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1. Introduction. Pitman [1] gave a thorough discussion of the problem of
estimating the location and scale parameters of a distribution which is known
except for one or both of these parameters. In particular, if X; --- X, are real
random variables independently and identically distributed according to the
density r(z — £) (with respect to Lebesgue measure), where ¢ is unknown but
the function r is known, Pitman shows that the estimator

| [eTrixi - 0 a
fHT(Xi —§) dt

is the best translation-invariant estimator in the sense that it minimizes
&[£(X, - -+ X,) — & among all estimators £ for which

(1.2) E@mto o ant ) = E@m, -, m) +c

for all z;, --- , z, and ¢. Girshick and Savage [2] showed that £) is minimax in
the class of all estimators (not restricted by (1.2)) and this also follows from the

later more general results of Kudo [3] and Kiefer [4]. Karlin [5] has shown that
under certain conditions £ is admissible, that is, if £ is any estimator for which

(13) Ei(é(Xl y T Xn) - 5)2 = Ef(éo(Xl y T Xn) - 5)2
for all ¢, then equality holds for all £. Since his conditions are fairly strong, and
his method somewhat special, it seems desirable to present an alternative proof.
Theorem 1 of Section 2, when reformulated for the present slightly special case,
becomes

TraeorewMm. If

(1.1) (X1, -, Xa

[Tl — o a
[T e — o a
[ X0 rta — o) e
) er(xe—E)dE

f II r(z0)

2 3/2

(14)
H dx; <

then & defined by (1.1) is admissible.
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The condition (1.4) is not very strong. For example, if there is any translation-
invariant estimator £ for which & § — £|° < o, then (1.4) holds. For the
Cauchy distributionr(z) = 1/x (1 + 2°) withn = 7, thisis true with £ equal to
the sample median.

The proof is given by a method first used by Blyth [6], and the result seems to
be the best possible obtainable by this method. Here, as in Lehmann and Stein
[7], roughly speaking, the theorem requires one more moment than is clearly
relevant. In [7] a first moment is required, although it is a testing problem, and
here, a third moment rather than a second. It would be interesting to know
whether conditions of this type are necessary. Essentially the same method will
be applied in a paper, now being prepared, to the problem of estimating two un-
known location parameters with quadratic loss. There it is necessary to vary the
form, as well as the scale, of the a prior: distribution (see the argument around
(2.16)). The bivariate normal case has already been treated by the author in
[8]. For three or more translation parameters with positive definite quadratic
loss, Pitman’s estimator is not admissible. This was proved in the normal case
in [8]. While it is of some theoretical interest to prove the admissibility of the
natural estimator when it is admissible, the careful study of other estimators when
the natural estimator is not admissible has-greater practical value.

It may be useful to indicate the correspondence between the notation used in
this introduction and that of the slightly more general problem treated in the
remainder of the paper. Let Y be the n — 1 dimensional real coordinate space,
€ the o-algebra of all Borel subsets of Y and » the distribution of ¥ defined by
(1.9).

fxr(x)r(x + ) oo (@ + yar) dz

(15) fy) =

fr(x)r(x + ) oo (@ + Yama) do
and
(1.6) 9(y) = fr(x)r(x 4+ ) o (@ + Yar) da,
where
(L.7) y= (4, ", Yna).
Also, let

(18) plz,y) = "@HIGNre + 1) =) - @ + @) = o)
. ’ 9(y) :

Then conditions (2.1) and (2.2) are satisfied by p, and (1.4) reduces to (2.3).
If we define the random point (X, ¥) by

Y1=X2—X1,

(1.9) :
Yn~1 = Xn - Xl,

(1.10) X=X,—f(Yy, , Yaa),
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then the estimate X, proved admissible in Section 2, is seen to reduce to
EO(XI y T Xﬂ)'

2. The results. Let ® be the o-algebra of all Borel subsets of the real line <,
and € a g-algebra of subsets of a set Y. Let u be Lebesgue measure on & and »
a probability measure on €. Let p be a nonnegative valued ®C measurable func-
tion on X X 9 such that

(2.1) fp(x, y)der =1

' for all y
(2.2) fa;p(.t, y)der =0
(2.3) fdv(y) (f 2'p(z, y) dav:)al2 < o,

where we write dz instead of du(z). Then of course p is a probability density with
respect to uv. We shall prove

THEOREM 1. Under the above hypotheses, if we observe (X, Y') distributed so that,
for some unknown &, (X — &, V) has probability density p with respect to uv, then
X is an admassible estimator of & with squared error as loss.

In other words, if ¢ is any ®@ measurable function on X X Y such that

[ @) [t ) - g6 — & 1) da
(24)
zfow [@-ove-tpa=[aw [ a

for all £, then the two sides of (2.4) are identically equal. Actually we prove the
trivially stronger result that ¢(z, y) = x almost everywhere (uv). One might
hope to prove this result under the condition

(23" de(y) fxzp(x, y) de < o,

which is weaker than (2.3). Of course (2.3") is necessary, for otherwise we could
take o(z, y) = 0.

We shall derive Theorem 1 from a slightly more general but weaker theorem.
With &, Y, ®, @, u, v as before, let P be a nonnegative valued ®€ measurable
function on ¢ X Y such that, for each y, P(-, y) is a cumulative distribution
function and

(2.5) fxde(x, y) =0

(26) f a(y) ( f & d, P(z, y))m <
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TraeoreM 2. Under the above hypotheses, if we observe (X, Y') distributed so that,
for some unknown &, Y is distributed according to v and the conditional cumulative
distribution function of X — & giwven Y is P(-, Y'), then X is an almost admissible
estimator of & with squared error as loss. That s, if ¢ is any ®C measurable function
on X X Y such that

[ [l -8 aPe -0
(2.7)

s[aw) [@-are—ty=[aw [FaPey

for all &, then the two sides are equal for almost all &.
By a familiar argument, we observe that Theorem 1 follows from Theorem 2,
if we put

(28) Py = [ 2y a

If ¢ satisfies the hypotheses of Theorem 1, it also satisfies those of Theorem 2
and we conclude that in (2.4) equality holds for almost all £. Now suppose that
contrary to the conclusion of Theorem 1,

(2.9) ur(8) > 0,
where
(2.10) S = {(z, y)re(z, y) = a}.

Then, for all £ in a set T of positive measure,

(2.11) fdv(y)fs p(z — & y) de > 0,

where S, = {z:¢(z, y) # z}, since

[ [ aw [ o6 a0 e

(212)
= fdv(y) j;vdwfp(x — & y) dE = [ dv(y) _/;”dx = w(8).
Let
(2.13) eo(2, y) = 3(x + ¢(z, y)).
Then
(2.14) leo(z, ) — & = Hlp(z, y) — & + (2 — ©)’)

with strict inequality whenever o(z, y) # z. It follows that we have strict in-
equality in (2.4) and thus in (2.7) for all £ ¢ T contradicting the conclusion
of Theorem 2. An example given by Blackwell [9] with Y reducing to a point
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and P concentrated on a finite set shows that in Theorem 2 we cannot conclude
admissibility.

To prove Theorem 2 we suppose the conclusion does not hold, that is, we sup-
pose (2.7) holds with strict inequality for £ in a set S having positive Lebesgue
measure. For ¢ > 0, let S, be the set of £ for which

215) [ @) [le(e,9) — 8 PG — 1) < [ ) [ & aPy) -

Since S = US., S. will have positive Lebesgue measure for sufficiently small ¢,
and we suppose e chosen so that p(S.) > 0. Since S. (like any measurable set)
is of density 1 at almost all points of itself (see for example Titchmarsh [10],
p. 371), there exists « > 0 and an interval I = (a — «, a + «) such that the
set of £ ¢ I for which (2.15) holds has Lebesgue measure = «. There is no real
loss of generality in assuming I = (—«, ). Now we assign to £ an a prior: density
(1/e)q(¢/0), taking for simplicity of computation

1
1+ 8

From (2.7), and the fact that (2.15) holds for a set of measure = « in (—x, «),
it follows that

(2.16) q(§) =

(2.17) e, V) — 8 = [ a(y) [ & aP(s,y) - 5

for sufficiently large o, where ¢ has the indicated a prior: distribution, and the
conditional distribution of (X, ¥) given £ is that indicated before Theorem 2.
However, we shall show that under the same distribution

(218) it BY(X, V) — i 2 [ a(y) [ 2 ape,p) 12,
¥ [
where

(2.19) lim f(s) = 0.

>0

For sufficiently large ¢ this contradicts (2.17).
We shall find the formula

[ow [ ap@y) - w By, 7) -

(220) N f . /dx [ f nq (‘ —~ ”) dP(n, y‘)T

f q (r —~ ") dP(n, )
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useful in proving (2.18). To prove (2.20) we first observe that
inf E(X, V) — & = inf EE{[(X, Y) — &' | X, ¥}
(2.21) v Y
= E{E[| (X, V)] — &,
so that
[ @) [ 2 dPz,y) — inf BY(X, V) — &F

= E(X — &) — E{(E| (X, V)] — &}°
= E{X* — %X + (B[t | (X, V) = E{X — Elt| (X, ]}

== q(f;) a [ @) [

f £q (E—’) de P(x — £, y)
x - 7 d. P(z — & y)
[a(8)are-ev

- % [ [ (%) d [ Hn;((;i?)) j:((:j:} & Pz — & )

(2.22) [ EXT =) gp(n, ) |
- %dv(!/) f q(‘%) dsf[fzqé—i;’—ff";dﬂ: ;J dP(x', y)
—f 19 (E—ti—_ﬂ) dar (n, y)“2
o o |0
= lfdv(y) fdP(n’, y)f fnq (IE ") dP(n’y)j q<z——i) dx
o ] J/‘ q(x 7

- )dP(n, y)

- [aw [artrw |

o

T dl’(n,y)]

foun a1
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Comparing this result with (2.17) and (2.18), we see that, in order to complete
the proof of Theorem 2, we need only show that

(2.23) lim f dv(y) f Ufnq((j—:_f));ij((m y)):l dz = 0.
g\ Y

In order to prove (2.23) we consider the integral

290) o(P.0) f dx [f ng (x = n) dP(ﬂ)]z

r—n
[4(251) ape
and the function

(225) \l’(x7 U) = iup 'I’(P, 0’),

su)

where U, is the set of probability measures P for which

(2.26) [nap@) =0
(2.27) [ #ap@) =
As indicated earlier, we take
(2.28) o) = ———,
(1 + &)
but the basic formulas hold for an arbitrary ¢q. We first observe that
(2.29) \b()\; 0) = Uslﬁ (Z\"z ’ 1) ’
g
since
322 o]
~q ( ) dP(n):I
®(P,s) =o° f d(g) 7 g
[a(E5) ape
(2.30)

. fdx[f na(z = ) |

[ 4z~ ap(ao)
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We observe also that
(2.31) v\ 1) SN,

a bound which will be useful only for large N. This follows from the convexity
of ®, or from

(232) a(P,1) = [ & dP(z) — inf 6lp(X) — 4",

with ¢ distributed according to ¢, and X — £ given £ according to P, which is
essentially (2.22).
For\ £ 3,

fq(x — 1) dP(n) = P[—1, 1] inf ¢(z — 2)

e[—1,1]

(2.33)

S35xl + o) 10s(01 + )

by Chebyshev’s inequality. Also

[ = ap [ ={[ stz = » = et ap(w}
"(2.34)
< [#aP( [l = ») - a@F aP(n)

by Schwarz’s inequality. Thus

[/ ng(x — n) dP(n):r

[ at@ = n ap(x)

(235) > %Ofdx(l + %) (f 7 dP(n)) f [1 T (; | -I{xzjr dP (1)

= 139<f1, dP(n))fdP(n)f[l e lixz]z(l-l-xz)dx.

®(P, 1) = fdx

But

1 1 P 2
f[1+(x—n)2_1+x2](1+’”)d”
(i d 1
(2:36) - [liroswr 1+(x~n)2:| ds

B /[1-{1(—;6:;):)2"141-352]“ =f(?x++ Z)zd f(f%z—)i’
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I

so that

2
(237) 3(P,1) = c[ [ dP(@]
ie., ,
(2.38) Y\, 1) = e\ for N\ =1

Combining (2.29), (2.31), and (2.38), we have finally

N fora =147
(2.39) y(\o) = )
orforA = 14°.
Now let »* be the distribution of [¢’ dP(g, V), i.e.,
(2.40) V4(8) = » {y: [+ ap@,y) sS} .
Then

(2.41) j a(w) [ dx[f; : Eﬁg j:::] <¢ :ﬂkzdv*(k)—i—o f :)\dv*(k).

g

For any e between 0 and 1, choose o, so large that
(242) fz A2 dr*(\) < e.
20

Then, for ¢ = o,

302

1 bot 1 iaz 1 2 *
—f Ndv*(\) = —f Ndy*(\) + 3 Je2 A dv*(\)
g Jg g Jo 2

<42 ©
(243) < 1/% fo A" d*(N) + \}5 o2 X% dp*(\)
2
e [T gr0) 4+ 5
§1/2f0 N BHO) +
(2.44) . A RYAOIERY. L P dB*0) S V2

Thus the right-hand side of (2.41) approaches 0 as ¢ — «, which completes
the proof of (2.23), and thus the proofs of Theorems 2 and 1.
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