THE JOINT CUMULANTS OF TRUE VALUES AND ERRORS
OF MEASUREMENT
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1. Introduction. This note is concerned with the situation where U fallible
measurements of some single characteristic are made on each of a large number
of objects. The U measurements may represent U different methods of measuring
the same characteristic, each method involving a different frequency distributien
of errors of measurement.

For each object, there is an unknown “true value” of the characteristic. The
difference between the observed measurement and the true value is an error of
measurement. The true value and the errors of measurement will be termed
latent variables.

The results derived are currently being applied in psychometric work, but they
should be applicable in almost any field where unbiased fallible measurements
are made. For example, the true amount (£) of some chemical constituent of the
blood may have been fallibly but independently measured by U different methods
(or by U different laboratory technicians) for each of a large number of hospital
patients. The results given here will permit the consistent estimation of the first
U cumulants of £, the first U cumulants of the error of measurement in each of
the U methods, and, further, all the multivariate cumulants of the latent vari-
ables up through order U.

In psychometric work, U strictly parallel forms of a mental test may be pre-
pared by matching the questions assigned to the different forms on their sta-
tistical characteristics (determined by pretesting). These test forms may, in
effect, all be administered ‘‘simultaneously” by the device of interspersing the
questions from all forms and then scoring the questions of each form separately,
counting the number answered correctly. The moments of the frequency distri-
bution of the “true scores” (£) of the examinees tested and also the distribution
of the errors of measurement may now be estimated by the method to be de-
scribed. (In this case, the shape of the distribution of errors of measurement must
be dependent on the value of £ This is apparent, for example, from the fact
that the observed test scores cannot be negative; hence whenever £ is near zero
large negative errors of measurement cannot occur.)

Formulas illustrating the final results obtained are given in Section 2. The
derivations are given in the remaining sections.

In Section 3, any multivariate cumulant of the observed measurements is
expressed as a linear function of the cumulants of the joint distribution of the
latent variables, no assumption being made other than the existence of the
cumulants in question (the results of this section are not new; they could be di-
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rectly obtained by specializing a formula given by James ([1], eq. 13), for ex-
ample). In Section 4 it is assumed that each error of measurement has a mean
of zero and is uncorrelated with other appropriate chance variables; it is shown
that each multivariate (and univariate) cumulant of the latent variables can be
expressed in closed form as a simple linear function of the cumulants of the ob-
served measurements. Section 5 details the restrictions imposed on the cumu-
lants of the observed measurements by the assumption about uncorrelated errors.

2. Specific formulas. There are U observed measurements on each object,
denoted by 1, - - -, zy . Both these and the true value, &, are random variables.
The errors of measurement are, by definition,

(1) €y = Ty — & (u=1,°";U)'
Any U-variate camulant of the observed measurements is denoted by «¢,... ¢y,
where C;, - -+, Cy are nonnegative integers referring to the variables z, , - - -,

Ty, respectively. Any cumulant of the latent variables is similarly denoted by
Ky, 8,5, .-8y, Where the first subscript refers to variable £ and the other U sub-
scripts refer to the U errors of measurement. It will be notationally convenient
to use a zero-order cumulant, having all zero subscripts, that is by definition
equal to zero.

Explicit formulas are given below expressing all latent-variable cumulants up
through the fourth order in terms of the observed-variable cumulants for the case
where U = 4. All necessary formulas are either given or may be obtained by
permutation of subscripts. The first subscript on each K, representing the true
value, is not subject to permutation, but the U other subscripts on each K or «
may be permuted providing the same permutation is made on each K and «
throughout the entire formula.

Ko,looo = Ko,omo = KO,OOIO = Ko,oom =0 by assumption

Kl,oooo = K1000 = Ko0100 = Koo10 = Kooo1

Kz,oooo = K1100 = K1010 = *°° = Koo1

Koom00 = Kaooo — Kio0 = -+ = Keooo — Koorr
Ko,0000 = Kozo0 — K100 = *++ = Koeoo — Koow , €tc.
Ka.oooo = Kuio = - = Ko

Kz,moo = e = Kz,o()(n = 0, by assumption

Kl,uoo = K0,2100 = Ko,luo = 0, ete., by assumption
Ky o000 = ko100 — Ko =+ = Keoor — Kou , ete.
K0,3000 = Kaooo — k2100 + 21110 , ete.

K4,0000 = Kun

K00 = Koo = K1 = -+ = Koun = 0 by assumption
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Ko 000 = Koo — kuu , ete.

K 5000 = K300 — 3kano + 2knu , ete.

Ko20 = Kkas00 — Koo — Kz + Knu , €te.
Kos00 = kaooo — 4xs100 + 6korro — 3kun , ete.

3. General relations among cumulants. The characteristic function of the
latent variables may be written

v
(2) F(To, Ty, -, Ty) = Eexpip Toeu,
u=0

where Z is the expectation symbol and ey = £. That of the observed measurements
is, by (1),

U U
(3) f(t1,~~,tg)=Eexpi2§tuxu=EexpiZtueu,

U= u=0

where §, = ZZ=1 bu .

It is seen that the first characteristic function may be changed to the-second
simply by replacing T by ¢. If the necessary cumulants exist, the cumulant-
generating function of the latent variables is

log F(To, Ty, -+, Ty)

(4) & & TRT T
B%O B;=:0 By=0 Bo'Bll U! Bo:Bu-Bu
where P = ) u_ B, . Take the right side of (4) and replace Ty , --- , Ty by
ti, -+, tyand T¢® by the multinomial expansion
Bo - Fo By! ™ ay
(5) i =(uz=ltu) SP o I
where a; , « - - , ay are nonnegative integers and =, is over all sets of a such that

> Y ia, = By. This converts the right side of (4) to the cumulant-generating
function of the observed measurements:

log f(t1, -+, tv)
,&'Ptfﬂal .. tgv-i-av

(6) =2 i i 2“311.-~Bl;.a1!-'

By=0 B1=0 By=0

R aU! Bo'Blo-oBU .

The cumulant «¢,...c, of the observed measurements is the coefficient of the
term ¢° ¢ -+ - t57/Cy! - - Cy! in the series at the right, where P’ = > 7_, C,,.
If B, + a, is replaced by C, in (6) and the terms rearranged, these cumulants
are found to be

U
(7) Keyeeecy =ZB KBO’BI"‘BU H (g:) )

u=1
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B
negative integral values of the B, subject to the restrictions that B, < C, for
u=1---,Uand P/ =

The result given in equation (7) may also be expressed in terms of symbolic
multiplication:

(8) Keyorop ~ (E4 @) (E4 ) - (5 + en) ™.
By By

The ~ symbol may be replaced by an equals 81gn when each term £20ePten?. . cepl
on the right has been replaced by Kz, 5,...5y -

Formulas (7) or (8) express any Pth-order cumulant of the observed measure-
ments as a linear function of the Pth-order cumulants of the latent variables.
Without further assumptions, it is not possible to solve any set of these equa-
tions for the unknown cumulants of the latent variables, for the reason that there
are always fewer equations than unknowns.

where (C“) = (C,!Y/B,(C, — B,)!, and where Z; is taken over all sets of non-

4. Determining the cumulants of the latent variables. The result in (7) and
(8) was obtained without any assumption about the distribution of the latent
variables other than the existence of the cumulants. It will now be assumed
that each error of measurement has a mean value of 0 and is uncorrelated with
every product of the remaining latent variables. Thus K p,,5,...5, = 0 whenever
any B, (v > 0) is equal to 1. This is much less restrictive than the usual as-
sumption that the errors of measurement are distributed independently of the
true value and of each other. The present assumption, for example, permits the
variance of the errors of measurement and all higher moments to be dependent on
£—it is only the mean error of measurement that is independent of £.

With this assumption, we may proceed to prove

TureoreM 1. Given that K s,,5,...5, = 0 whenever any B, = 1 (u > 0), all equa-
tions (7) for which Y 49—y C., = P is constant can be ranked so that the right side
of each contains at most one nonzero K appearing tn no preceding equation; thus,
given that the equations are consistent, they may be solved so as to express any K of
order < U as a linear function of «’s.

Let U — T be the number of subscripts on the left side of (7) that are equal
to 1, so that the observed-variable cumulant may be written ke, c,...cpu..1.
For By < U — T, there must be at least one value of u > 0 for which B, =
on the right side of (7), soevery K z,,5,...5, Will vanish whenever B, < U — T.
For By = U — T, there is on the right side of (7) one and only one cumulant,
K3, 5.8, , Without unit subscripts; this unique nonvanishing cumulant has T
subscripts that are the same as those of the observed-variable cumulant and
(at least) U — T zero subscripts, so it may be written K_r),¢,¢5---cp00---0 ;
it will be spoken of as the latent-variable cumulant to which k¢, ¢,... cpu...1 (Wwith

1 As pointed out by a referee, formula (8) shows that the relation between observed-
variable and latent-variable cumulants is exactly the same as the relation between ob-
served-variable and latent-variable moments about an arbitrary origin.
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U — T unit subscripts) corresponds. For By > U — T, there may be on the right
side of (7) a number of cumulants K g,, 5,..., without unit subsecripts; each of
these, however, is a latent-variable cumulant to which some other observed-
variable cumulant kg, z,...5yu...1 having By unit subscripts corresponds.

Consider all the observed-variable cumulants of a given order (P) and suppose
them to be grouped according to U — T, the number of unit subsecripts, and the
groups ranked on U — T starting with the cumulant for which 7 = 0. The re-
sults of the preceding paragraph show that equation (7) expresses any « as a
linear function of K’s, one of these being the K to which the given « corresponds,
all the others being K’s to which correspond some other «’s of lower rank. This
completes the proof of Theorem 1.

6. Restrictions on the observed cumulants. If none of the C’s are zero in
Kcyogee-oqu...1, then this is the only « that corresponds to Kw_1),¢,cs--- cpoo---0 -
If V of the C’sin k¢, c,... cqu1.. .1 are zero, then every « obtained by permuting the
zero and unit subscripts on « also corresponds to the same K.

It follows from Theorem 1 that any K may be expressed as equal to any one of
the (V ;: g ; T) corresponding «’s plus other «’s of lower rank (unless the first
« already is of lowest rank). For the «’s of lowest rank, T = V and there are

(U H V) equally good equations, such as K y_zy,0...0 = K11...100.-.0 , there being
U zero subscripts on the left side of the equation, T zero subscripts and U — T
unit subscripts on the right. These ( U H T) different «’s must thus be equal.

Proceeding to the case of next higher rank, another set of «’s are found that must
be equal to each other. Mathematical induction now shows that all «’s corre-
sponding to a given K must be equal. Thus,

THEOREM 2. Given that Kpy,5,...5, = 0 for any B, = 1 (u > 0), any two ¥’s
will be equal +f their subscripts are the same except for a permutation that involves
zero and unit subscripts only.

Theorem 2 states a restriction on the observed-variable «’s that is implicit in
the assumption made in Section 4 about uncorrelated errors. Since the matrix
of the large-sample sampling variances and covariances of the «’s could be com-
puted if desired, the assumption made in Section 4 can be submitted to statistical
test, at least in large samples, to determine whether or not any given set of ob-
served data is compatible with it.
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