SOME CONVERGENCE THEOREMS FOR STATIONARY
STOCHASTIC PROCESSES!

By T. KawaTa

Tokyo Institute of Technology and Princeton University

1. Introduction. Let &(¢) (— = < ¢t < «) be a continuous stationary process
of the second order (in the wide sense) with mean zero; that is,

(1.1) Ee(t + u)&(t) = p(u)
is a continuous function of u only, and
(1.2) Eg(t) =0, —o <t < o,

Here E means the expectation of a random variable.
We have, then,

(13) &) = [ "z,
and
(14) o) = [ e are),

where F(\) is a bounded non-decreasing function such that
F(+) — F(—=) = p(0) = E| &)/,

and Z(\) is an orthogonal process such that

(1.5) E|ZNN) — ZW)) = F\ —0) — F(A» — 0).

F(u) and Z(\) are called the spectral function and the random spectral function
of &(t) respectively. (See, e.g., Doob [5], Chapter XI). Let

(1.6) X(t) = f() + &), —we <t < »,
where f(¢) is a numerical valued function, and consider
(17 [t~ 9K(s,m) ds,

K(s, n) being also a numerical valued function depending on a parameter n.

Integrals of the type (1.7) appear in many fields in the theory of probability
and statistics. For instance, we often encounter (1.6) in the problem of smooth-
ing data of observed values, in the problem of predicting future values of z(¢),
and in the problem of estimating the spectral density of a stationary process.
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THEOREMS FOR STATIONARY PROCESSES 1193

But here we shall consider the behavior of (1.6) from the analytical point
of view along the lines of the classical theory of the general Fourier integral,
and we shall show convergence theorems, some of which may be already known
implicitly.

Next we shall consider the special case of (1.7)

(17a) Ll X()K(s) ds = J(T).

If K(s) = ¢, then | J(T)|* may be considered as a function similar to the
periodogram, in which f(¢) is a trigonometric polynomial and &(¢) = 0. It is
known that if F(\) is absolutely continuous and p(A\) = F’(\) (the spectral
density of &(t)), then E | J(T)|* converges to p(£) provided p(£) is continuous
at £. We shall treat the convergence of | J(T)|” itself.

2. Preliminaries. Let the spectral function of the continuous (weakly) sta-
tionary process &(¢) be F(N) as in the preceding section. Then the necessary
and sufficient condition for the existence of

(21) nt) = [ &t - s) dL(a)?
for every s is that there exists a function k(x) such that
f | k(z) FdF(z) <

and

lim [*
A~»>—00
B-»0 —00

/AB e dL(s) — k(z) ’ dF(z) =0,

where we assume that L(s) is a function of bounded variation in every finite
interval. k() is called the Fourier-Stieltjes transform of L(s) with respect to
F(z). In particular if K(z) ¢ Ly(— «, «), then

22) " e(t — s)K(s) ds

exists.
We frequently use the following lemmas which are very well known.

Lemma 2.1:
(1) The stochastic process (2.1) 1s also a stationary process in the wide sense

and we have Eq(t) = 0 and
(23) En(t + w)y®) = f: | 5(z) [-e* dF (z),

where F(x) is the spectral function of &(%).

2 The integral is taken here as Lim.522 [ &(t — s)dL(s), where l.i.m. means the limit
in the mean of order 2 and the finite integral in the definition is also defined as a Riemann-
Stieltjes integral, the limit process being taken as l.i.m. See M. Logve [10] or J. L. Doob [5].
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(ii) If we are given another process
(24) m(@) = [ 8t~ s) dLu(s),

where Ly(s) s of bounded variation in every finite interval and (2.4) is assumed
to exist, then

(25) Bni+ ) = [ M@ E@ dF(),

ki1(z) being the Fourier-Stielijes transform of Li(s) with respect to F(x).
LemMA 2.2: The stochastic process n(t) in Lemma 2.1 can be represented as

(26) 20 = [ W) dz(a),

Z(x) being the random spectral function of &(t).
If f(¢) is a numerical function such that

[ 1= 9 s

exists for every ¢ as an absolutely convergent Riemann-Stieltjes integral, and
X(t) = f(t) + &(t), then we define

f” 2(t — 8) dL(s) = f_” &(t — 5) dL(s) + f_” £t = s) dL(s).

3. Convergence theorems. In this section we shall consider processes of the
type

(3.1) Yu(t) =n [ "X (1 — $)K(ns) ds, X(t) = f(2) + ()

and discuss the convergence (in the mean) of Y,(¢) as n — . Similar discus-
sions are classical when §(¢) = 0 in the theory of the Fourier integral; for ex-
ample we have the following fact which we shall state as

Lemma 3.1:° Suppose that

. f(s)
(i) i—‘_"_—mé'Ll(_wy ®),
(i) K(s) e Li(— =, =)

and
(iii) K(s) = o(]s|™") when|s|— o, and K(s) is bounded. Then one has

(3.2) lim n f_w f(t — 8)K(ns) ds = f(t) f_w K(s) ds.

3 8. Bochner [1], S. Bochner-K. Chandresekharan [2]. More general theorems are known.
See S. Bochner and S. Izumi [3].
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Appealing to this lemma we have the following theorem.
TurvoreM 3.1: Let f(t) and K(u) satisfy the conditions of Lemma 3.1. Then
we have

(33) lim. nf X(t — )K(ns) ds = X(1) j K(s) ds.

n->0

The proof of this theorem will be omitted since it is very similar to and easier
than the one of Theorem 3.2 later.

If we want to estimate the error between both sides of (3.3) for instance as
o(1/n), it is necessary to prove a convergence theorem which contains an error
term such as the following lemma:

Lemma 3.2: Suppose that

) L) e (=, ),

(i) f(¢ + u) — f(t) = O(u)
for small u,
(iii) (1 +|s|)K(s) e L, and
(iv) K(s) is bounded and o(|s]|™**) as|s|— =.
Then one has

(3.4) n f_: 7t — $)K(s) ds = f(t) f_: K(s) ds + o(1/4/7).
Proor: Put
I =n fw f(t — s)K(ns) ds — f(¢) fw nK(ns) ds.

We want to prove

(3.5) I = o(1/4/n).
We have

L= [ U= ) — fOIK (ns) ds

—n [, U= s) = SO (ns) ds

f<aT3

+n f(t — s)K(ns) ds — nf(t) f K(ns) ds
ls|>alnl/2 |s|>al/nll2
=5L+ I, + I,

say, where « is an arbitrary positive number fixed for the moment.
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By (iii), we have

Is=0 n”
s3=0n-— | sK(ns) | ds

a Jis|>alnll?
_ 1 f ( B 1
- O(anW lul>anll/2? luK(u) , du) =0 (W)
asn — oo,

By (ii), we have

I =0 (nf | sK(ns) | ds) = O(anmf . | K(ns) | ds)
(36) el <

- 03t [L1xew1a0) = 0 (7).

Lastly we have, by making use of (iv) and (i)

L=0 (n -[|s|>a/n1/2 |7(t = )| | K(ns)| ds)

(3.5)

1 ds
(3.7) =0 (nTn fwmm [ £t — )| (i‘;TgT)a/'é)

=o(n%/2[:%if(—j_—l_—s%3}2ds)= 0(7—;—/2).

Combining (3.5), (3.6) and (3.7), we get
lim sup /2l = O(a).

n->0

Since « is arbitrary, we must have

lim /2l = 0,

n->0

which proves the lemma.

We shall prove

Tureorem 3.2: If the conditions (i), (ii), (iii) and (iv) of Lemma 3.2 are satis-
fied, and the spectral function F(x) of a continuous stationary process &(t) satisfies

(3.8) [ |2 dF(z) < o,
then

(3.9 E

()

" fw X(t — )K(ns) ds — X(0) fw K(s) ds

where X (t) = f(t) + &(t).
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Proor: We have

I=n| : X0 — $)K(ns) ds — X(D)n f K(ns) ds
—n [: [X(t — s) — X(O)IK(ns) ds

= n [t = 9) ~ S(OUK () ds 4 [: [7(t — ) — f(£)|K(ns) ds

=1 + I,
say. Since EI, = 0, we have
E|I|"=E|L|"+|L|"
Lemma 3.2 shows | I; | = o(1/n). Hence it is sufficient to show that
(3.10) E|L|*= o(1/n)

We may now write

I =n [» &(t — s)K(ns) ds — [w &(t — s) du(s) - [Q K(s) ds

where u(s) = 0for s < 0, = 1 for s > 0. u(s) has the Fourier-Stieltjes trans-
form identically equal to 1. Hence by Lemma 2.1 (2.3), we have

L= [ e s)d(n [ k) &t — o) [ K@ ds),

n [w (7™ — 1)K (ns) ds 2dF(:l:).

E|L] = [
Minkowski’s inequality shows
o © ) 112\ 2
E|L]’=< (n‘[- |K(ns)|ds<[ e — llzdF(x)> ),

which we write as

(n [: | K(ns) I{s2 [: || dF(z) + 2 j{;ba | zs | dF(av;)}l/2 ds)z,
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@ being an arbitrary positive number. This does not exceed

[n f_: |s|| K(ns)|ds ([: o dF(g;))m

+ 2", [: |s|'*| K(ns)| ;is (‘/;z|>0 || olli’(a;))m]2

= [L [ k)| (f_ af dF(x))l,z
+ 21/2771172 -: | uK ()| du (/mw |z | dF(x)>l/2:|2.

Hence we have

lim sup nE | I |* —O([ ]x[dF(z;))
n-»>00 Izl >@
which proves (3.10), since G may be arbitrarily large. Thus the theorem is

proved.

If further conditions are imposed on f(¢) and F(z), then we can go further
and get the asymptotic expression of [, X(¢ — s) dK(s). We shall leave this
until another occasion.

4. Wiener’s formula. Wiener was concerned with the formula

lim f(t)aK(at) dt = K(x) dz - hm Do f f(t) dt,

under suitable conditions on f(¢) and K (¢). We shall consider the similar formula
concerning a stationary process. Let X () = f(¢) 4+ &(¢) as in the preceding
sections. It seems convenient first of all to state a remark.

It is known as the law of large numbers that (1/27T) [Zr &(t) dt is convergent
in mean as T' — « and actually

N Y LN oy
1.1.m.§T[T8(t)e dt = Z(¢ +0) — Z(¢ — 0),

T-»>0

where £ is any number and Z(z) is the random spectral function. This is also
well known (Doob [5]). Hence if

exists for some £, then

(4.1) 11m 27 X(t) A = Z(E+0) — Z(¢ — 0) + M,.
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Now we consider )
(4.2) [ &(t)e " aK (at) dt.

Then it is easy to show
TueoreM 4.1: If K(t) € Ly(— », «), then

(4.3) l.i.n‘r)l. ) &(t)e ™ aK (at) dt = [Z(£ + 0) — Z(¢ — 0)] f ) K(t) dt.

For putting the representation (1.3) into (4.2), assuming # = 0 without
loss of generality, we have

f_ : &(t)aK (at) dt = [: ( [: FTK () dt) a7 (),

and [, e®"*k(t) dt tends to zero boundedly as a — 0 when z 5% 0 by the Rie-
mann-Lebesgue lemma and is [, K(¢) dt when z = 0(a # 0). Here we used,
the fact that if [2, | ga(z) — g(z)|*dE(z) — 0, then

[ a@ az@) - [ o) a2,

Now a Wiener-type formula of S. Bochner’s states [1]: if

(i) K(x) is absolutely continuous in every finite interval,
(44) (i) | x2K(x) | < H, K(z) € Liy(— %, =), H being a constant,

(45) (iii) ——[ | f(¢)| dt £ @, G being a constant, and

(iv) M = hmﬁ f(t) dt exists,

then

(4.6) lim f(t)aK(at) dt = M fK(t) dt.

a0

This fact and Theorem 4.1 show immediately that

@7 lim. X(t)e"”aK(at) at = M + 2 + 0) — 2( — 0)] “K(@) dt.

a->0

From (4.7) and (4.1) the following theorem follows immediately
TuroREM 4.2: If conditions (i), (ii) and (iii) above are satisfied and

1 " ;
57 [ f(t)e * dt
T

exists for some &, then

2T
Formula (4.8) means that the both sides exist and are equal.

(48) lim [ X(e*aK(at) dt = Lim. 5 X(t)e’“dt f K(1) dt.
a->0
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6. Periodogram. Let X (¢) = f(t) + &(t) as before. We suppose in this section
that the spectral function F(z) of &(¢) is absolutely continuous and we denote
the spectral density as p(z):

f p(z) dz = F(zx).
It is known and easily proved that

. 1 ’ it o _
(5.1) }'me E‘hr_T’.[r &(t)e dtl = p(x),

provided p(x) is continuous at x.
Now we suppose that

. 1 ’ —zt .
(5.2) },1—1;2 W‘ [T f(t)e dt = Mz,a

exists for some z and for some 0 = a < 1.
Then we have

1 T ot 2 1 T int 2 1 T ot 2
[TX(t)e dtl =mE’f_Te(t)e dtl +m'[Tf(t)e di|.

£ AxT

Hence we get, letting 7' — o,

lim - E /TX(z)e—"" at|
e 4T | L,
(5.3) = p(), if a>3
= p(e) + My, i o=}
= o, if 0=a<3 and M..>0.

Now we consider the mean convergence of

T .
f X(@)e ™ dt
-7

2

1
when 7 — . We shall call (5.4) the periodogram of X(¢), mentioning that
this is exactly the periodogram of f(t) if f(¢) is a trigonometric polynomial and
&(t) = 0. Many authors suggest (U. Grenander [6], U. Grenander and M.
Rosenblatt [7, 8], Z. A. Lomnicki and S. K. Zaremba [11]) that (5.4) or

2

(5.5) J(T) = MLTU_: &(t)e ™ dt

does not converge to p(x).

We shall discuss in the following sections the behavior of (5.5) and prove
that J(¢) does not converge in mean to any random variable when &(¢) behaves
like a stationary Gaussian process in a certain sense. In the case where &(1) is
stationary Gaussian process U. Grenander and M. Rosenblatt gave extensive
discussions (e.g. U. Grenander and M. Rosenblatt [8]).
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6. Theorems on the periodogram. We shall impose further conditions on
&(t). We suppose hereafter that &(t) is real, E | 8(¢) | < « for every ¢, and

(6.1) Ee(s)8(s + u)&(s + v)&(s + w) = P(u, v, w),

isa function of w, » and w alone and independent of s; that is §(¢) is a stationary
process of the fourth order. Further let P(u, v, w) be a continuous function of
u, » and w in the whole range R;.

Put

(6.2) P(u, v, w) = Q(u, v, w) + Po(u, v, w),
where
(6.3) Pe(u, v, w) = p(u)p(v — w) + p(v)p(w — w) + p(w)p(u — v),

p(u) being the covariance function (1.4) of &(¢) as before. If &(¢) is a Gaussian
process, then Q(u, v, w) = 0. Thus Q(u, v, w) will be considered as a measure
of non-Gaussianess and was introduced by Magness (T. A. Magness [12], see
also E. Parzen [13]). We also assume that Q(u, v, w) is the Fourier transform
of a function ¢(&, #, ¢’) which is integrable in R;, bounded, continuous and
satisfies the Lipschitz condition at a point (—§, —&, £),

64 Quuw) = (/20 [ [ [ qle, o, @) T ag dy'

Let &(t) have the spectral density p(x), assumed to be continuous at x = £

and bounded.
Under these conditions, we shall prove the following theorem.

THEOREM 6.1:
1 T e 2

satisfies the limit relation

(6.5) lim {EIJ(T) - J(m | - (1 - %) 2p2(.§)} =0
T'>T>0

if £ %0, and

(6.6) lim {EIJ(T) (T - (1 - f,) L4 (0)) = 0.
T'ST>w T ;

The theorem implies that E | J(T) — J(T’) | never converges; in other
words J(T') never converges in mean except at a point £ where p(¢) = 0.

As a theorem for the covariance of J(T') we get under our assumptions above

TaEOREM 6.2: We have

(6.7) lim {COV (J(T), J(T")) — (1 + 272) p2(£>1 =0

T >T->w
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if £ 0, and
. , 2T

(6.8) T'hm {Cov Jry, J(r) — T (0)} =
>T

This follows immediately from the fact that

(69) Jim {mrmi) - (14 1) #e) =0

if £ 5 0and

(6.10) lim {EJ(T)J(T’) (1 + )p (O)}

T'>T>0

The proofs of above theorems will be done in Section 10.

7. Lemmas. It seems convenient to state lemmas in advance which will be
used in the courses of proofs of the theorems.
LemMa 7.1: Let p(x) e Li(— «, «) and be continuous. Then we have

sin T(x 4 £) sin T(x — &)

T+ Hx — &) de = p(0), if £=0

= 0, if £=0.

(7.1) lim 1 p(x)
T»0 T ©

The integral when ¢ = 0 is the Fejér integral and the case £ = 0 is very well
known. The case ¢ # 0 was proved by U. Grenander [6]. Some Fourier integral
theorems involving the integral (7.1) and having a close connection with esti-
mation theory of the spectral density of a stationary process were discussed by
the author recently (T. Kawata [8]).

LEmMMA 7.2: Let p(z) € Li(— %, ©) and be continuous. Then we have

. 1 * sin T(x + &) sin T"(x + E)
lim {W'\/—T_ﬁ j_‘w p(x) (x + &7

(7.2) T'ET —
- p(&) /‘/W} =0

and

. 1 1 sin T(x + &) sin T"(x — &
@y im0 e =y

LeMMA 7.3: Let & be any positive number and let S(8) be the domain |z | < 8,
ly| < 8, |2| < &1in Rs, the three dimensional Euclidean space. Then

(7.4) ff-/;a-sw)

as T and T’ tend to infinily in any way.

)dx=0, if £#0.

sin T(x 4+ y + 2) smesmTysmTz
T p ” dx dy dz

= 0(Tlog’ T")
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LemMma 7.4: If o(z, y, 2) is bounded and satisfies
le(m, y,2) | = C(lz |+ |yl +12])

for some constant C, near the origin, then

fj’f‘” sin T(x 4 y + 2) sin Tz sin Ty sin T'z
— 2

r+y—+z T y
= 0(log’ T log 7" + T log’T")
as T and T’ tend to infinity in such a way that T' > T.
We should like to add a remark. Lemma 7.4 suggests that we should have a
convergence theorem like

sin T(z + y + 2) sin Tz sin Ty sin Tz
(7.6) LI_I.I;C./[/ C T+ y+ 2)xyz de dy dz

¢(x} Y, Z) dx dy dz

= £(0,0,0).

In fact, under some conditions, (7.5) is true, and a more general theorem was
proved by Bochner and the author [4].
We shall prove Lemma 7.2. Since

1 [“’ sin T(x + &) sin T'(z + &) d
T ). (z + )* ?
1 © sin T w sin T'w T . ,
=1r\/ﬁ’_’f_w w' W= A e
we have
1 » sin T(z + &) sin T’(z + §) T
/T f_ p(@) @+ =28 4/ T
- 1 sin Tw sin T'w

(7.7) o | ot = &) = p(2) ————w dw

1
LAY TT' (0l > + VTT Jiwi<s’
where 6 is a positive number such that for a given ¢ > 0,
(7.8) [p(w — &) —p(§) | <& for |w | <3,

because of the continuity and evenness of p(x). The first term of (7.7) converges
to zero as T,T" — «, and the second term is less than

sin Tw sin T'w

w

~r L.

w w

< € f“" sin2de *(f” sinzT'y)d t
=SevTT e w )\ w

€.



1204 T. KAWATA

We shall next prove (7.3). We can easily prove, by the Parseval relation,
* gin T(x + §) sin T'(x — £) sin 2T'¢

NIT e (@ + 5z —£) = VTTE

if 7" = T, ¢ x 0. Hence the left hand side of (7.3) becomes

1 sin T(z + £) sin T"(xz — £) sin 27'¢
| @) — p@] TEEEEET Y w0 S

Dividing the first integral into three parts as

[ ’
la—§1 <8 la+£1 <8 la—£1>8,|2+E1 > 8

& being chosen so that | § | < £, and proceeding as the proof of Lemma (7.2),
we can prove (7.3).

8. Proof of Lemma 7.3. We shall change the notation for simplicity. We
write To = T, Ty = T, T: = T, Ts = T' and 21, a2, x5 for z, y, 2 respectively.
Denote Dy = [x; > 6,7 = 1, 2, 3]. The integral in (7.4) is written as

sin (To D ) T II sin T; z;

I= ffj;a—S(s) Zx, i=1 T

dv being a volume element in R;, which we divide as

oo 1= [[[+Z[[L+Z ]I, -nrnrn

say, D; being the domain Dy — [|z;| > 4], and D;; being

dv,

Dy — [|z:| > 8, || > o]

The first integral of the right hand side of (8.1) will be further divided into
integrals of four types such as

(8:2) /] f»

8) RV
80 T
) YA
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where 1, j, k& are distinct. We shall estimate each of the integrals successively.
First (8.2) is not greater than

I 2
z1,z9,23>8 L1 Lo $3($1 + x + $a)

dxs [* dz dx, “dxs 10g[(5 + 25 + x3) /9]
(86) f .[ f 21(x1 + 22 + 13) fa 3 xa(@2 + 3) s
<c f da:a * log (xs + xa)/a f da:sf ] log z, | + log
s (T + 1) ECEEOE

- x+9
—2Cj; x2llogx|log 5 dx
which is finite. Here C is a constant C'(§) which may differ on each occurrence.
Considering the integral of type (8.3), we shall have, for instance

jff21,12>5,33 <8

which is

(8.7) ffle,zz,x3>6

The integrand of (8.7) does not exceed 1/(x1xoxs | 21 + @2 — @3] ). If wein-
tegrate this over x;, x2, 3 > 6, | &1 + 22 — 23| > /2, then we see that it is not
greater than

'fmd.’ll'l °°dx2 1 10g$1+x2+3/2
0

L1 Jds X ($1+$2) 3/2
da:l ® da, 1 x+ 2 — 8/2
= 1
+ f 5 Xz (B + 2) 8 5/2

and it can be easily shown, as in the estimation of (8.6), that this is finite.
On the other hand the integrand of (8.7) over the domain x;, z,, 3 > 9,
|21 + 22 — 23| < 8/2 does not exceed T'(1/zix2x5), and the integral over the
“domain can be proved to be <CT. Hence it has been shown that (8.2) = O(T).
The integrals of type (8.3) will be O(T), which is also shown easily. Each
of the integrals of type (8.4) is just the same as the corresponding integral in
(8.3) and the integral (8.4) is the same one as (8.2). Hence we get

(8.8) I, = O(T)

in (8.1).
Next we shall consider I, in the right hand side of (8.1). For instance

3 sin Ty D x: vy sin T; x;
fle ff‘/lxll§5,]zzl'lzs|>5 i II

in =1 Xy

NI+ I

sin To(x Ty — T sin T'; x;
oz + 22 a)I‘I i
T+ T2 — X3 =X

z

dv,

(89)
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say, where Dy, is the domain [ |1 | £ 8, | 22| > 8, | 3| > 8, |21 + 22 + 25| > 8]
andDm = [I.’l)]!é 5,|$2|> 5,|$3|> 5,|xl+x2—|—x3|< 5].
If we write

8.10 In = f f f f ,
( ) " ff Di1=[lz1l<é/2] + D11[8/2<z1<8]

then the latter is found to be bounded as in the arguments in the first step of
the estimation of (8.7). The first integral does not exceed

f | sin Tz f dzs dzs
dx —_—
lmi<orz | @ 12218 | @2 | JizgI> 8 1z1tentesi>s | Ta(@ + 22 + 23) |
sin Tz dx dx;
<2 ! [ d S
lz11<8/2 1 [E2Y) | Lo | 231> 8, |za+z3]| >8/2 | x3(z2 + 3) |

since | 1 + x2 + 23| > 8, | 21| < 8/2 implies | xz + 3| > /2. The last integral
is not greater than

9 / dzs dzs f sin Tz, de
oz o aw )
22156 | @2 | Jiogl>alzatasi>ore | 2a(e + 23) | Jioi<orz| @

in which the first factor is O(1) as in the evaluation of (8.7) and the second
integral is O(log T') as is known since it is the Lebesgue constant. Thus

(8.11) Iy = O(log T).

Next I will be computed, being written as

- 7l
Dy [lzitzatz3| <1/T) D11+[8> [z1t+watz3| >1/T]

We consider the integral over the domain Dyy: |z | < 8/2, |22 | > 6, | 25| > §,
|21 + 22 + 25| < 1/T,

(8.13) [f fb -

in place of the first integral in the right side of (8.12). The remaining part of
the integral can be estimated in the same way as was done in I, , to be O(T).
Thus we have

3
[, sr[[], |T%5
D11 D11 | v=1 Zi
< sin Txl sin 7"z, sin T'x3 l dzy s

)
lz11<8/2

= 2T
lz1l <8/2

f‘[lzzl lzsl>5

|z1t+zetzs| <1/T

f'/;2>8x3< 8

|z1+zotz3 | <1/T

X2 X3

sin 7" sin 1"z, sin 7 sin 1"z,
X2 X3

sin Txl
Z1

d d.L,j
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since ¥y > 8, 13 > 8, |41 + 22 + 23| < 1/T is impossible for large T. The last
integral does not exceed

o7 0 101 | g, [ 22 das
"Ilzll<5/2 21 ! 5 X2 Jezog—zy—1/T T3
sin Tz, f“ 1 ( 1 )
=92 1 . r
d lz1l<8/2 21 da 5 1 log 1+ T$2+$1 - I/T
in Tz dz.
<cer sin Ty | 5 1 f o dm
B lel<s/z | &1 AT )y walms —6— 1/T)
< S0 T2 | g = O(log T).
lz11<8/2 Z1

Hence we get that the first integral of the right hand side of I, is O(T).
We next consider the second integral of Iy, in (8.12), which is not greater

than
‘/‘/;2> Sz3 <—8

1T < |z1+z2t23| <8

1
(21 + 22 + )20 25

(8.14) 2 sin T"l daz das .

lz1l<8/2

The inner integral, by a change of a variable, becomes

ff d:l}z dxa
9,23 >0 | 1+ X2 —a3 | X2 X3

YT <L |z1+ze—23]| <8

which is not greater than the sum

8 X2 Jzidzetl/T (x::, - X1 — 1}2)503 z1+29—1/T >z3 (.@1 + X — :L‘;:,)xs

=C 1 log T(xy + x.) dzs .

19> 8,095 8 La(T1 + T2)

This is easily proved to be O(log T') and hence (8.12) is O(log® T'), Lebesgue’s
constant being involved. Hence we get

In = O(T) + O(log" T) = O(T).

Inserting this result and (8.10) into (8.9), we have shown [ff», = O(T).
Similar arguments show that

ff/;z = O(T) + 0(log T log T*)
and

ffj;s = O(T) + O(log T log T").
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The domain D: and D; are defined analogously to D; and the above estimates
are easily verified. Combining these results, we get

(8.14) I, = O(Tlog T").

Lastly we shall consider I;. We shall treat, for instance, the integral over

Dm , that iS,
sin T(Q ;) Is—I sin T; z;

fffvu ff~[|z1|<s,|s2|<s,|za|>s D =l T
5)
-/1] +[/]
lz1l <8,|ze] <8i|23]|> 38 211 <8 |22l <8,6< 23] <38

Replacing | 1 + z2 + z3| by % | 2|, because of

dxl d.’vz dxs

(8.1

|x1+x2+x3|>,1‘3,_|x1|_|x2|>%|x3|’

we see that the first integral does not exceed

2f s1nx1Tldxlf
lz1l<8 X1 |

This is clearly
(8.16) O(log T log T").
The latter integral of (8.15) is not greater than

day f
lzgl <8

sin Tz,
X1

sin zo T”
T2

dx, [ dxs
lz3|>38

z3| <8

[sin T(xy + 5 + 5)
d.
e ‘£<!=3|<35' x+ 2+ X
<1

< dxl_[ dxzf
0 Jizi<s l2g] <5 lu] <58

=0 (log’ T - log T").

We have thus reached [[[p,, = O(log’ T log T"). The other integrals in I; may
be shown by similar arguments to be O(log’ T'log T") or O(log* T’-log T).
Hence, combining these results, we get

(8.17) I; = O(log’ T log T' + log® T"-log T).
By (8.8), (8.14) and (8.17), we finally get I = O(T log’ T").

sin Tz,
T2

sin Tz
X1

1
0 Jizy1<s

dxs

sin Tu
U

sin Tz,
X2

du

9. Proof of Lemma 7.4. Let
(9.1) le(z, y,2) | = C(|z|+ |yl +]2])

in 8(8):|z|,|y]|,|2| < 8 Let M be the upper bound of ¢(z, y, z). We parti-
tion the integral as
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dx dy dz

ot T s = 42

sin T(x + y + 2) sin Tz sin T"y sin T’z
z+y+=z -z z

("(x, Y, 2)

say. Then
T(x + y + 2) sin Tz sin Ty sin Tz
| =M f [ f sin dz dy d
(9.2) | 2] R3—8() c+y+=z x Y T oy az
= O(Tlog’ T")
by Lemma 7.3.
Next, inserting the relation (9.1), we have
nisc[[[ Qe+ 1yl +]ep | RIE AT 42
©93) 3(8) z+y+z
. e ey
_|sin Tz sin T"y sin 7"z d dydz).
z Y 2
We consider, for instance, the following part of this integral:
sin T(x + y + 2) sin Tz sin T’y sin 1"z
[./j;(s),yl z+y+z z Y 2 de dy dz
< sin T(x + y + 2) sin Tz sin 7'z
"fff,g(s) z+y+z z 2 du dy dz

8 . 8 . F) .
_ sin Tx sin Tz sin T(z + y + 2)
_,[5 des dz[a z+y+z dy
< [ sin Tz| , ¥ sin Tz i f“ sin Tul
=L =z L] u

= 0 (log’ T log T").
Other parts in (9.3) may be estimated by similar arguments to be
O(log T'log® T')  or  O(log" T log T").
Keeping (9.2) in mind, we get the proof of Lemma 7.4.

10. Proofs of theorems. We are now in a position to prove the theorems in
Section 6. Throughout this section we of course assume all conditions stated in
these.

First of all we shall evaluate EJ*(T).

EIN(T) = E f f f f 8(5)8()8(1)8(v) -6~ O G0 3t G d.

6 T
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Inserting (6.2) here, we have
ypy = 1 1 f f [T s —s0—
EJ(T)TI&#W f TQ(t S, U — 8V — 8)
*(10.1) cg OO0 g5 Gt du dy

T
+ 1—;”—2%5 ffff Po(t — s,u — s, 0 — §)e (0= gs dt du dv
- T

say. Because of (6.4), we have

1 1 3/2 . ©
i

T
. f f f f gHED | SOt GED g0 1 g g
- T :

_(1V? 1 ® sin T(x+y+2+ %)
“(ZF) Wffff_mqu’y’z) cty+tzt¢

sin T'(z + £) sin T(y + §) sin T(z — &)
" T pp— dx dy dz

(1Y"? 1 ? sin T(z + y + 2)

_sin Tz sin Ty sin Tz
z Y

(10.2)

dz dy dz.

Now the integral (10.2) with ¢(z, y, 2) = 1 is easily shown to be =T by
the repeated applications of Parseval’s relation. Hence we have

n=(g) [t -ty -tz +0 - a-t —t0)

_sin T(x 4+ y + 2) sin Tz sin Ty sin Tz
2

eI po " dz dy dz

(10.3)

1\** =
+o(—t =58 (27) 7

Since q(z, y, 2) satisfies the Lipschtz condition at the point (—£, —§, &), we
have, by Lemma 7.4 with T = 7",

(10.4) Ji=0 (%., log® T) +0 <%>
= o(1).
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Next

11 !
h=gmr [,
(10.5) fp(t — s)p(u — v) + p(u — 8)p(v — t) + p(v — 8)p(t — u)}
D=0 gs dt du do.

Here we shall have, for instance,

L[] ot = optu = )= s @t au o — 50,

as T — o,

(10.6) 161r2 T2

because this will become, inserting p(u) = [“, p(z)e™” dz, and making a change
of orders of integration,

) ] T .
T(%P'Tl_?_[ p(z) dx[ p(y) dy ffff D@D YD gy a0 g 0

_ sin’ T(z + &) ® sin® T'(y + §£)
= [, @+ O [.»w Ty + ¢ W

which tends obviously to p’(—§) = p’(¢) as T — « by the well known prop-
erty of Fejer’s integral.
As for the second part of the integral of the right hand side of (10.5), we

obtain
T
(10.7) 161:2T2 f f f [T p(u — 8)p(v — 1)) ds dt du dv — p*(¢),
as T — .

However we find a difference in considering the remaining part. In fact the
integral

167:27‘2 f f f [ p(v — 8)p(t — w)e 12" “™ ds dt du dv

becomes, after similar treatments,

® sin T(z + &) sin T(z — &)
[L”(x) T + D& — D d’”]

which converges to p2(0) if £ = 0, and 0 if £ # 0, by Lemma 7.1. Hence com-
bining this result with (10.6), (10.7), we get

lim J» = 3 p*(0), ifg=0,

T+

= 2 p*(%), if £ # 0.
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We finally get
(10.8) lim EJ*(T) = 3 p*(0), if £ =0,

T—>o0

= 2 p(%), if £ # 0.

Moreover we shall find out here the limit value of EJ(T)J(T"). The same
method as above leads us to

—i(s—t)E T(u—v)E
= ZTT’E/[ &(s)e(t)e ds dt f[ &(u)&(v)e du dv

= 161r°TT’ ff ds di ff dudv-Q(t — s, u — v, v — g)g L@

__.__]:_f f‘[ — — _ —i{(s—t)—(u—v)] £
+ 6T [T ds di . du dvPe(t — s,u — s,v — s)e

K(T, T') + Eo(T, T")

(10.9)

It

say. By the same way we got (10.2), we shall have

kir, 1) = () g [[[ae-tv-az+0

sin T'(z + y + 2) sin Tz sin T'y sin T’z
2

Ty o ” dz dy dz.

Now the Parseval relation proves Ki(T, T’) with ¢(z, y, 2) = 1, to be

(10.10) j’fl‘ sin T'(z, y, z) sin Tz sin Ty sin Tzd dy de = °T,
Lo ¢+ Yy + 2 z Y z

if 7" > T. Hence we have

k) = () A [[[ e =y =520 - d-6 -50)

_sin T(z + y + 2) sin Twsin T’y sin 1"z
c+y+2 z y 2

dr dy dz

1\ =
which is, by Lemma 2,

(TT,(log Tlog T + Tlog’ T') + )

Hence

(10.11) K\(T, T") = o(1), asT' =T — .
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Next Ko(T, T') will become after some arguments

_/f ds dt ff du dvp(t — s)p(u — v)e” i{(s—t)—(u—v) }§
T T )
+ ff ds dt ff du dvp(u — s)p(v — t)e—q(s—z)—(u—me
—T [t

T T ]
+ f[ ds dit ff du dvp(v — 8)p(t — u)e—z[(s—t)—(u—v)ls
T : -~ 0
= Kn + Kan + K,

167r2 TT'

say. It will be seen that the asymptotic behaviors are much different among

Ky y Ko and Ko; . )
In fact K» becomes, by an argument like that used in considering (10,6),

sin’ T(z + sin” T'(z + £) sin® T(y £)
f | =T F g7 PO ® f ATy — B,

which tends to p(¢£)p(—§) = p’(¢) as T, T — . Thus

p(y) dy,

(10.12) lim Ku(T,T") = p(£).

T' 2T

Next we see that K (7T, T') will become

1 1 [®sinT(zx + &) sin T'(y + &)
= T _[_w CEL p(z) dz

_ f‘” sin T(y — £&) sin T'(y — &)

W =" p(y) dy.

Then Lemma 7.2, (7.2) shows

(10.13) lm {Ku(T, T) — 58) TE} —o

T'2T>%

Finally K; becomes, after some arguments,

11 “sin (x + £)7T sin T'(x — &) ¥
R

which converges to 0 if £ # 0, by Lemma 7.2, (7.3). On the other hand if £ = 0.
then it reduces to Ky and

lim {Kzz(T, T) — 2(0) T,I = 0.

T'2T>0



1214 T. KAWATA

Combining (10.12), (10.13) and the last result, we have

. , T\ ol _ |
(10.14) Jim (K1) = (14 5) @) =0, ife=o,
(10.15) im {K2<T, ™y - (1 +2 p2(0)} o

Hence putting (10.11), (10.14) and (10.15) into (10.9) we get (6.9) and (6.10).
After these preparations, the proofs of the theorems are now very easy. For

B = 5y - (1 = L) e

= (BJY(T) — 2p°(%)) + (EJXT") — 2p°(¥))
—9 (EJ(T)J(T’) - (1 - 7,71) p2(£)>,

which tends to zero by virtue of (10.8) and (6.9). Formula (6.6) is also proved
using (10.8) and (6.10).
The proof of Theorem 6.2 is also immediate.
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