NULL DISTRIBUTION OF THE HODGES BIVARIATE SIGN
TEST

By JEroME Kiotz!

Unaversity of California, Berkeley

0. Summary. This note presents the solution to the problem of obtaining the
full null distribution for the bivariate sign test proposed by J. L. Hodges, Jr.,
in 1955 [1]. The partial solution of [1] is completed, and the table of [1] is ex-
tended to give the full distribution up to a sample size (n) of 30. In addition a
partial table is included for sample size from 31 to 50.

1. Introduction. Using the notation given in [1], the problem is that of count-
ing the number of cycles having a given value of K. This problem was solved in
[1] only for the case k < n/3, or n < 3h where h = n — 2k.

2. Counting the cycles. As stated in [1] the operation of rotation generates
equivalence classes of cycles. We count the classes by selecting a representative
member called a pattern. The number of cycles in each class is first determined.
The total number of cycles for a given k value is then obtained by summing these
numbers over all patterns corresponding to k.

To every cycle corresponds a walk in the plane. A plus sign corresponds to a
step in the y direction, a minus sign to a step in the x direction. Let us call a
point (z, y) a departure point for a path if it lies on theliney = z (ory = = + h)
and the path reaches the line y = z + h (y = z) before returning to the line
y = 2 (y = = + h). Thus such points depend upon the given value of h and the
particular path. Further, let us call the path between consecutive departure
points a flight.

3. Specifying the patterns. To every cycle corresponds the particular cycle
called a pattern which is obtained from the first by rotation and has the follow-
ing properties:

(i) The minimum number of minus signs above the diameter (k) is attained
for this cycle.

(ii) The cycle starts with a plus and ends the nth step with a plus.

(iii) The first and hence nth points are departure points.

To see the existence of such a pattern for a given cycle, let the cycle be rotated
until Condition (i) is satisfied. Condition (ii) must also be satisfied, otherwise,
using the fact that diametrically opposed signs are opposite, rotation by one
would decrease k contrary to the initial rotation. If Condition (iii) is not satis-
fied, after an even number of steps the path from the first point (0, 0) returns
to the line y = x. Thus, we can rotate the cycle so that the first point becomes a
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departure point without changing the number of plus or minus signs up. Condi-
tions (i), (ii), and (iii) are now satisfied. We see that a pattern defined by the
three conditions is not necessarily unique. Rotations of patterns taking depar-
ture points into like departure points may result in a different pattern. However,
this need not concern us provided we count only one pattern for every class of
patterns obtained by cyclic permutation. It may be noted that the definition of
a pattern given here differs from that given in [1]. For example, [1] does nct spe-
cify a pattern for cycles with alternating signs. However, under the restriction
k < n/3, the two definitions are equivalent. For, under the restriction, a pat-
tern satisfying the above conditions satisfies those of [1], and the pattern defined
in [1] is unique.

4. Counting the cycles for a pattern. To count the number of cycles corre-
sponding to a particular pattern we show that, to have less than 2n cycles for a
pattern, the pattern must have an odd number (greater than one) of flights,
which are all “equivalent.” We specify two flights to be equivalent if they are
identical, or if one can be obtained from the other by interchanging plus and
minus signs (e.g., ++—++ is equivalent (~) with ——+——). Assume
that after a rotation of less than 2n steps the pattern repeats itself—we take a
pattern as a starting point for convenience. We must have departure points
going into departure points of the same kind and hence the rotation consists of
an even number of flights. Let us denote the flights by «; and suppose there are
2¢ + 1 flights in the pattern ¢ = 1, 2, --- , 2t + 1. Next represent the cycle by
(a1, o as, as; -+ ; 041 | Qeege; - -+, asge). After a rotation which repeats
the pattern—say a rotation of 2p flights we obtain

ap ™~ Qoppl N Qapyl N

a2p~a4p/\l--~

where am = Oimmodsrss - From the symmetry (diagonally opposed signs are
opposite) we have ay ~ asey2, @2 ~ Qarys, ** 0, G2 ~ Qayz . Solving the sys-
tem, we obtain a; ~ @z ~ - @41 - -+ . Thus for this case we have 2n/2t + 1
cycles for the pattern and otherwise 2n cycles.

5. Counting the patterns. To count the patterns we count them according to
their number of flights—one, three, five, etc. For (2l + 1)h = n < (21 + 3)h
we will have patterns with 1, 3, 5, - - - , 21 + 1 flights. For the case of only one
flight, [1] gives the formula for 2*P[K = k] = 2nmu(n). ms(n) is the number
of ways of going from (0, 0) to (k, n — k) hitting the line y = x + h only at
the nth step—the gambler’s ruin problem (see [1]). Generalizing, we obtain the
formula, for the case (21 + 1)h < n < (21 4 3)h, where we have up to 2! +1
flights

2"PIK = k] = 2nmu(x)

+ 2 [(1,31> > T () + ( > 10 mh(ni)jl

3 ni<ng<ng i=1 ni=na¥ng
ni+notnz=n ni+notng=n
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< 2l+1 ) > 2ﬁlmh(nl)+( 2l+1 )ZHmh(nD

ni< e <nglqr t=1

+-~-+( 21 )ZHmh(m)+-~-

TI,"?""’rt—l

2l 4+ 1 2n 2041 mu(q)
+ ( 21 )n1= anm,n () ]+ Liatnem 5775 [(1, 1., 1)(2l+ 1)

n—n

21+ 1 m(Q)Y , ... 20+ 1 ma(gq)
+2l(2’1’m,1)< 2z>+ +(t)H<rl,r2,n_’n_l><t 4 ...

...... n (mh1<4>)]

. . t .
where p is the number of different r; ; D ey 7: = n; @, -+ -, g; 7; are integers;

(k n & ) = nl/k;! - - - k¢! is the multinomial coefficient; and I is an indicator
1 °°" t—1

function.

The preceding table completes the table of [1] and gives values of P[K < k]
to 5D for all values of &k and n = 1(1)30. Further the table gives values of P
to 5D for k up to a value which makes P just greater than 10 per cent and
n = 31(1)50.
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