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1. Introduction. The partially balanced incomplete block (PBIB) designs
were first defined by Bose and Nair [2] in 1939. Later on, in 1942, Nair and Rao
[7] generalised the original definition to include some confounded factorial de-
signs as well as many others in the class of PBIB designs. The class of PBIB
designs was found to include most of the designs used in practice. In 1946,
Harshberger [4] presented triple rectangular lattices, and Nair [6] proved that
these designs were not in general PBIB designs, but that the duals of these
designs were PBIB designs. So it was found that, except for the intra-inter-
group balanced designs given by Nair and Rao [8], almost all the designs so far
proposed, with limited number of distinct variances for elementary treatment
comparisons, were either PBIB designs or duals of PBIB designs. Yet a need
was felt to find a more general class of designs. In an attempt to find out why
the PBIB designs with m associate classes have m distinet types of treatment
comparisons, I came across a more general class of designs, which is given in
this paper. The arguments which led to this generalisation are also put forward.

2. Notation. Let there be v treatments, each replicated r times in b blocks of
k plotseach. Let N = [ny] (¢ = 1,2, -+ ,v;5 = 1,2, ---, b) be the incidence
matrix of the design, where n;; is equal to the number of times the 7th treat-
ment oceurs in the jth block. It is assumed that #;; is 0 or 1. The assumed model
is

(2.1) Yii = wu+ Bi + b+ &,

where y.; is the yield of the plot in the jth block to which the ¢th treatment is
applied, u is the general effect, 8; is the effect of the jth block, ¢; is the effect of
the sth treatment and e;;’s are independent normal variates with mean 0 and
variance ¢”. Let T'; be the total yield of all the plots having the sth treatment,
B; be the total yield of all the plots of the jth block and ¢; be a solution for #
in the normal equations. Further denote the column vectors {T, Ts, - -+, T\,
{Bl,Bz, cee ,Bb},{tl,tz, Ty, t,,} and{zl, 22, cry, 2,,} byT,B,tandfrespec-
tively. It is well known that the reduced normal equations for the intra-block
estimates of the treatment contrasts are

(2.2) Q = Ct,
where
(2.3) Q=T - %NB
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and
1
k

where I(v) is the » X v Identity matrix. The matric C defined in (2.4) will be
called the C-matrix of the design. Denote by E(m, n) the m X n matrix with
all its elements equal to 1.

LemMA 2.1: If the design is connected, the matriz C + aE(v, v) s non-singular,
where a is any non-zero real number and = [C + aE(v, v)]7'Q is a solution
of the equation Q = Ct.

Proor: Let 6;, 65, ---, 6, be the canonical roots of the C-matrix and let
L, 1, ---, 1, be the corresponding canonical vectors. It is well known that the
C-matrix has one root 0 and that the corresponding canonical vector is
() *E(v, 1); denote these by 6; and 1, respectively. Then

(2.4) C = 7I(») — NN/,

(2.7) C= 3 ol
=2
and
(2.8) C + aE(v,v) = 22 041; + av 1] .

Since the design is connected, the rank of the C-matrix is v — 1, and therefore
none of the 6’s except 6; is 0. Hence from (2.8) it follows that the matrix C +
aE(v, v) is non-singular and

(2.9) [C+ aB(o, )" = > L1t + Ly
= 0; av
Also
(2.10) CIC + aE(s, )] = 22 1 = o) — %E(v, 2.

Hence, since _ Q; = 0, [C + aE(v, v)]'Q is a solution for t in the equation
Q = Ct.

Lemma 2.2: If t = AQ is a solution of Q = Ci, then [A + aE(v, v)]Q is
also a solution of Q = CL.

3. PBIB designs. An incomplete block design is said to be partially balanced
(PBIB) if it satisfies the following conditions (Bose and Shimamoto B):

(i) The experimental material is divided into b blocks of & plots each, different
treatments being applied to the plots in the same block.

(ii) There are v treatments each of which occurs in r blocks.

(iii) There can be established relations of association between any two treat-
ments satisfying the following requirements:

(a) Two treatments are either 1st, 2nd, - - -, or mth associates.
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(b) Each treatment has exactly n; ¢th associates (¢ = 1, 2, -+ -, m).
(¢) Given any two treatments which are 7th associates, the number of
treatments common to the jth associates of the first and the kth associates
of the second is pjx and is independent of the pair of treatments with which
we start. Also pjx = pi;j -
(iv) Two treatments which are the 7th associates occur together in exactly

\: blocks.
Now further define each treatment to be its own Oth associate and the Oth

associate of no other treatment. We may thus consistently write
(3.1) =7, mo=1  pu=08m, P =Dph=0du,

where 6;; is the Kronecker delta which is defined for all pairs of natural numbers
1, J, a8 &; = 1,if ¢ = j; and &;; = 0, if 7 # j. Then the relations between the
parameters are

bk = or, Soni=w,

7=0
\m m
(3‘2) Z n;x; = T’C, E ka = n;,
1=0 k=0
nip;k = n,pflc = nka:] , 1:, j, k = O, ]_, cee,m.

Now consider »(v + 1)/2 treatment pairs (¢, j) (¢,5 = 1, 2, ---, v), assum-
ing that (7, 7) is identical with (j, 7). Partition them into (m + 1) disjoint
classes and corresponding to the ¢th class (¢ = 0, 1, ---, m), define the v X v
matrix B, = [B{;], where Bi; = 1, if the pair (¢, J) belongs to the tth class and
B{; = 0 otherwise. The classes can be called the association classes and the
corresponding matrices, the association matrices. As there is one to one cor-
respondence between the association classes and matrices defined above, either
of them will uniquely determine the other. It can be seen that each B; is sym-
metric. Since every pair must belong to one of the association classes, it is
obvious that

m

(3.3) ZoBi = E(, v).

TaEOREM 3.1: The necessary and sufficient conditions, that (m + 1) association
matrices By, By, - - -, B, determine an association scheme for an m associate class
PBIB design, are that
(34) ‘ By = I(v),
and
(35) BB, = Zp:@ny Le=01,- -, m

=0
The proof of the above theorem follows immediately from the definition of
a PBIB design given by Bose and Shimamoto [3].
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The idea of association matrices was also developed by Bose and Mesner [1]
independently and became available after submission of the manusecript of this
paper. The reader may note that the concept introduced by Bose and Mesner
is slightly different from one given here. The idea of association classes and
matrices as introduced by the former is confined only to PBIB designs, whereas,
my interest being the generalisation of PBIB designs, the association classes
and matrices are defined in terms of partitioning of v(v + 1)/2 combinations
of v objects (an object may occur more than once) taken two at a time, into
(m + 1) mutually exclusive and exhaustive classes. Theorem 3.1 gives a set of
necessary and sufficient conditions for such a scheme of partitioning to be an
association scheme of a PBIB. Lemma 3.1 of Bose and Mesner [1] proves the
necessary part of the condition; the sufficiency is proved by Lemma 5.1 of [1].

Before deriving further results, it is necessary to prove the following matrix
theorem.

THEOREM 3.2: If A is a v X v positive definite matriz, such that all the non-
negative integral powers of A are of the form

(3.6) A" = 3 uxB:, N=012---,
where uy; are scalar constants and B; are fixred v X v matrices and A® means 1(v),
then the matriz A~ must also be of the form Z d:B; , where d; are scalar constants.

Proor: Let 6 be the maximum of the canonical roots of the matrix A. Then
the canonical roots of the matrix B = I(») — {1/(8 + 1)}A lie within the
range 0 and 1. Now consider the series

(3.7) D= g B".

The above series converges because the series Y z* converges for —1 < z < 1
and the canonical roots of B lie within the range (Macdufee [5]). Also it can
be shown that

(3.8) AD = (6 + 1)I(v) = DA,
hence

o 1
(3.9) AT = i1 D.

Now since every power of A is a linear combination of matrices By, B;, -+, Bn,
the same is true for every power of B and hence D is also a linear combination
of the matrices By, B, ---, B,

COROLLARY 3.2.1: If there exist mairices By, By, ---, Bn, such that I(v),
E(v, v), and all the positive integral powers of the C-matriz of a connected design
are linear combinations of the matrices By, By, -, B,., then there exists a solu-
tion t = AQ of the equation Q = Ct, such that the matriz A is a linear combi-
nation of the matrices By, By, - -+, B,,, and also
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(3.10) AC = CA = I(») — %E(v,v).

The proof of Corollary 3.2.1 follows immediately from Theorem 3.2 and

Lemma 2.1.
The C-matrix of a PBIB design can be written in the form

(3.11) c="k=-Dg _ $Ng.
k =k

where B, is the association matrix corresponding to the ¢th associate class
(t =0,1, ---, m). Using relation (3.5) and mathematical induction, it can be
proved that all the powers of C are linear combinations of By, By, :--, Bn,
also I(v) = By and E(v, v) = .o B;. Hence, by Corollary 3.2.1, it follows
that a solution = AQ exists, such that

(3.12) A=) dB:.
=0
With a little algebra, it can be shown that the d.’s are the solutions of the
equations

EZpijcid,:l—%, if 1= o
7=0 7=0
(3.13)
=—$, ifl=12---,m,
where
E—1 )
(3‘14) cozz‘—(——z——z, C; = —%, 7:=1,2,"',m.

Since the m + 1 equations in (3.13) are not independent, any m of them can
be taken and solved with an additional convenient restriction like Y d; = 0,
or, for some j, d; = 0. It can be verified that the solutions obtained by taking
d; = 0 will be identical with those obtained by Bose and Nair [2].

4. Restrictions on association matrices.

LemmMa 41:If C = Y ¢B; and if
1==0

(4.1) BB, + B.B, = 23 ¢iB;,
forall z,t = 0,1, -+, m, then
(42) CN = Z uNiB,' y

1=0

for all positive integral values of N.
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Proor: The theorem is true for N = 1. Assuming the result to be true for N,

it can be proved for N + 1 as follows:
Since a matrix commutes with its powers,

(4.3) c' = ¢"Cc = cc.

Therefore

(4.4) c' = 1(c"C 4+ cch).

On applying (4.2) for N, (4.4) becomes

(4.5) c' = %Zﬁ Z uxnc;(BB; + B;B;).
j=0 i=

Hence substituting for B;B; + B,;B; from (4.1),

(4.6) ' =3 { 2 uNich:j} B..
t=0 | =0 j=0
Hence by mathematical induction Lemma 4.1 is proved.

THEOREM 4.1: If the C-mairiz of a connected design is C = D_wcB;, and the
matrices By, By, - - -, B are the association malrices of the design satisfying con-
ditions By = I(v) and BB, + BB, = 2D 0qi.B:, then the analysis of the design
will be identical with that of a PBIB design.

Proor: From Corollary 3.2.1, and Lemma 4.1, it follows that a solution
t = AQ of Q = Cft exists such that

m

(4-7) A= ;}eiBi
and
I(v) — L E(s,v) = AC = CA,
(48) v
3 = (AC + CA).

Simplifying both the sides in terms of B,’s, we get

1 m m m m
(4.9) By— =2 B. =), {Z ciejqﬁ,} B..

UV t=0 t=0 (j=0 =0
Hence, on equating the coefficients of the matrices B; on both sides of the equa-
tion, the e;’s are given by a solution of the equations

m m 1

Z Z q:'jciej =

=0 ;=0 v

ift = 0;

I
[y
|
|

(4.10)
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On comparing equations (4.10) and (3.13), they are seen to be identical ex-
cept for a change of notation. This implies that one can obtain exactly the same
analysis as that of a PBIB design (Bose and Nair [2]), even if the condition
(3.5) is replaced by the less stringent condition (4.1).

The combinatorial implication of the condition (4.1) is the following: If two
treatments are ¢th associates, then the number of treatments common between
the jth associates of the first and the kth associates of the second, plus the
number of treatments common between the kth associates of the first and the
Jth associates of the second, is equal to 2¢ji , and is the same for all the pairs
of treatments which are 7th associates.

Hence the above condition can replace the condition (iiic) of the definition
of a PBIB design given by Bose and Shimamoto [3], and the analysis of the
design will remain the same. In the case of two associate classes the two con-
ditions are equivalent, but in general they are not.

Ezample 4.1: Consider the following design with parameters: v = 6, b = 9,
r=3,k=2,m=4,nl=n2=n3= 1,n4=2,)\1= 2.,)\2= 1,)\3=>\4=O.
The plan of the design is given in the Table 4.1 and the association scheme in
Table 4.2.

Now consider the treatments 1 and 3. The number of treatments common
between the 1st associates of 1 and the 2nd associates of 3 is one, whereas there
is no treatment common between the 1st associates of 3 and the 2nd associates
of 1. Hence it is clear that this design is not a PBIB as defined by [3], but it
can be, verified that the design satisfies the condition given in (4.1) and that
some of the ¢;; are ‘

(4.11) g =% = ¢hs = ¢i .

One observes that the above example is obtained by taking two X-replications
and one Y-replication of a 3 X 2 simple rectangular lattice design (Harshberger
[5]). A similar result will be obtained for any design formed by taking r; X-repli-
cations and r, Y-replications (r, 5 1) of a p(p — 1) simple rectangular lattice
design; but, in general, when p > 3, there will be five associate classes.

6. Further generalisation. From the foregoing arguments, we can see that an
analysis almost similar to that of a PBIB can be derived from only the assump-
tions that association matrices satisfy the condition (4.1) and that the C-matrix
and I(v) are linear combinations of the association matrices. Hence, instead of
taking By = I(v), we can think of some association matrices yielding I(v) as
their linear combination. This will lead to partitioning treatments into several
groups and finally, to the following definition:

Definition 5.1: In an incomplete block design, partial balance over intra- and
inter-group treatment comparisons will be achieved, if the following conditions
are satisfied:

(i) The experimental material is divided into b blocks of k plots each, different
treatments being applied to the units in the same block.
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TABLE 4.1.
Plan of the design
Replication 1 2 3
Block 1 I 2 3 4 l 5 I 6 7 8 9
Treatments 1 3 5 1 3 5 1 2 4
2 4 6 2 4 6 6 3 5
TABLE 4.2.
Association scheme
Associates
Treatment
st 2nd 3rd 4th
1 2 6 4 3, 5
2 1 3 5 4, 6
3 4 2 6 1, 5
4 3 5 1 2, 6
5 6 4 2 1, 3
6 5 1 3 2, 4

(ii) There are v treatments divided into A groups of ny, ns, ---, ny treat-
ments respectively; the treatments of the ith group occur in exactly r; blocks.

(iii) There can be established relations of association between any two treat-
ments satisfying the following requirements:

(a) A treatment of the ith group and a treatment of the jth group are
either 7j:1th, 45:2th, - - -, or 7j:m;;th associates (¢, j = 1,2, ---, h); 4j:tth
associates are the same as j7:¢th associates.

(b) Each treatment of the 7th group has exactly n.;.j:tth associates
G=1,2 -+, h t =1,2, ---, m;;) and has zero 1k:tth associates (I # 1,
k #= 1).

(e¢) Given any two treatments which are the 47:{th associates, the num-
ber of treatments common to the 7;7;:fith associates of the first and 7s72:¢:th
associates of the second plus the number of treatments common to the
12j2:6:th associates of the first and 7ji:iith associates of the second is
2 qiji(Bij1ity, %272:8) and is independent of the pair of the treatments with
which we start. ‘

(iv) Two treatments which are %j:{th associates occur together in exactly
)\ij:t blocks.

Because of the treatment groupings the condition (iiic) of Definition 5.1 can
be expressed as follows:

(d) Given any two treatments which are the 4j:{the associates (¢ # j),
the first belonging to the 7th group and the second belonging to the jth
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group, the number of treatments common to 7k:{th associates of the first
and jk:fth associates of the second is equal to 2 ¢i;..(7k:t, jk:t2) and is
independent of the pair of treatments with which we start. Also given any
two treatments which are the 77:{th associates, the number of treatments
common to the ¢k :¢; associates of the first and ¢k :#;th associates of the second
plus the number of treatments common to the 7k:%th associates of the first
and ¢k:t;th associates of the second is equal to 2 g¢i..(tk:t1, 7k:f;) and is
independent of the pair of treatments with which we start.
In these designs the total number of associate classes ‘m’ is given by

(55) m = Z Mmsj .

The relations between the parameters are
h
Z n; =0,
=1
(5.6) n; = g Mijit = 24 Mije © #J;
mik !
2 qusa(ihit, kD) = Rk

"‘k . . . .
212_31 Giini(ihity , jkiD) = Riweey 5 if 5 j.

NijeQij: (TRl Jhit) = naagac (it gkity),
ifs#7,7#Ek.
If B,;.. denotes the association matrix corresponding to the 7j:¢th associate
class, then
(5.7) B Bigisits + Bigig:Bigiy:iey = QZ* gij:e(Bgiity, Bad2it)Bijue

where Y_* denotes the summation over all the possible values of j:t.
Also, the C matrix can be written in the form

(5.8) C = Z* Cij:Bijit
where
cij.ie = ri(k — 1)/k, if f =jand ¢ = 0;
(5.9) i
= = Nij./k, otherwise.
Hence, by Lemma 4.1 and Corollary 3.2.1, the solution of the normal equations
is given by t = AQ where the matrix A is of the form
(5.10) A= Z*dij:tBijzt ,

and the constants d;;., are given by a solution of the equations
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(5.11) Z, Gise(Tiiity, 122t ta) Civgyey Diggpiy = 1 — v_la if7i =jand ¢ = 0;
= — v ! otherwise,

where )/ represents the summation over all the values of 47::¢; and 7yjsits
Now, from Lemmas 2.1 and 2.2, it can be assumed that a solution, such that
A is orthogonal to the vector E(v, 1), exists, and then
h mij
(5.10) diio + 21 tZInu;z dije = 0.
g e

Hence, using & equations of (5.10), (m + h) equations of (5.11) can be re-
duced to m equations in m unknowns. So it seems that the analysis of the designs
given in Definition 5.1 is similar to that of a PBIB design with m associate
classes.

In general, these designs involve a large number of associate classes and
consequently their analysis is complicated. The minimum number of classes m
is 3, when b = 2; the analysis for this design is given by Nair and Rao [9].

Another simple case is the one for which m;; = 1 and \;;y = N for all 7 5 7.
In this case the inverse of C 4 (N/k)E(v, v) can be obtained by working out
the inverses of & diagonal sub-matrices. Further, if m;; = 1 or 2, the computa-
tional work will be reduced considerably.
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