LARGE EXCURSIONS OF GAUSSIAN PROCESSES

By Mark Kac anp Davip SLEPIAN
Cornell University and Bell Telephone Laboratories, Inc.

1. Introduction. It is known that the problem of determining the distribution
of spacings between consecutive a-values of an ergodic Gaussian process, z(t),
(Ez(t) = 0, E<*(t) = 1) is very difficult. Recently Palmer [1] and Rice [2]
treated some limiting cases of this problem. In one limit they determine, for
a — o, the conditional probability

(1.1) Pr{z(r) > a, 0= r < t8(a) |2(0) = a, 2'(0) > 0}

where 6(a) is the average length of the times spent by x(¢) above the level a.
Apart from some differences concerning the meaning of the conditional proba-
bility (1.1) both authors use the following heuristic device.

Since for large a, 6(a) is small, they write

(12) e(r) =a+2(0)r+ 2 éo) 7

and take for the time of the first downward crossing of the a-level
_ _o%(0)

(1.3) = —2 270)°

It would thus seem that this procedure is limited to processes for which z”
exists. This would exclude, for example, the displacement of a harmonic oscillator
in Brownian motion. It is precisely this point that led us to undertake the present
investigation.

We have found an alternative derivation of the Palmer-Rice results which
does not depend on the approximation (1.2) and hence is applicable to all cases
of physical interest. We have also attempted to elucidate the ambiguity of (1.1)
(see §2) and we have in §3 shown in what sense the ‘sample functions 2(r) are
approximated by parabolas as suggested in (1.2).

2. Conditional probability densities. It is well known that conditional prob-
abilities and conditional probability densities must frequently be treated with
some care. Since the material to follow contains some excellent examples of the
subtle nature of these quantities, a few words on the subject are in order here.

Let 2(¢) be a continuous ergodic Gaussian process possessing a derivative
almost everywhere. Consider the “conditional probability density for the slope
¢ = 2/(0) given that 2(0) = a.” From the ensemble point of view, the phrase
in quotation marks has no meaning, since the set of sample functions satisfying
the condition £(0) = a is of probability zero. Yet, given a sample function of
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1216 MARK KAC AND DAVID SLEPIAN

the process, one can imagine observing the slope of z(¢) at each value of ¢ for
which 2(¢) = a and one can thus obtain an “empirical or time derived proba-
bility density for &'(t) given that z(¢) = a.” This probability density will be the
same for almost all sample functions. How do we reconcile these two points of
view?

From the ensemble point of view, one can, of course, give meaning to the
““probability density for ¢ = 2/(0) given that (0) = a’’ by means of limiting
procedures. The condition (0) = a is replaced by some condition, A, of positive
probability depending on parameters. The condition is chosen so that as the
parameters assume limiting values, 4 becomes the condition x(0) = a. The
conditional density of ¢ given 4, p(¢|A), is computed; the limit of this
quantity as the parameters assume their limiting values can then be taken as a
definition of p(£ | 2(0) = a), the “density for £ given that 2(0) = a.”

Unfortunately this limit depends in general on the manner in which 4 ap-
proaches the condition z(0) = a. We illustrate with a few examples.

(i) Let A be a < z(0) < a + 4. Then

a+o .
limfa plgo)de

60 a+3 = Y
f p(’c) dz \/ 21a

where the subscript v.w. stands for “vertical window,” p(£, x) is the joint density
for ¢ = 2/(0) and x(0), and p(z) is the density for x(0). We have made use
of the independence of #(0) and £ and have assumed that Exz(t) = 0 and E£® = a.
This vertical window definition of the conditional density of £ given that (0) = a
thus reduces to the conventional one p(£x(0) = a) = [p(§ z)/p(%)]lema -

(ii) Let A be the ‘“horizontal window condition” z(t) = a for some ¢ such
that 0 < ¢t < 6. Thenif § = 0,

p(£lz(0) = a)v.w.

p(f l 23(0) = a)h.w.

— 2a

(2.1) f p(§ x) dz g
= lim © a 0'—550 £ - 2 2
-0 ’ ’ ’ - ’ @

[ [ awpeor+ [ a [T aspe,2)

since the condition A can be satisfied (to first order in small quantities) for a
given value of slope, say £ > 0, only if ¢ — £8 < 2(0) =< a. A similar calcula-
tion for £ < 0, gives the final result

==
p(¢ I z(0) = Whw. = —'27;3 e,

(iii) More generally, let A be the condition that z(¢) pass through a line seg-
ment of length & and slope m having one end-point at x = a, { = 0. Then one
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finds by straightforward computation

52
| & —m| 6_2—“/\/2101

/‘/ e_;na -I-mf \/21ra

(iv) If A is the condition that x(¢) pass through a circle of radius é with center
at the point x = a, ¢ = 0, then

p(£]2(0) = a)n =

£2

x/1+52e2“
\/1+x2e “dw

p(g]|2(0) =a) =

Which, if any, of these several versions of p(¢lz(0) = a) is equal to the
empirical density obtained from a single sample function? The question can be
answered readily in the following heuristic manner. Let » be the expected num-
ber of zeros per unit time of z(¢t) — a. Let Sp(y) = 1if y < b and be zero other-
wise. The empirical cumulative distribution for ¢ can be written,

Pr(t < b|2(0) = a)omp = llm——f Lsle(t) — ol | 2/(0) | ol (8)] dt
- E}a[x(n — al |2/ (8) | Sela’ (£)]
_ %[:dx [ des(a — o) ] p(& @)

= [ aeieinte ).

Here we have appealed to the ergodic theorem. The empirical density for £ then
follows by differentiating with respect to b,

(22) p(¢12(0) = @)emp = ~ £ 2% 0).

Now the denominator of (2.1) is the probability that x(f) — a have a zero in
the small time interval §. Evaluating the integrals, one finds this probability to
be V/2a/7p(a)d to first order in 8. It follows then that » = /2a/7mp(a). Insert-
ing this value in (2.2) yields

p(E|2(0) = @)omp = ““e % = p(£]2(0) = Q).

It might be mentioned that the interpretation of conditional probabilities in
the h.w. sense is intimately connected with the definition of the mean recurrence
time as introduced into statistical physics by Smoluchowski.
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Let x(t) be an ergodic process and consider the discrete observations z(0),
z(7), (27), - - - . For these observations the mean recurrence time of the state
defined by | z(t) | < & is given by Smoluchowski’s formula

1 — {Pr{]z(0)| <8}
Pr {{=(0) | <8,|z(r) | >4}

which he derived by direct time average considerations. (For a derivation of this
formula as well as a discussion of its connection with the ergodic theorem see
[3].) Denoting by W (x) the probability density of z(¢) and by W, (z, y) the joint
probability density of "c(t) and z(t + 7), we get

O = 1

f W(z) dx
0 =1
i ffW(x,y)dxdy
st

For a Gaussian ergodic process for which z'(¢) is defined, we can go further.
Since

z(r) ~z(0) + 72'(0)
and z(0) and z’(0) are independent, we have

[ wimassy gt [] D

|z <8 lz| <8
lyl>s lz47E[ >6

where a = E[z'(0)]’. Now

(= 52) 2% o _z? —i—z &2
ff TV2a) gy dg -.[ dxe * 5_,d£e 2"+[ dxe £ [ dte ?e.
EhLe

In the first of these integrals set + = § — yr. In the second, put z = —8§ — yr.
There results
0 (3+y1)? Ly £

25
20 (5—yr)2 o0 2 i
T f ’ dye 2 f dte 2« + 28 dye * © dge 2
0 y T

and hence

1 ™ a

lim lim 05, = 5 =
80 70 _ f d dge P f ye—ﬁ dy
1r\/a Y 0

which agrees with the known result of Rice for the mean distance between zeros.

3. Joint distribution for large positive excursions. Let z(f) be a continuous
parameter ergodic differentiable Gaussian process with mean zero and covari-
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ance function p(7). For convenience we choose p(0) = 1 and assume that in
some interval about r = 0,

(3.1) p(r) =1 — g# + o(#Y), a> 0.

Let 6 = 6(a) denote the expected length of the intervals during which z(¢) = a.
Then [2]

(32) o=:/ii[1—1/;2-rfoae“gdt]

and

(33) o~1/2_"1
a a

for large positive a.
In this and the next several sections, we study some limiting properties of

the related process

(34) AL 0) = ?”-(ﬁ‘i);“

as @ — + «, (or, equivalently, as § — 0 through positive values). We shall gen-
erally be concerned only with properties of A(t, 8) conditioned by

A’(0, 0) = g_tA 20 and A(0,0) =0

in either the h.w. or v.w. sense of Section 2.

The main result of this section is that, as a — «, the n-dimensional joint
distribution function of A(t, 6), A(¢:,8), ---, A(t., 8) conditioned in the v.w.
sense by A’(0, 8) = 0, A(0, 8) = 0 approaches the singular n-dimensional half-
normal distribution function of the random variables

(35) A= —4/%'“ Vi, i=1.,m,

where £ is a random variable with probability density
0, £<0

36 = &
(36) p(¥) Vi ez

If the conditioning is done in the h.w. sense, the result remains the same except
that £ now has the Rayleigh density

0, £E<O0
g2

(3.7) p(§) = {ge"z‘, £z 0.
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In one sense, then, as @ — - «, the sample functions of the conditioned A (¢, )
process become a family of random parabolas,

(3.8) A= — 3‘21't2 + Vatt,

where £ has either a half-normal or Rayleigh distribution according as A(0, 6)
is conditioned to be zero in the v.w. or h.w. sense. In terms of the original z(¢)
process, one can say that, when properly scaled and normalized, the excursions
of z(t) above the level a approach parabolas as a — -+ .

It is worth noting that these results require only the existence of the first
derivative of x(t). Processes with pathologies only in higher order derivatives,
such as the harmonic oscillator of physics, are sufficiently “tamed” by the
normalization and scaling indicated in (3.4) to give the limits mentioned.

We obtain the limiting conditional distribution function for A(¢4, 6), - - -,
A(t, , 8) by computing the characteristic function, ga(n1, 72,  * - , 72), for these
quantities and determining the limiting function

e(m )Tty Me) = 1ima—>+°° @alm, * -+ ’ "7")'

By a well-known theorem ([4], p. 102), ¢(91, -+ - , 72), if continuous at n; : : 5y =
.-+ = g, = 0, is the characteristic function of the limiting distribution function
for Ay, 6), -+, A(ta, 6).

Let £ = 2/(0), z; = x(6t:),7=0,1,2, ---,n, and &, = 0. Then

p(xl, '”yxnig = 0; Lo = a)v.w.

~/0‘ dfp(f, Lo, X1, * 7xn) [xo=a

3P(%0) [s0—a
(3.9) o
[ aepta, -yl 20 = @)p(t, ) o

B 3P(20) |z0=a

=2 [ depa, -, a8 0 = @p8).
Now p(21, -+, Z4l§, @ = a) is an n-variate Gaussian density (see Appendix).
The conditional means and covariances are readily computed:
(3.10) mi = o &m0 = a) = pltt)a — L p/(60)¢
and

Nij = El(z; — m;) (x5 — m;) | £ 0 = al
(3.11)

It

POt = )] — p(81)p(0) — ~ p'(01)o/(01),

i;j)‘—" L2 -, n
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One can write, therefore,
L)
p(xl, - xnlf; Zo = a) - (27r)_” f d"]l [ d‘ﬂ '—'52717(13,—-"&1)—?2)\1‘]:'77"’11:.
}— 00

Intreduce this expression into (3.9), substitute z; = a + 6A; and multiply the
entire expression by 6" to obtain the conditional density function for
A(ty, 0), -+, A(ta, 6) in the form

_&

p[Al’ e 7An|A,(0 0) = 0 A(O 0) = O]V.W.
2a

©
—_— — . . N o e
T @r )"./ dE[ dn - [ i ¢t 2 @08 mmD—E 2N

0

2ra

Let ¢ = \at, 09; = m , ¢ = 1,---, n. Introduce the value of m; given in
(3.10), interchange the order of integration which is a step easily justified, and
omit the primes. There results

p[Ah Ty An I A,(O; 0) g 0; A(O, 0) = O]V.W.

1 ) ] - "
- (_2#—)" .[w dmy - fw dnne znlAl‘Pa(’?l, ey M)

where

ea(ni, «++, 1) = exp [—iz ni= 1 — p(08)] — 3 3 )\2 mnk]

On using (3.1), (3.3) and (3.11), one finds,
N rE s .
¢("717 ] ﬂn) = lim ‘Pa(nl) Tty 'ﬂn) = e_r\/-z-z’“tl ./; dE /‘/72‘- el\/‘zsz”iti—zsz.

But this expression, which is continuous at 7, = - -+ = 7, = 0, is just the char-
acteristic function associated with the random variables (3.5), (3.6), as a trivial
computation shows.

The determination of the limiting form of the joint distribution function for
A(t, 0), ..., A(ta, 0) conditioned in the h.w. sense by A’(0, 6) = 0, A(0, 6) = 0
proceeds in a similar manner. Here (3.9) is replaced by

p<x1) "‘,Z)ﬂlé = 0,-'1:0 = a)h.w.

'l)‘ dEEP(f, Lo, L1y ° ", xn) Izo=a

fo dezp(£, 20) |spma

2—"f dégp(@1, -+, xn | £, @0 = a)p(£).
a Jo

The remaining steps are as in the previous demonstration.
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4. Asymptotic distribution of first return time to positive level. We now as-
sume that

a 2
§ T

Let P,(T) be the probability that A(¢, 8) be non-negative for 0 < ¢t < T
given that A’(0, ) = 0 and A(0, §) = 0 in the h.w. sense. Then Q.(7) =
— (dP,/dT) is the probability density for the duration of the positive excursions
of the A(, 6) process conditioned in the h.w. sense. In this section we show that

(41) p(r) =1 =27+ e[ + '+ o(eh).

. =T ‘;"2, T >0
(4.2) Q(T) = 1im Qu(T) = { 2
- 0, T <0
and
s, TZ0
(4.3) P(T) = lim P,(T) =
e 0 , T <O.
If the conditioning is done in the v.w. sense, the corresponding results are
T, T20
(44) Q(T) =
0 , T<0
( T T2
1- f et dzx, T=0
(4.5) P(T) = 0
0 , T <O0.

These results are consistent with the interpretation of the sample functions of
the limiting A process as the family of random parabolas (3.8) with £ distributed
according to (3.6) or (3.7). Note that the results (4.2)—(4.5) are independent
of the parameters defining p(7). All differentiable ergodic Gaussian processes,
when scaled as here, have the same asymptotic distribution for the duration of
excursions above a level.

To compute P,(T), we make use of the method of “inclusion and exclusion”
[5], p- 89, in & manner analogous to that of Rice [6], p. 70. Let 4. be the event
“z(t) assumes the value a for some value of ¢ such that

i(T/n) 2t < (1 +1)(T/n)

given that 2/(0) = 0 and 2(0) = a in the h.w. sense.” Then the probability,
Wo(T), that x(¢) be not less than a for 0 < ¢t < T given that 2'(0) = 0 and
z(0) = a in the h.w. sense is
Wo(T)=1— D Prid]+ 2 Pr{d;NA4;] > Prid;NA;NA)+ ---
i i<d 1<J

<i<k
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In the limit as n — o, this becomes

1 (T 1 (" T
Wo(T) =1— -1—'»/; dt p(t) + g/{Z dtlj(; diz pa(ty , b2)

1 T T T
__f dtlf dtzf dts sty ta  15) + -+
3! Jo 0 0
where

pi(ty, +-+,t;) dty -+ - di;

is the probability that z(¢) assumes the value a in each of the intervals
(ty 4o + db),- -, (8, t; + dt;) given that 2/(0) = 0 and 2(0) = a in the h.w.
sense.

One has then, since P,(T) = W,(6T),

0 T 02 T T
46) Pum) =1=7, [ dupiton) + &, [ an [ dnpon,om) -
and by differentiation
02 T
(47) u(r) = opom) = [ anputon,0m) + -

Here

pn(BtI PR ;Otn)

(4:.8) —_[; .dEOf_wdEI [wdén50|£1| lEnlp(EO, coeyEn, o, e ;xn) Iz's=a
[e4
/‘/ﬂp(xo) Iz0=a

xr; = .’L‘(ot,'), & = J?l(at;‘), b = 0, 1= O, 1’ N

where

and p denotes the joint density of the random variables indicated.

From the derivation of the method of inclusion and exclusion, the successive
partial sums of (4.6) and (4.7) alternately over-estimate and under-estimate
the limit sum. Therefore

T T T
(49) 0= Pu(T) —1+6 fo dty pa(08,) < 2—2 fo dt, fo dtpa(0t,08),

(4.10) 0= Qa(Tj — 6p(6T) = %2/07' dt, p(6t, , 0T).

We establish (4.2) and (4.3) by evaluating lim,,. #p1(6¢) and by showing the
right members of (4.9) and (4.10) approach zero as @ — «. A completely
analogous procedure gives (4.4) and (4.5).
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To investigate the behavior of 8p:(6t) for large a, we write (4.8) forn = 1as

(411) 0p1(0t1) = /‘/% [/} p(.’l?], I Ty = a) Izl=a Ia )
(4.12) I, = f dfo[ der ko | & | p(k, 6| 20 = a, 11 = a).
o o

An elementary calculation shows that

2w _ _ ¢ %_%2;—?
0 e nm = [ g [T

where p = p(6f;). Using (4.1) and (3.3), there results

x,.2

i
(4.13) lim 6 ﬁp(xl |20 = @) Joya = .
P o at1

The factor p(& , &z = a, 1 = a) in (4.12) is a bivariate Gaussian density.
The conditional means are found to be (see Appendix)

/
mo=E(Eo|l‘o=x1=a)=———T=—E(Ellxo=x1=a)= - m.

The conditional covarianees are

a — [p"(6t)]" — ap’(6ty)
1 — p*(8t)

=A\y1 = E[(El - m1)2 | To =1 = a]’
N £(60)p"(64) — p”(64) — p(6t) (o’ (0]’
o1 1= 2(68) .

Asa— »,my— \Var/2t ,mi — —/ar/2t4 ; thecovariancesare O(9) if ¢; = 0
and o(9) if cs = 0. By standard arguments, then, as @ — « the contribution to
1, comes entirely from the neighborhood of the point (mq, m;) and

{ﬂ_ #f, H©=0

Ao = E[(& — mo)’ |20 = 21 = a] =

2
0o , h <0.

lim I, =

Combining this result with (4.13), we find

T _;tf
§ t1 € 5 t1 g 0
0 , 4 <O0.

(4.14) lim 6py(64) =

a->oo

To show that the right member of the (4.10) approaches zero, we write (4.8)
for n = 2 in the form

(4.15) Opa(6t1, 6t) = D(21, 22 | 2o = @) Jayma+Ja

Zo=a



GAUSSIAN PROCESSES 1225
with
o

a

J.=6
(4.16)

L]

: [o deo[ [ dntolellslp b6 6= o=mn=a.

The first factor of (4.15) is of the form

a?
e——2-h(0)

p(xl, T2 | Xy = a) I:;: = m
where
d = 1+ 2p(0t)p(6l)pl8(t: — )] — p°(6t1) — p°(68) — p’[0(tr — 1))
and

o) = o L= I = o0 (1 = ploe — W)}

A lengthy calculation shows that as @ — ,

gaw tftz(tz — t1)205 -[-0(05) , ¢ 50
(4.17) L od=
i“("‘* — a")tita(t — 1)"6° + o(6°) e =0,
so that
3raty 1 1
(4.18) 7 1(0) 8 67 (5) cs # 0
| ? _m Lo (E “zo
Lc4 — a2 ¢ 2/’ 3 = 0.

The first factor of (4.15) therefore approaches zero at least as fast as A6,

The proof is completed by showing that J, is O(1/6") for some finite 7 so that
from (4.15) 6°ps(6ty, 6t;) — 0 as a — . Now

J./6 2x
o

(4.19) < j_.wdfo[wd&[wd& [&ll &l &]p(bo, &, & |20 =21 =22 = @)

S8+ EEES |v=01=2=a).

This conditional expectation, however, is a multi-nomial in the conditional means
and variances of the £’s. These latter quantities in turn are rational functions of
a, p(0t), p(6t2), pl6(t: — 4)], 0’ (641), - -+, p"[6(t: — t1)]. It follows then that the
right side of (4.19), and hence J, also, is O(1/6").
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We note in passing that in the case ¢z = 0 the factor ¢, — o’ in (4.17) and
(4.18) is non-negative and vanishes only if p(7) = cos B7. This can be established
as follows. From (4.1) it is easily seen that when ¢; = 0, p”(0) and o' (0) exist
and are given by
(4.20) —a = p"(0) ¢ = p*(0).

Now since p(7) is a covariance function, we can write
0
27 I\
o(r) = f e dF(N)
.1

where F(\) is non-decreasing. It follows then (see [4] p. 90 for a similar argument
involving a distribution function and its characteristic function) that the second
and fourth moments of F exist and that

2(0) = —a = —4rzf M AF(N),

p®(0) = ¢ = 161#[ MdAF(\).

The Schwartz inequality then gives
C4 g 0(2

with equality only if p(7) is of the form cos 87. Our derivation of (4.2)-(4.5) fails
in this case. Indeed, we have already excluded this process with covariance cos 8+
from consideration since it is not ergodic. The results (4.2)—(4.5) are still valid
for this process, however, as a separate calculation, omitted here, shows.

5. Asymptotic distribution of first return time to negative levels. As in the
preceding section, let Q,(7") be the probability density for the duration of the
excursions above the value a of the A(t, ) process conditioned in the h.w. sense.
If in addition to (4.1), p(7) and its first two derivatives approach zero as r — «,
then

lim Q.(T) = 2¢7*".
This result follows readily from (4.7) and (4.8) and the asymptotic formula
for 0 for large negative values of a,

0~ —=¢e ,

| v

obtained from (3.2). For large negative a, the random variables z, = z(6t), - - -,

z, = 2(6t,), & = 2'(0k), +-- , &, = n/(6t,) tend toward independence and the
density in the numerator of (4.8) approaches

1 2 (nt+l)
e~§25¢—— 5 a?

2T
a

(21r)n+1 n 1"2 1
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in a uniformly continuous way. One finds, then, §"p, (64, ---, 6t,) — 2" and

the series (4.7) sums to 2¢7%7.
If the conditioning is done in the v.w. sense, the same result is found. It is to

be noted that this limiting distribution, like those obtained for large positive a,
(4.2)-(4.5), is independent of the covariance p(7).

APPENDIX

The detailed calculations of this paper make frequent use of the multivariate
conditional densities for Gaussian variables. Since these densities do not appear
to be readily available in the literature, we present them here for the reader’s con-
venience. They can be derived with a little effort from material given in many

texts, e.g. [4] or [7], pp. 27-30.

Let &, - -+, £ be jointly Gaussian with E¢; = 0, E£:£; = Nij, 1,7 = 1,2, - -+ ,n.
Then
1n
2 pil“zj (Ei—m3) (£—mj)
p(sw1;"':gn!£1""7£p)= n—p )
(2r) * | p|
where
p .
mi=E(‘Ei|£l:"';€P)=Z?UEI’ 7‘=p+1""’n
7
ui; = E[(& —m) (& —my)le, -, &, 4ij=p+1,-,n
and
1 Moo MGgon A Mgeny ot A
Bij = d : : : : :
At s Apien Api ApGan t Agp
D Y R T
IR N R STAE ST R U
B =g : :
)\pi )‘pl e )‘mr
A o A
d=|: :
)\pl )‘pp
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