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Let X,, X1, X,, --- be a stationary sequence of random variables. Let B
be any linear Borel set for which P(X, ¢ B) > 0. We are concerned with the
successive recurrence times », v, - - - of B; their time averages and their ex-
pectations. Without loss of generality, we shall assume the basic probability
space Q@ to be the collection of all sequences w = {--+, 21, %, 21, ---} and
X. to be the coordinate variables, i.e., X,(w) = z,. Let T be the shift trans-
formation. The nth coordinate of Tw is the (n + 1)th coordinate of w. Then T
is 1-1 and preserves the probability measure P. For any

w = {”’x—l,xo,ilh, }’
if there are infinitely many positive integers n with =, ¢ B, let
Vl,V1+ Vz,"',V1+V2+ EEI I R

be the successive positive integers for which z,,4...s, € B. If there are finitely
many, say K, positive integers n with z, ¢ B, define » , ---, vx as before but
define vx41 = vx42 = ++- = . In this paper, Theorem 1 is concerned with the
time average of the successive recurrence times, the »’s. In Theorem 2 the succes-
sive recurrence times are proved to be stationary given X, € B. Theorem 3 may
be considered as a generalization of a theorem of M. Kac in which he proved the
formula (7) for the first recurrence time » ([2], pp. 1006).
TueoreM 1: For almost all w

1) lim n(w) + -+ + nl(w)

k>0 k

exists. The limit may be finite or infinite. It is finite for almost all w & E where
E = [X, € B). In particular, if T is ergodic, the imit is equal to 1/P(E) with
probability one.

Proor: Let Iz be the indicator function of E, ie., Igx(w) = 1if w ¢ E and
Iz(w) = 0if w £ E. By the ergodic theorem, for almost all

(@) lim [2(Te) + -0 & Le(T70) _ g

k>0 n

where f(w) > 0 for almost all w £ E. If T is ergodic f(w) = P(E).

In fact, [[z(Tw) + -+ + I&( T"w)Jn " is the relative frequency of occurrence
of B. If the limit of the relative frequency, as n — o, is positive, B must occur
infinitely often; therefore, »(w), v2(w), - -+ are all finite. Thus all successive
recurrence times are finite for almost all w £ E. In particular, if T is ergodic, they
are all finite for almost all w £ Q.
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Let @' be the collection of all w for which »(w), v2(w), - -- are all finite. Let
w ¢ . For any positive integer k, let ny, = »i(w) + - -+ + »(w). Then

nw) + -+ +w(e) _ T
k I(Tw) + - + Ie(T™w)

Therefore, for almost all w £ @', there exists the limit

1mvl(w)+ oot oml(w) 1

3 i =
® i ; 7@

The limit is finite or infinite according as f(w) > 0 or f(w) = 0. If w £ Q' then
there is a positive integer K for which vx1(w) = vxi2(w) = -+ = . Therefore
lim 2@) + - o)

k—»o0 k ’

It is clear that Iz(Tw) + -+ + Ix(T"w) < K for all n and that
1im IE(T(.O) + ct + IE(me) — 0‘

n->00 n
Therefore (3) again holds true. Hence (3) holds true Wiéh probability one. If T'
is ergodic, 1/f(w) = 1/p(E).
Let Px, E = [X, ¢ B], be the conditional probability measure given X, ¢ B,
i.e., for any measurable set F,
(4) Pg(F) = P(ENF)/P(E).
Then », vy, --- are finite valued with probability one under the probability

measure Pg .
TueoreM 2. The random variables vi , v2 , -+ - are stattonary under the conditional

probability measure Pg , t.e.,

(5) PE(Vl = 7:1, Ve = ’ik) = PE(Vm+1 = ’51, Vet = lk)

for any positive integers, m, k, and any k-tuple of positive integers, (41, - - - ).
Proor: We shall proceed by induction on the integer m. Let F;,, -+ % =

[v1 = %1, -+ v = 1], and let B/ = @ — E. Then

Pglve = 11, +++ vi1 = %)
o0
= ZPE[V1=7L,V2=’51,"‘ l'lc+1=’£lc]
n=1

0

= Y PAT'E'N-- - NT " PENT"ENT "Fi,...)

n=1
= —(IE—) S PENTE N N T"F N T"ENTF,...)
n=1
= (1 iz S PTEN T E N - AT NEOF, .
1

1
= — P [(G T"E) n E U Fil."'ik]
E n=1
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The Poincaré recurrence theorem ([1}, pp. 10) asserts that
P [( U T"E) n E] = P(E).

n=1
Hence

Pels = 41, -+, veps = @) = P—(IE—)P[E O Fs.i] = PalFsy, -+ @l

=PE[y1=i1’...yk=ik],

Hence (5) is true for m = 1 and any k and any k-tuple (71, - - - ). Now assume
that (5) holds true for allm = M.

0
PE[yuiz2 = B,y o Vuppk = ] = ZIPE[VM+1 =N, vypa =01, ", VM = )
N=

Il

0
ZPE[VI =N, v =T, ", Ntk = @] = Pglve = T, 0y Vb = )
n=1

= PE[VI = 1:1, MR O 'I:k].
Hence (5) is true for all m.

TureorREM 3: Let f(w) be defined by (2), i.e., f(w) is the limit, as n — «, of the
relative frequency of occurrence of B. Then, for any k,

(6) f n(@)Pa(do) = [ f_(};) Ps(dw).

The conditional expectation of the kth recurrence time given X € B is finite if and
only if 1/f(w) is integrable with respect to Py . In particular, if the shift trans-
formation T is ergodic, then

(7 fwc(w) Pz(dw) = 1—3—(1E—)

Proor. By Theorem 1, the set of all w such that
i @) + - +wle) 1

k—~»o0 k h f_(:)'
has Pz measure 1. Since the process » , vz, - - - is stationary under Pz by Theorem
2, the conditional expectations [ »(w)Pg (dw) are the same for all k. If
| w(w)Px (dw) < o, since {d is stationary, (6) follows easily from the ergodic
theorem. If [ vi(w)Pg (dw) = =, let

C o,y _ (@),  wm(e) =N,
v (0) = {N, otherwise.

Then the process v} , » , -+ - is again stationary under Pg, and therefore the
set of w for which limgaw (3 (w) + -++ + i (w)/k exists has Pz measure 1.
Let gn(w) be the limit. We have
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[ @)Ptdw) = [ gu(e)Pa(dw).
But gv(w) £ 1/f(w), hence
N 1
[ #@Paaw) = [ iy ot
Since

lim [ (0)Ps(de) = [ n(w)P(do) = ,

N->w

hence

fﬁpz(dw) = %,

and again (7) is true.
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