THE UNIQUENESS OF THE L. ASSOCIATION SCHEME!

By S. S. SHRIKHANDE

University of North Carolina

1. Summary. The L, association scheme for a class of partially balanced in-
complete block designs determines the parameters of the second kind. This
paper considers the converse problem: do these parameters imply the L. associa-
tion scheme? Necessary conditions for the existence of such designs are also
obtained.

2. Introduction. A partially balanced incomplete block design [2] with two
associate classes is said to have L, association scheme [3], if the number of treat-
ments is s°, where s is a positive integer, and the treatments can be arranged in
a(s X s) square such that any two treatments in the same row or the same
column are first associates, whereas any two treatments not in the same row and
not in the'same column are second associates. The following relations are easily
seen to hold in this case:

(1) The number of first associates of any treatment is n; = 2s — 2.

(2) With respect to any two treatments, 6; and 6; , which are first associates,
the number of treatments which are first associates of both 6; and 6, is

ph(ﬂl , 92) =35 — 2

(3) With respect to any two treatments, 65 and 6, , which are second asso-
ciates, the number of treatments which are first associates of both 6; and 6, is
pi1(8s, 6s) = 2.

We examine the converse problem, i.e., whether or not the relations (1), (2)
and (3) imply that the association scheme is of the L, type. We show that the
converse is true for s = 2, excepting possibly s = 4. Necessary conditions for the
existence of such designs are also obtained.

It is worthwhile to recall what is known about other partially balanced designs.
It is known [1], that if in a partially balanced incomplete block design with two
associate classes piz or piz = 0, then the design must necessarily be a group
divisible design. Recently Connor [5], has shown that if in a partially balanced
incomplete block design with two associate classes v = n(n — 1)/2,n 2 9,
n = 2n — 4, pii = n — 2, pi = 4, then the association scheme is triangular.
In an unpublished thesis [8], Mesner has given corresponding results for the case
of L, designs, g = 2. The proof presented here for L, is much simpler than that
given by him. It is also shown that when s = 4, there are only two types of
association schemes possible.
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782 S. S. SHRIKHANDE

3. Statement and proof of a lemma.

LemMA. Let the parameters of the second kind for a partially balanced incomplete
block design with two associate classes with s* treatments be n, = 2s — 2, plll =
s — 2 (and hence p1s = s — 1), pt = 2. Then if s = 2, 3 or s > 4, and if the
1-associates of any treatment 6 are ¢y, @2, -+, boua, Y1, ¥2, - -, Ye_1, Where
the set (@2, - -+ , bs—1) 18 the set of common l-associates of both 6 and ¢, , and the
set (Y1, -+ , Ys—1) 18 the set of 1-associates 0, which are 2-associates of ¢1 , then any
two treatments from the set (¢1, --- , ¢o_1) are l-associates. Similarly, any two
treatments from the set (Y1, - - - , Ys—1) are 1-associates, while any treatment ¢; s a
2-assoctate of any treatment ¥, 1,5 = 1,2, --- ,8 — 1.

Proor. We will use the notation (6, ¢) = 7 to denote that 6 and ¢ are :-asso-
ciates, 7 = 1, 2. We note that the Lemma is trivially true for s = 2. We now con-
sider the case s = 3. Without loss of generality assume that the 1-associates of
treatment 1 are 2, 3, 4 and 5, of which 3 is the 1-associate of 2, and 4 and 5 are
2-associates of 2. Then (1, 3) = 1, and 2 is the only possible common 1-associate
of both, and hence 4 and 5 are both 2-associates of 3. It only remains to prove
that (4, 5) = 1. Suppose, on the contrary, that (4, 5) = 2. Then among the
1-associates of 1, the treatment 4 has three 2-associates 2, 3, 5 contradicting the
value pi2 (1, 4) = 2. Hence we must have (4, 5) = 1.

Now consider the case s > 4. For convenience replace 6, ¢1, ¢z, -+ , ¢oi,
VY1, ¥2, -+, ¥, Of the lemma by 1,2,3,--- 8, s+ 1,s+ 2, ---, (2s — 1),
respectively.

We then have the treatments 2,3, ---,s,s+ 1, ---, (28 — 1) for 1-asso-
ciates of 1, of which the set 71 = (3,4, - -, s) is the set of common 1-associates
of both 1 and 2, whereastheset T, = (s + 1,s + 2, --- , (2s — 1)) is the set of
l-associates of 1 and 2 associates of 2. Let a be any treatment of T, . Then (2, &)
= 2. Since p1(2, @) = 2, and 1 is one of the common 1-associates of both 2 and
a, therefore, a has at most one 1-associate in 7T} . Since pii(1, @) = s — 2, @
has at least (s — 3) l-associates in T, . But 7% contains besides « only s-2 treat-
ments. Hence o has at most one 2-associate in T, . Hence, we have the following
two possibilities. Either (i) with respect to any treatment of T, every other
treatment of T is 1-associate, in which case any two treatments of T, form a
1-associate pair, or, (ii) there exists a treatment « of T, such that there is a
treatment B of T where («, ) = 2 and every other treatment of T, besides
« and B is 1-associate of a. Put T3 = Ty — (e, B). Consider the treatment 8.
Since it can have at most one 2-associate in T, and this is a, the set T is a set
of 1-associates of 8. Thus the set T7 is the set of common 1-associates of both a
and B where (a, 8) = 2. Treatment 1 is also a 1-associate of both « and 8. The
set T3 and the treatment 1 give a set of (s — 2) treatments which are 1-associates
of both « and 8. But s — 2 > 2. This contradicts the fact that pfi(a, 8) = 2.
Thus this case is impossible. Hence we are left with case (i) only.

From (i), for every a of T, the s — 2 treatments of T, excepting « are the
pii = s — 2 treatments which are 1-associates of both 1 and «. Hence the treat-
ment 2 and all the treatments of T'; are the (s — 1) treatments which are 2-agso-
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ciates of a. Let v be any treatment of 7. Then (1, y) = 1 and the (s — 1)
treatments of T’ are 2-associates of y. Thus the treatments of 7T, are all 1-asso-
ciates of yv. Hence any two treatments from the set 2 and T, are 1-associates.
This completes the proof of the lemma.

4. Statement and proof of the main theorem.
THaEOREM 1. If the parameters of the second kind for a partially balanced tncom-
plete block design with s* treatments with two associate classes are given by

’n1=28—2, ph:s—z, P§1=2,

then the design has L association scheme if s = 2, 3 or s > 4.
Proor. The case s = 2 is trivial. We consider the casess = 3 ors > 4. From
the above lemma, we can write down the l-associates of 8 in the following

scheme.
0 12 G
%
Ve

¢3—-l

where any two treatments in the first row or in the first column are 1-associates,
and any treatment ¢ is a 2-associate of any treatment ¢. Let & be any 2-associate
of 8. We have pi, (6, 8) = 2. Hence é cannot have more than two 1-associates in
the set (¢1, P2, - - - , ds—1). Similarly, it cannot have more than two 1-associates
from the set (Y1, -+, ¥,—1) and the number of 1-associates of & from the set of
¢; and ¢; is exactly 2. Suppose 6 has two 1-associates ¢; and ¢; ; then ¢; and ¢;
have the s — 2 remaining treatments of the first row and § as common 1-asso-
ciates. But this makes the number p1i(¢:, ¢;) = s — 1 > s — 2 which is the
value of pi; . We thus get a contradiction. Similarly, if 8 has no 1-associate from
the set (¢1, - - - , ¢s—1), then both these 1-associates of § must come from the set
Y1, -+, Vo1, which will again give a contradiction. Thus & has exactly one
1-associate from the set of ¢.’s and exactly one 1-associate from the set of ¢,’s.
Hence any 8, where (6, §) = 2, determines uniquely a pair (¢;, ¢¥;) such that
(¢:,8) = 1, (¥;, 8) = 1. Conversely we show that any pair (¢;, ¢;) uniquely
determine a 8 such that (0, §) = 2 and (¢;,8) = (¥, 8) = 1. For suppose there
are two such §’s, say 8, and &, . Then we have the following relations.

(¢i,¥;) = 2
(‘bi’o) = (‘P:yo) =1
(,8) = (¥i, &) = (¢:,8) = (¥;,8) = L

This gives the value pii(¢:, ¥;) = 3 which is a contradiction. Thus the corre-
spondence between 6 and the pair (¢:, ¢¥;) is 1 to 1. We can, therefore, put &
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in the position determined by the column of ¢; and row of ¢; . Thus the (s — 1)*
positions can be uniquely filled by utilizing the (s — 1)? 2-associates of 9. We
thus get the following scheme.

6 ¢ b2 RN ]
'l’l 61 52 e 6._1
1’2 6: 6c+1. e 62(:—1)

.

We10:2_30430s2—8044 * * * O(a—1)2

Then all the 1-associates of ¢; are exactly the treatments in the row and column
corresponding to it. A similar result is true for any ;. Now consider y; . Its
1-associates are contained in the second row and first column. Among these
1-associates the elements ¢, - - - ¢, are the common 1-associates of ¥, and 6.
whereas 8, , 82, - - - , 8,1 are the 1-associates of ¥, and 2-associates of 6. Hence
the application of the lemma gives the result that any two treatments in the
second row are 1-associates. Similarly, we get the result that any two treatments
in the second column are 1-associates. A similar result is obviously true for any
other row or any other column. Thus for any treatment whatsoever, all its
1-associates are obtained by taking the treatments in the row and column cor-
responding to that treatment. Hence any two treatments which are neither in
the same row nor in the same column are 2-associates. This completes the proof
of the theorem.

6. Some known results on rational equivalence of matrices and Hilbert norm-
residue symbol. Let A and B be two symmetric matrices of order n with elements
in the rational field. The matrices A and B are rationally equivalent, written
A « B, if there exists a nonsingular C with elements in the same field, such
that A = C’BC. The congruence of matrices satisfies the usual requirements of
an “‘equals” relationship.

If A is an integral symmetric matrix of order and rank 7, we can always con-
struct an integral diagonal matrix D = (dy, -+ ,ds),d: # 0,2 =1,2, --- , m,
such that D « A. The number of negative terms 7, called the index of 4, is an
invariant of 4 by Sylvester’s Law.

Define d = (—1)%, where & is the square-free positive part of |4|. Then since
|B| = |C[® |A], d is another invariant of A.

Now let A be a nonsingular and symmetric integral matrix of order n. Let
D, be the leading principal minor determinant of order r and suppose that
D,#0,r=1,2 -+, n. Define

n—1

(5.1) e(4) = (-1, —Dn)jI_Il (D;, —Dj)

for every odd prime p where (m, m’), is the Hilbert norm residue symbol. Then
we have the following results [4], [1].
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TrEOREM (A). If m and m’ are integers not divisible by the odd prime p, then

(5.2) (m,m'), = +1
(5.3) (m, ), = (p, m), = (m/p)
where (m/p) ts the Legendre symbol. Moreover if m = m' = 0 mod p, then
(5.4) (m, p)p = (m', p)».
TrEOREM (B). For arbitrary non-zero integers m, m’, n, n' and every prime p,
(5.5) (=m,m), = +1
(5.6) (m, n)p = (n, m),
(5.7) (mm', n), = (m, n)p(m', n),
(5.8) (mm',m — m'), = (m, ~m’),.

From the above it is easy to verify that for p an odd prime and every positive
integer m

(5.9) (mym+ 1), = (=1,m+ 1),
(5.10) I Gj + 1 = (On+ D)L —1),.

The fundamental Minkowski-Hasse Theorem states:

TaeorEM (C). Let A and B be two integral symmetric matrices of order and
rank n. Suppose that the leading principal minor determinants of A and B are all
different from zero. Then A ~ B, if and only if A and B have the same invariants
1, d, and ¢, for every prime p including .

In the rest of this paper, “p” stands for an odd prime and will generally be
omitted in writing the Hilbert norm-residue symbol.

6. Necessary conditions for the existence of symmetrical P.B.I.B. designs
witho = 8%, m = 2s — 2, piy = s — 2, pi1 = 2, when s = 3 and s = 4. Con-
sider the symmetrical design with parameters

v=0b=4¢, r=1FkM,N, m = 28 — 2, ny = (s — 1)°

(61)ph=s—2 pha=s—1, ph=(s—1)(s — 2)

ph =2, pie =28 — 4, ph=(s—2), §2 3,854,
Then we have 7(r — 1) = 2(s — 1)\ + (s — 1)z 0r
(6.2) P=Ir+ (s— DM+ (s — DN+ (s — )N

Let N = (ny;) be the incidence matrix of the design where

ni; = 1 if treatment ¢ occurs in block j

= 0 otherwise.
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Then by renumbering the treatments, if necessary, and using Theorem 1,
we have

A B B
(63) e
B B oo A

where A4 is an s X s symmetric matrix with r in the main diagonal and \; else-
where and B is another s X s symmetric matrix with A; in the main diagonal
and \; elsewhere. By a succession of elementary transformations on rows of
NN’ considered as a partitioned matrix and the same elementary transforma-
tion on columns of NN’ and using only the rational numbers it is easy to verify
that

1-2(A — B) 0 . 0 0
0 2-3(A—B)-- 0 0
(64) NN'~T=| | S I .
0 0 --(s—1)s(A - B) 0
0 0 .. 0 s(A+(s—1)B)
Put
(6.5) P=(@r—-—N+GE—-1DM=-NN)
(6.6) Q=r—24+N
(6.7) A=N—M,N=N+ (s — 1.
Then it is easy to verify that
(6.8) , [A — Bl = QP
(6.9) |4 4 (s — 1)B| = p" ™.
Hence
(6.10) IT| = FP(s))*Q P,

Since NN’ is semipositive definite, so is 7. Hence we have P = 0 and @ = 0.
Further [NN’| = |N|” is a perfect square. Hence |T| is a perfect square. Thus,
if P > 0 and Q > 0, which means that N is nonsingular, a necessary condition
for existence of the design when s is even is that @ must be a perfect square.
In what follows we assume that P > 0 and @ > 0. This result can also be ob-
tained by using the results of Connor and Clatworthy [6].

Let '

1-2(A — B) 0 .. 0 )
0 2-3(4 - B) - 0
(611) Ty = . . .. .

6 0 (s—l)skA—B)
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and
(6.12) T: = s(A + (s — 1)B).
Then
(6.13) T = <T‘ O).
0 T,

Further, if R is the (s — 1) X (s — 1) diagonal matrix
(6.14) R = diag {1-2,2-3, ---, (s — 1)s}.
Then
.(6.15) T,=Rz (4 — B)

when z denotes the Kronecker product of the matrices. It is easily verified, using
the results of section 5, that

(6.16) IR| = ((s — 1)!)’s  and
(6.17) ¢(R) = 1.

We now evaluate the values of ¢(4 — B) and ¢(4 + (s — 1)B).
Following [1, p. 379] we get

¢(4 — B) = (@, —1)"“""*(PQ,\)(P, Q)".
Now, since P > 0,Q > 0and P — Q = s\ £ 0 we get from (5.8)
(PQ,\) = (PQ, P — Q)(PQ, s)
= (P, —1)(P, Q)(P, 8)(Q, s)

o(4 — B) = (@ —1)"“ (P, @) (P, —1)(P, 5)(Q )
(618) = (Ps —1)(Q, _1)‘(“1)/2(_[,7 Q)e_l(_ly Q)S_I(P’ 8)(Q7 8)
= (P7 _1)(Q7 —1)(‘_1)“—2)/2(_P7 Q),—I(Py 8)(Q, 8)-

Again following [1, p. 379) we get ¢(4 + (s — 1)B) = (P, —1)*“A(P,\)(**,N).
Since ¥ — P = s\ # 0,

(4 + (s — 1)B) = (P, =1)*“"2(*P,\)
= (P, —1)'“ 2P, ¥* — P)(+’P, s)
(6.19) = (P, —=1)*“ 2P, ¥ — P)(+’P, s)
= (P, =1)*“ P22 —P)(#, s)(P, s)
— (P, _l)a(s—l)lz(P, s).
Since 1 = R x (A — B) from [9] we have
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C(Ty) = [e(B)]'le(4 — B)"'(|4 — B, —1)“P“P(|R|, —1)*“—"
(IR|, |4 — B|)**™,
Substituting the values obtained above we get after some simplification
(6.20)  ¢(Ti) = (P, —=1)"“P(—P, Q)" (P, 5)*(s, —1)"“ V",
Similarly from [7] we have
¢(T2) = ¢(4 + (s — 1)B)(s, =1)"“™"(s, |4 + (s — 1)B|)""
= (P, _l)a(x—l)/2(P’ 8)*(s, _l)c(a+1)/z

after some simplifications. Also we have

(6.21)

(6.22) IT1| — (8 _ 1)!2tstPa—1Q(a—l)’
(6.23) |Ts| = r’s"P*".
Since

T, 0)
T =
0 T,
is-the direct sum of T, and T, we have [1] ¢(T) = ¢(Ty)e(T2)(|Til, |T:|).
Substituting the values already found out it is easy to verify that

(6.24) e(T) = (PQ, —1)" .
Since / ~ NN’ ~ T and ¢(I) = +1 for all odd prime p, we must have
(PQ, —1);7' = 1 for all odd prime p.

If s is odd the above relation is always true. For s even we have the relation
(PQ, —1) = 1or (P, —1)(Q, —1) = 1. But when s is even, a necessary con-
dition for existence is that Q be a perfect square. Hence we get the further neces-
sary condition for existence, i.e., (P, —1), = +1 for all odd prime p. We can
thus state the following theorem.

THEOREM 2. A necessary condition for existence of the symmetric partially
balanced incomplete block design satisfying (6.1).

(i) P20,Q 20, and

(ii) of s is even and P = 0, Q = 0, then Q must be a perfect square,
and (P, —1), = 1 for all odd prime p.

M. N. Vartak ([10]) considers a similar problem for a 3-associate class of
partially balanced designs.

7. Association scheme for the case s = 4. Consider the partially balanced
incomplete design with the following parameters

v =16, m =6, ne =9
(7.1) Pi=2  pu=3 pu=6
pfl =2, pfz =4, piz 4
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Let (a1, a2) = 1 and a3, a4 be the common 1-associates of both o; and a; .
Then we have either

case (i) (az,oq) =1, or
case (il) (aa, a4) = 2.

Consider case (i). Let a5, as, a; be the remaining 1-associates of oy ; then
these are obviously 2-associates of a, giving the following scheme:

ay a2 a3 27
(243

ag

ar .

Now any two treatments of the first row are 1-associates and hence o5, a5, a7
will be 2-associates of a; and a4 . Since oz, a3, as are 2-associates of a5 ; a5, oy
must be 1-associates of as. Similarly a5, a; are l-associates of as. Hence any
two treatments in the first column are l-associates. It now follows, as in the
proof of Theorem 1, that the association scheme is of L, type. Hence if 8; and
B are any two treatments which are 1-associates, and B;, 8: are common 1-as-
sociates of them both, then (83, 8:) = 1, i.e., if case (i) holds for any one pair
of 1-associates, it must hold for all such pairs.

We now consider case (ii). Replace treatments oy, a2, ++* , a7 by 1,2, -+, 7
for sake of convenience, giving the scheme

1 2 3 4
5
6
7

Considering the pair (1, 3) and the value pi;(1, 3) = 2, we see that 3 has just
one l-associate from the set (5, 6, 7). Without loss of generality assume that
(3, 6) = 1 and hence (3, 5) = (3, 7) = 2. Consider the pair (3, 4). Here 1
and 2 are l-associates of both 3 and 4, accounting for the value p3(3, 4) = 2.
Hence since (3,6) = 1, (4,6) = 2. Now (6,2) = (6,4) = 2,and (6,3) = 1.
Hence from the values pii(1, 6) and pia(1, 6) we see that 6 has just one 1-asso-
ciate and one 2-associate from the set (5, 7). Let (6, 5) = 1 and (6, 7) = 2.
Now 2, 3 and 6 are 2-associates of 7; hence considering (1, 7) = 1 and the
values pia(1, 7) and pii(1, 7), we see that 4 and 5 are 1-associates of 7. Now
1-associates of 5 are 6 and 7 accounting for the value pi(1, 5). Hence 4 must
be a 2-associate of 5. We can summarize the above information in the following
table, where the entry in row « and column g gives the value of (e, 8), where



790 8. 8. SHRIKHANDE

a # B, and * aleng the main diagonal indicates that no treatment is either
1-associate or 2-associate of itself.

(7.2)

N B % DN e e
Pt e % DD DO DD | Cn

L VR VR e
* DD b= b= DD DN M| Ay

TR W N -

el e R A
[ S VI R )
DD = BO DD # = oD

Thus with respect to treatment 2, 1-associates of 1 ean be exhibited in the fol-
lowing scheme $; :

S12 6

7

where treatments in the same row or column are l-associates unless they are
both ‘“‘under”’-lined in which case they are 2-associates. Treatments not in the
same row or column are 2-agsociates, unless they are both first or both second
members of “under’’-lined pairs, in which case they are 1-associates.

We will adopt the convention of writing down the 1-associates of any treat-
ment B, (here 1) with respeet to any l-associate treatment G» (here 2) in the
scheme of the above type, which will bring out the association relationship
amongst all the treatments involved in the scheme.

Now amengst the treatments 1, 2, ---, 7, only the treatments 1, 3, 4 are
1-associates of 2. Let the remaining 1-associates of 2 be 8, 9, 10. Then writing
the row

2 1 3 4

we gee that only one of the treatments 8, 9, 10 is a 1-associate of 3. Without loss
of generality let (3,9) = 1. Then 9 has just one 1-associate from the set (8, 10).
Let (9, 8) = 1, and hence (9, 10) = 2. Hence, referring to S; for comparison
we can write down the scheme S; :

2 1 3 4

8
9
10

Sz:

We can now indicate the relations implied by S; and S, in the following table:
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1 2 3 4 5 6 7 8 9 10
1 * 1 1 1 1 1 1 2 2 2
2 1 * 1 1 2 2 2 1 1- 1
3 |1 1 * 2 2 1 2 2 1 2
4 1 1 2 * 2 2 1 2 2 1
(7.3) 5 1 2 2 2 * 1 1
6 1 2 1 2 1 * 2
7 1 2 2 1 1 2 *
8 2 1 2 2 1 1
9 2 1 1 2 * 2
10 2 1 2 1 1 2 *

We now consider the association relationship of any treatment from the set
(5, 6, 7) with any treatment from the set (8, 9, 10).

Consider (2, 6) = 2. Treatments 1, 3 are common 1-associates of both 2 and
6, and pii(2, 6) = 2. Hence the remaining 1-associates of 2, i.e., 4, 8, 9, 10 are
2-associates of 6. Thus if we combine S; and S, into a new scheme S; :

1 2 3 4

5 8
8s : 6 9
7 10

we see that all the treatments of the second column are 2-associates of 6. Simi-
larly (2,7) = 2, and 1 and 4 are common 1-associates of both. Hence 3, 8, 9, 10
are 2-associates of 7. Hence again all the elements in the second column are 2-as-
sociates of 7. Again (1,9) = 2; and 2, 3 are common 1-associates of both. There-
fore, the remaining 1-associates of 1 are 2-associates of 9. Hence all the treat-
ments in the first column are 2-associates of 9. Similarly they are 2-associates
of 10. Now (1, 8) = 2, and 3, 4, 6, 7 are 2-associates of 8, giving pra(1, 8) = 4,
Hence the remaining treatment, i.e., 5 must be a 1-associate of 8.
These relations are summarized below.

(74) (6,8) = (6,9) = (6,10) = 2
(7,8) = (7,9) = (7,10) = 2.

A complete concise explanation of S; can, therefore, be given as follows:
“Treatments in the same row or column are l-associates unless they are both
‘under’-lined, in which case they are 2-associates. Treatments not in the same
row or column are 2-associates unless they are both first or both second members
of ‘under’-lined pairs, in which case they are 1-associates.”” We utilise this method
of combining two schemes to get new relations.

Now among the treatments 1, 2, - - - , 10, the treatments 1, 2, 6,9 are 1-associ-
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ates whereas 4, 5, 7, 8, 10 are 2-associates of 3. Let the remaining 1-associates of
3 be 11 and 12. The common 1-associates of 1 and 3 are 2 and 6, where (2, 6) =2.
Hence we write down the row

3 1 2 6.

Of the remaining treatments 9, 11, 12, we know that (2, 9) = 1. Hence 9 is
placed in the third position in the column for 3. Again let (9, 11) = 1 and
(9, 12) = 2. Then we have the scheme
3 1 2 6
11
9
12,

Similarly completing the scheme for 1 3 2 6 and utilizing the relations al-
ready obtained we have

184: ’

1 3 2 6

7
Ss 4
5

S; and S; can be combined into
3 1 2 6

11 7

Ss : 9 4

12 5.

From S, S;, Ss we get the following relations.
(1,11) = (1,12) =2
2,11) = (2,12) =2
(3,11) = (3,12) =1
(4,11) = (4,12) =2
(7.5) (5,11) = (5,12) =2
(6,12) = 1, (6,11) = 2
(7,11) =1,(7,12) = 2
(9,11) =1, (9, 12) = 2
(11, 12) = 1.

Now common 1-associates of 2 and 3 are 1, 9 where (1,9) = 2. Hence utilizing
the previous relations we have the scheme

3 2 1 9

12
S7 H 6
11.
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Similarly we have Ss and then S, by combining S; and Ss .

2 3 1 9

Ss . ]]O

3 2 1 9

12 10
6

Sg .
111 Is.

Sz, Ss, Sy give rise to the following relations.

(8, 11) = (8, 12) =2
7.6
(7.6) (10, 12) = 1, (10, 11) = 2.
Now among the treatments 1, 2, - - - , 12, the 1-associates of 4 are 1, 2, 7, 10.

Let the remaining two 1-associates of 4 be 13 and 14. The common 1-associates
of 4 and 1 are 2, 7, where (2, 7) = 2. Writing the row

4 1 2 7

we see that of the remaining 1-associates of 4 i.e., 13, 10, 14, the treatment 10 is
1-associate of 2. Without loss of generality assume that (10, 13) = 1 and (10,
14) = 2. Then we have the scheme

4 1 2 7

13
Sw:
14.
We have similarly
1 4 2 7

Su . ’

[SICCN-

and by combining Sy and Sy
4 1 2 7

13

10

14

Slz: .

From Sy, Su , Siz we get the relations
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(1,13) = (1,14) =2
(2,13) = (2,14) =2
(3,13) = (3,14) =2
(4,13) = (4,14) =1
1.7) (5,13) = (5,14) =2

(6,13) =1, (6,14) = 2
(7,14) =1, (7,13) = 2
(10, 13) = 1, (10, 14) = 2
(13, 14) = 1.

Again we can verify that the only possible schemes for rows
4 2 1 10 and 2 4 1 10

are
4 2 1 10

and

Combining these into the scheme
4 2 1 10

14 9
Sua : 7 3
13 I8

we have the relations
(8,13) = (8,14) =2

(7.8)
(9,14) =1,(9,13) =2
Now the 1-associates of 5 amongst the treatment 1,2, --- , 14 are 1, 6, 7, 8.
Hence 15 and 16 are the remaining two I-associates of 5. The common 1-associ-
ates of 5 and 1 are 6, 7 where (6, 7) = 2. Now 8 is known to be 2-associate of
6 and 7. Hence 8 occupies the second position in the column for 5. Let 15 be
1-associate of 6; hence 16, 2-associate of 6. Then we have
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We also have

and hence combining these two we get
5 1 6 7

8 2
S : 15 3
16 |4

and we get the following relations.
(1, 15) = (1, 16)
(2, 15) = (2, 16)
(3,15) ='(3, 16)
(4, 15) = (4, 16)

(7.9) (5, 15) = (5, 16)
(6, 15) = 1, (6, 16)
(7,16) = 1, (7, 15)
(8, 15) = (8, 16)
(15, 16) = 2.

Consistent with the previous relations, it is easy to verify that we have the
only possible schemes

[ |
o VI IR R CREY O O

Il

5 6 1 15

8 13

giving the relations
(12,13) = (12,16) = 1,(12,15) =2

(7.10)
(13,15) =1, (13,16) = 2
and
4 7 1 14
10 16

2 5
13 11
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giving the relations

(10, 16) = 1
(7.11) (11, 14) = (11, 16) = 1, (11, 13) = 2
(14, 16) = 2.

Now counting the 1-associates and 2-associates of 12 in the previous relations

we get
(7.12) (12, 14) = 2.
Similarly counting the 1-associates and 2-associates of 9 in the previous relations
we see that the l-associates of 9 are 2, 3, 8, 11, 14 and either 15 or 16. Now
(7,9) = 2 and 1-associates of 7 are 1, 4, 5, 11, 14 and 16. Hence from the value
p11(7,9) = 2 it is easv to see that

(9.15) =1

(9, 16) = 2.

Again counting the 1-associates and 2-associates of 10 in the previous relations
we see that

(7.14) (10, 15) = 2.
Similarly we can verify that

(7.13)

(11, 15) = 2
(7.15)
(14, 15) = 1.
The relations (7.2) to (7.15) give the following table of 1-associates.

Treatment 1-associates
1 2,3,4,5, 6,7
2 1,3,4,8,9 10
3 1,269, 11, 12
4 1,27, 10, 13, 14
5 1,6,7,8, 15, 16
6 1,3, 5,12, 13, 15
7 1, 4, 5,11, 14, 16
8 2, 5,9, 10, 15, 16
9 2,3,8, 11, 14, 15
10 2,4,8, 12, 13, 16
11 3,7,9,12, 14, 16
12 3, 6, 10, 11, 13, 16
13 4, 6, 10, 12, 14, 15
14 4,7,9,13,11, 15
15 5,6,8, 9,13, 14
16 5,7,8,10, 11, 12
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It is obvious that the association scheme for this case is unique and that the two
common 1l-associates of any two treatments, which are 1-associates, must be
2-associate, for otherwise the association scheme is of L. type from case (i).
Mesner [8] has shown that for s = 4, if we interchange the first and second
associates in L; we get a design with parameters (7.1). The association scheme
for case (ii) must therefore be of the same type as obtained from Mesner’s
result.

We now give an example due to Mesner [8], to show that there actually exists
a design for s = 4, which has the association scheme of case (ii) described above.
Consider the following Latin Square

A B ¢ D
B ¢ D A
c D A B
D 4 B (C

which has the property that there exists no Latin Square of side 4 which is
orthogonal to it. Superimposing the above Latin Square on the square array

1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16

and forming blocks corresponding to the rows, columns, and letters of the
Latin square we get the following twelve blocks for 16 treatments: (1, 2, 3, 4),
(51 61 71 8)) (91 IOy 11, 12), (13, 14, 15: lﬁ)y (11 5y 9, l3)y (21 61 IOy 14), (3y 7y
11, 15), (4, 8, 12, 16), (1, 8, 11, 14), (2, 5, 12, 15), (3, 6, 9, 16), (4, 7, 10, 13).
Any two treatments either do not occur together in any block (in which case
they are 1-associates), or they occur together exactly in one block (in which
case they are 2-associates). It is easily verified that the design is a partially
balanced design with two associate classes withv = 16, b = 12, r = 3, k = 4,
mo=6n=9N=0»N=1p1=2ps =23 pn =2 Itis easy to see that
(1, 6) = 1, and their common 1-associates are 12 and 15 where (12, 15) = 2.
Hence the association scheme of this design is not of L. type. It must, therefore,
correspond to the association scheme of case (ii).
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