tabulated these variances
and efficiencies for samples up to size n = 15, and the worst relative efficiency so
obtained was for single censoring with » = 15, when for the mean the efficiency
was not lower than 84.66% and for the standard deviation not lower than 86.75% .
Clearly, the extra efficiency of the optimal estimator is hardly worth the effort
of computation, and this may be even more pronounced in the general case.

(b) Bivariate case. For a bivariate normal population, there are five parameters
requiring estimation, namely u , p2, Vo V/oe and o2 . The estimation of u;
and +/oy; can be accomplished as in the univariate case, using all the z,; observa-
tions available; for type A and C samples only p(<n) such observations can
be used, whilst for type B samples where the ordered variate is not censored n
observations are available. In the latter case, u; is estimated by the arithmetic
mean n Y _zy;, and 4/oy; can be linearly estimated by either a minimum vari-
ance or an alternative estimator. The method of estimating the remaining param-
eters ps , \/o2 , and 012 depends on the type of sample considered.

Type A or B sample. In a sample where the associated variates are censored,
we cannot re-arrange them into increasing order of magnitude because the ranks
of the missing observations are not known.

From conditional expectations, or by direct evaluation of the moment gen-
erating function of an ordered sample, it may be shown that

E(zay) = w2 + ouoitur,
Var (22y) = (1 — a'fza'l_llaz_zl)o'zz + ohorivu,

(5)

2 -1
Cov (z2qty , Tamy) = 01011 0im, | # m,
Cov (21, 2am) = T12Vim -

Therefore a linear combination of the available observations has the moments

(6) Ef{ Zaﬂz(z)} = Mzzaz + anaﬁ*Zam, s
(1) Var {amem) = ohoir 2 D aeatin + (1 — olaoiioan Jomn) ol .

If the a; are chosen to satisfy Y a; = 1, O_amu; = 0, then the linear combination
is an unbiased estimator for u2 , and alternatively, if D a; = 0, > o = 1, then
the combination is an unbiased estimator for o1s011 . This latter quantity becomes
p12A/ o2z on the introduction of the correlation coefficient pi2 = ouoidoss . Once
more, additional restrictions may be made to determine the coefficients. The
obvious criterion would be to minimise the variance in (7), which may be re-
written

(8) Var (Zaﬂz(z)) = Un{P%zZZalamvlm + (1 - Pf2) Za%}

However, the resulting coefficients would be functions of p}; ; for example, when
pi2 = 1, the variance in (8) reduces to that of (3), so that > auay and ) azitan
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are the best linear unbiased estimators for u, and pi2\/oy . By contrast, when
p1z = 0 the minimum variance estimate of u, will be simply the arithmetic mean
of the observed values, and the standard deviation will be best estimated by
treating the missing values as if at randon, ordering the remaining x, variables,
and applying the univariate theory for a complete sample of size p.

But in general the correlation will not be known and we must therefore relax
the restriction of minimum variance, and instead seek estimators which have
reasonably small variances for all possible values of the eorrelation. One such set
of estimators is generated by the ay; and ay; considered before, because they are
unbiased, and of minimum variance when pj; = 1. The variances of these possible
estimators are

Var { D auan} = onlpiz) O 0uimbim + (1 — ple) et
Var { D autan) = onlpis ) D autmbim + (1 — pha) D ad).

The alternative estimates based on the coefficients (4) will likewise be unbiased
for pe and p1z V022, and will have variances
Var { D Butan} = onf{pie) D Bubimbim + (1 — pi2) > 8
Var { D Bawan} = onlpis ) 2 Baubemtinm + (1 — piz) D 831
Compating (9) with*(10), the relative efficiency of X Bimsq t0 D aimsq as
an estimate of u. is

E = pfz Zzau Qi Vim + (1 — pfz)z:'aiz

piz 2.0 Bui Bim vim + (1 — pl2) D 6%

and a similar expression holds for the estimates of p1s4/cz; . The minimum and

maximum values of E are given when pj; = 1 and p;; = 0 respectively, and E then
takes the values

9)

(10)

B = Ezau Aim Vim E = Eaft
> Bubim v/lm ’ D64

/
For equal efficiency (E = 1), pi: has the value

1 — Epnin Enex Zzall Oim Uim }—1
12 : ={ 1 L mex, .
( ) i + Erppx — 1 Epnin Zafl

Of course, Enin is also the relative efficiency of Y8121, compared with a2y
as an estimate of u; , and as such has been tabulated for doubly censored samples
by Sarhan and Greenberg [4], [5] for values of # up to 15. Using their tabulations
and also some further calculations, we have found the values of Emin , Fmax and
| prz | for equal efficiency in the case of doubly censored samples of size n = 10,
where 7, observations are missing from the left of the sample, 7. from the right,
leaving p = n — r, — 7, central values of z, observable. Table 1 shows these

(11)
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TABLE 1

Relative efficiency of 2 _Busqy compared with Y ausy as estimales of uz , showing
minimum and maximum values, and the correlation required for equal efficiency.
Doubly censored bivariate normal sample of type A or B, size n = 10

72
7n
0 1 2 3 4 5 6 7 8
Emin | 100.00 | 99.43 | 08.06 | 96.03 | 93.54 | 91.13 | 89.83 | 91.50 | 100.00
0 Emax | 100.00 | 105.00 | 119.22 | 136.17 | 148.27 | 150.79 | 142.58 | 124.64 | 100.00
| p1z | — 0541 | .9655 | .9712 | .9744 | .9762 | .9768 | .9763 | —
Euin 90.04 | 98.29 | 97.28 | 96.29 | 95.89 | 97.06 | 100.00
1 Emax 108.56 | 118.93 | 130.77 | 134.34 | 126.13 | 110.76 | 100.00
| p1z | L0550 | .9689 | .9773 | .9823 | .9852 | .9862 | —
Enin 08.20 | 97.95| 97.85| 98.57 | 100.00
2 Fumax 123.03 | 128.46 | 124.13 | 108.84 | 100.00
| p1z | .9745 | .9814 | .9867 | .9896 | —
Eunin 98.43 | 99.03 | 100.00
3 Emax 127.32 | 115.24 | 100.00
| p12 | .0861 | .9908 | —
Emin 100.00
4 Emax 100.00
|P12[ -

Note: The non-entries (—) in the above table correspond to the fact that E = 1 for all
values of py2 .

quantities for estimates of u whilst Table 2 gives the similar quantities for esti-
mates of p12A/o2 . Clearly, unless | py | is very near unity, the alternative estima-
tors are more efficient than the original, and in any case are never substantially
less efficient. ’

To investigate the absolute efficiencies of u; against all linear alternatives,
we see from (9) and (10) that the estimators D auzsw and > Busy , will be
least efficient when p;; = 0, and in this case the best estimator is the arithmetic
mean with variance p ‘o2 . Thus the least efficiency that the original estimator
> auwary can have is p(2ati)”, and for the alternative estimator, > Buzsa
the least efficiency is p “(D_83;) . In Table 3, these quantities are tabulated
(as percentages) for the case n = 10 and all possible doubly censored samples.

Clearly, neither estimator is satisfactory when piz = O unless the sample is
almost complete (r; and 7, small) or unless it is nearly symmetrically censored
(1 = 7). But without knowledge of piz no simple method of improving the
estimators seems possible without going into the more complicated estimates
deduced by maximum likelihood.



TABLE 2

Relative efficiency of 2 Butsqy compared with D osieqy as estimates of piN/oe ,
showing minimum and maximum values, and the correlation required for equal
efficiency. Doubly censored bivariate normal sample of type A or B, sizen = 10

71

r2

4

Emin 99. 87
Emax 1(”.39
['p1z | .9319

96.92
112.41
.9569

97.08
113.45
9719

94.07
127.78
.9672

96.11
119.22
.9790

96.32
118.00
.9843

92.03
139.47
L9724

95.64
122.02
.9834

96.88
114.99
.9881

96.16
103.11
.9544

90.72
145.40
.9752

95.80
120.27
.9862

98.02
108.91
.9909

99.96
100.11
.9913

100.00
100.00

90.17
144.69
.9767

96.65
114.02
.9877

99.56
101.18
.9896

100.00
100.00

90.66
136.81
L9771

98.22
104.78
.9863

100.00
100.00

92.97
121.53
.9763

100.00
100.00

| 88
28

Note: The non-entries (—) in the above table correspond to the fact that £ = 1 for all
values of p12 .

TABLE 3

The Minimum Efficiencies of Original and Alternative Estimators of us Against
all Linear Estimators. Doubly censored bivariate normal samples of type

AorB, sizen = 10, pp = 0

re

N

4

1
0
0 100.00
100.00
1
2
3
4

90.64
95.26

92.11 |

100.00

S2 &3 B3
8k && &S

—
S =

47.38
64.52

56.41
73.77

68.83
88.41

78.54
100.00

31.34
46.47

36.08
48.47

44.93
55.77

62.93
72.52

100.00 |

100.00

13.39
19.09

11.26
12.47

.87

8.35
10.41

o
88

820
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It is interesting to consider the product of the estimators for 4/oy; and opoi?,
namely

D Beriir D BomTamy = ZZﬁzzﬁzmxuxwm) .

From (5) we have

E{ D2 BauBemri@am)
= ZZleﬂzm {ovim + (11 + ul\/a;) (me + uma’mgff)}_
But also D _Bx = 0, 2 _Bxu; = 1, so that on summation (13) becomes

E{Y" D BabBemuacmy) = a1a(1 4+ 2. DO BaBombim).

We have thus found an explicit unbiased estimator for o2, namely

D Barr D Bamamy* (1 + DD BauBembim)

but, of course, this is not strictly a linear estimator. The coefficients 85; may be
replaced by the original ones as; .

In summary, the above theory allows us to find unbiased estimators for p; ,
w2, Vo, o101t = pu\/om, and i . It should be noted that the quantities

Zzallalmvlm , Za2la2mvlm ) Zﬂuﬂmvzm s 2 BaBombim

which occur in many of the equations are tabulated by Sarhan and Greenberg
[4], [5] for some doubly censored samples of size n < 15, and this facilitates the
calculation of the variances of the estimators.

Type C samples. A bivariate type C sample will have p observed variables z; ,
and n associated variables x, . There are two distinct cases possible here, because
there are n — p x,-variables associated with missing #; values and it might or
might not be known what rank these have in the ordered sample. An example
of the latter case was given in §3, example C where ranks cannot be assigned to
the specimens which have not as yet failed. By slightly changing example A of
§3 we can illustrate the former case, for, supposing that as well as measuring
the heights and mean diameters of the 5 tallest trees we also know the ordering
(but not the exact value) of the heights of the remaining 15 trees and their as-
sociated exact diameters, then clearly the positions of the associated variables
in the ordered sample are known. The estimation of the parameters pjs\/os Or
012 will depend on which case is available.

Consider first the estimation of u; and /gy . Because all variables 2., are
known, we may re-order them into increasing order of magnitude, say

(13)

T < Top < o0 < Ton

where we have now dropped the bracket from the second subscript to indicate
strict ordering. Obviously the best estimator for u, is the arithmetic mean
'Y s, but there are two possibilities Y asts and Y Bauzs for estimating
/022 , the former being of minimum variance, whilst the latter has easily calcu-
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lated coefficients. Note that we could not estimate +/cz for either type A or B
samples.

Coming to the problem of estimating pi2+/os , if we do know the position of
all the variables xo¢;) in the ordered sample then we can proceed as before and
estimate pp\/os by D oa@ap OF X Butssy, and estimate o1z by O BemZim:
> Baany: (1 4+ 2D BamBatim) " oF With ay; instead of B . Here, the summation
over m is for the p uncensored z; values. As we can also estimate \/ay for this
type of sample, we can estimate p;; directly by

D@ Domma} " or D _Buman] D Bual

but these estimators are biased. On the other hand, if not all positions for the
z, variables can be assigned in the ordered sample, we can proceed by disregard-
ing those of doubtful rank and treat the sample as if it were of type A. Thus
E'a;zxz(z) and Z’B;zxz(z) are unbiased estimators for p2n/o22 , and

E'a;z a1 thzm Tim and Z'ﬁ;z a1 Zﬁzm Tim
1 + lea;l Oiom Vim 1 + E'ZB;; ﬁzm Vim

are unbiased estimators for g12 . Here, the dash on the summation and the co-
efficients indicates that variates of unknown rank are disregqued. Also,

E'a;zxz(z){zazzxzz}-l and Z'ﬁ;ﬂz(l){Zﬁzﬂzz}_l

will be (biased) estimates of psz .

(¢) Multivariate case. For a multivariate sample of type A or B, the theory
deduced for bivariate samples' may be applied to each pair of variates z, z;,
and most of the parameters may be estimated by linear estimators or their com-
binations. In addition, for type C samples the bivariate theory may be applied
to all variate pairs z; , z; ; when two associated variates are considered they form
a complete bivariate sample and this may be ordered with respect to each variate
in turn, thus providing estimates for all parameters of the population.

It is clear from the efficiencies given in Tables 1 and 2 that for multivariate
(as well as bivariate) populations, the alternative estimators based on the co-
efficients B;; , B2 defined in (4) are simply calculated, are generally more efficient.
than the original ones except for estimating the parameters u; and /oy , and
have a high absolute efficiency (compared with maximum likelihood estimators)
when not many sample elements are censored (see Table 3 and Sarhan and Green-
berg [4], [5]). Therefore they can be recommended as a satisfactory solution to
the problem of estimation from ‘a multivariate normal censored sample.

6. Example. We illustrate the above methods of estimation applied to a type C
censored sample drawn from a bivariate normal population with parameters
M1=/lz=0, 0'11=0'22=1, p12=0'12=0.6.

A sample of size n = 10 was drawn from the tables of ‘Correlated Random
Normal Deviates’ of Fieller, Lewis and Pearson [2], and when ordered with
respect to z; is
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l 1 2 3 4 l 5 ' 6 | 7 8 l 9 10
l

zu | —0.87*| —0.86 | —0.73 | —0.15 | 0.39 | 0.41 | 0.48 | 0.64 | 1.20* | 2.13*

Zoy | —0.16 | —1.48 | 0.60 | 0.30 | 1.40 | —0.49 | 2.40 | 0.65 | 2.03 | 1.01.

"The starred variables will be assumed missing for the purposes of the example,
and thus a doubly censored sample of type C results. We assume that we know
the ranking of the associated variables —0.16, 2.03, 1.01. The ordered values of

X2 are

10

) 1 2 3 4 5 6 7 } 8 9

—1.48 | —0.49 | —0.16 0.30 | 0.60 0.65 1.01‘1.40 2.03 | 2.40.

Z21

In Table 4 we show the original and alternative estimates for the various param-
eters, and in the case of strictly linear estimators their variances calculated ac-

«cording to (3) and (7).

TABLE 4
Parameter Estimates for a Type C, Double Censored Bivariate Sample
Original Estimates Alternative Estimates
Parameter Vari Veri
Estimator (I*To?r;?l(l)ogs.) Estimator (No;.:)l%%lfs.)
m =0 Zanzy = 0.1298 | 0.1085 @) ZBuzy; = 0.1682°| 0.1103 (7)
=0 n1 2z = 0.6260 | 0.1000 (10) n1 2z = 0.6260 | 0.1000 (10)
\/;1; =1 Dogizy = 0.9263 | 0.1014 ) 2Bz = 0.9961 | 0.1055 )
Vox =1 Do = 1.2391 | 0.0576 10) Eﬂzzzn = 1.2369 | 0.0577 (10)
012\ 7 = 0.6 Zanzzay = 0.7189 | 0.1019 (10) ZBuzzqy = 0.7461 | 0.1016 (10)
o1 = 0.6 Q1212 (1) &4 OloemTim B21%2(1) 2BomLim
1 1+ 22 asicmmtim 1 + Z2B8uBomtin
= 0.6297 s = 0.7019
Zaznta B21Z2(1)
= 0.6 ~——— = 0.5802 ~—— = 0.6032
Pz Danza 2B

As is expected, the original and alternative estimates are similar both in values
:and in variances, but the sample seems rather extreme with respect to deviations
of x, from its mean zero.
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