A USEFUL GENERALIZATION OF THE STEIN
TWO-SAMPLE PROCEDURE

By R. WORMLEIGHTON

Unaversity of Toronto

1. Introduction. An experimenter wishes to estimate the mean, u, of a normal
distribution using a sample mean. If the variance, ¢°, is known, the size of a single
sample can be functionally related to the precision of the sample estimate, e.g.:

= (1.96)0/L, where n is the sample size and 2L is the length of a 95% con-
fidence interval for u. The experimenter can choose in advance the point on the
curve which provides a satisfactory balance between the cost of obtaining the
sample and the precision of the final estimate.

If the variance is not known, and no reasonable estimate can be obtained,
several simple procedures are presently available.

(i) The experimenter takes as large a sample as he can afford. The estimate
of the mean has maximum precision, but it may be more precise than he requires.

(ii) He takes a preliminary sample to get an estimate of the variance. On the
basis of this variance estimate, he decides on the size of a second sample. His
estimate of u is the mean of the second sample and its precision is determined
from the second sample by the usual single-sample procedure. This method is
wasteful of the information in the first sample.

(iii) He can use a Stein two-sample procedure. Here, he specifies the precision
of his final estimate in advance, and the total number of observations becomes
a random variable. This is often unattractive because the cost of the experiment
is not pre-determined and may turn out to be excessive.

The experimenter would like to take a first sample to get a variance estimate,
then decide on the total number of observations and the precision of the estimate
of the mean, and finally use &l his data in making the estimate. This can very
nearly be accomplished by the generalized Stein procedure described below.

2. Procedure. We are given a normal population with unknown mean, g, and
unknown variance, o”. Consider a first sample of no observations: z; , 2, =+ , Zn,
An estimate of ¢°, based on the first sample, is

¢ = no—l{z g_"(iz‘)z}'

Corresponding to any particular value of s, we can plot the curve

n(L) = [t(:s]z
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where n = total sample size, 2L = length of a (1 — &) confidence interval, and
#“ = (1 — a) point of a t-variate with (no — 1) degrees of freedom. We thus
have a family of such curves which do not intersect. (See Fig. 1.)

(i) On each curve choose, in advance, a single point. This set of points consti-
tute a “cut’ across the family of curves.

(ii) Now actually take the first sample and calculate s. This determines a
particular curve of the family and, because of the cut, a unique point, (n*, L*),
say.

Remark: There appears to be no practical advantage and, in fact, a waste of
information if n* < mo. We therefore exclude cuts which permit this situation
to occur.

(ili) Take [n* — no] + 1 further observations, where [q] denotes the largest
integer strictly less than g.

(iv) Calculate Z, the mean of all the observations. Then, £ + L*isa (1 — «)
confidence interval for u.

Remark: If the cut is such that n* is not an integer, the exact confidence co-
efficient is slightly higher than (1 — «). The approximation can be avoided
either by excluding cuts which might yield non-integral values of n*, or by giving
the last observation a smaller weight in calculating the sample mean, £. See

Section 5.
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8. Proof. The proof is that given by Stein. Let U = (£ — wN/n*/s. For a
given cut, the value of n* depends only on s which is statistically independent of
. Hence, the conditional distribution of U, given s, is N (0, ¢”/s%).

Consider a variate T =y/s, where Y is N (0, ¢°) and statistically independent
of 5. The conditional distribution of T, given s, is also N(0, ¢°/s*). U and T are
therefore identically distributed. But T, and hence U, has a ¢ distribution with
(no — 1) degrees of freedom.

(1 —a) =Pr{—t® = U =t}

(a) (a)
=Pr{a’;—t 8§u§z+‘i}

4. Possible cuts.

(a) Fized sample size: (Line (a) in Figure.) The cut is defined by n = No, a
constant. (No = 70). The length of the confidence interval is a random variable.
If No = no, we have the usual single-sample procedure. If Ny > no, the pro-
cedure differs from the single-sample procedure in that the variance estimate is
based on fewer degrees of freedom—(no — 1) instead of (No — 1). The length
of the confidence interval will thus have larger expectation and larger variance
than one calculated from a single-sample.

(b) A modified Stein method: (Line (b) in Figure.) A confidence interval
length, 2L , is preassigned. The cut is defined by

n = N 0<L§Lo
L =1L, nmn< o,

In Stein’s exact, although not in his approximate procedure, a second sample
of at least one observation is always required, and a weighted average is used to
estimate p. If s should turn out to be so small that only one additional observa-
tion is required, the last observation is given an excessive weight so that the
precision of the estimate of u is actually reduced. This device ensures that, even
in this situation, the pre-assigned confidence interval length, 2L, is obtained.
See Section 5.

In our modification, defined by cut (b), we use an unweighted average. When
s turns out to be so small that no further observations are required, we obtain a
confidence interval shorter than we anticipated, and the method reduces to the
usual single-sample procedure.

(¢) Bounded sample size: (Cut (c) in Figure.) An experimenter would like to
have a (1 — a) confidence interval of length 2L, but is not willing to take
more than N; observations. He may then use the cut

n = no O<L=IL
L =1 m<n=<=N
n =N, L=zL.
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He will then obtain the desired precision, or better, with the minimum number
of observations, if this number is less than N, ; otherwise, he will take N, observa-
tions and settle for the precision he gets.

(d) Delayed decision: Conceivably, one could define a cut by considering, in
advance of the first sample, each possible value of s, and choosing a point on each
of the curves, n,(L). It seems superfluous, however, to make a large number of
decisions when only one will be implemented. A possible procedure would be to
take the first sample and calculate s, and only then make the decision on the
basis of the one resulting curve. It is absolutely necessary that the decision not
be influenced by the first sample mean; otherwise, n* is not independent of £ and
the proof in Section 3 is not valid. This condition could be ensured when the
decision-maker does not himself collect or analyze the data, or even see them, by
informing him only of the observed value of s. It can then be argued that the
decision on sample size is identical with that which would have resulted from a
cut completely defined in advance of the first sample.

This procedure can be compared with one in which the experimenter has an
independent estimate of the variance available to him when he is planning the
experiment. If he intends to use the preliminary variance estimate for calculating
the length of his confidence interval, and not the variance of the single sample
he plans, then he can predetermine both sample size and confidence inteval
length as in the case where the true variance is known. In our procedure, the
preliminary variance estimate is obtained from part of the sample, but it is
nevertheless independent of the sample mean.

Throughout the discussion, we have assumed that the confidence interval
length, 2L, is given in absolute units, the same as those of the observations.
Scientists and engineers frequently prefer to specify the error as a percentage of
the mean, and in order to convert absolute error to an approximate percentage
error an estimate of the mean is required. There is a temptation in a delayed-
decision procedure to use the first-sample mean for this purpose. This clearly is
not permissible because the decision would be influenced by the first-sample
mean.

(e) Minimum cost: (Suggested by referee.) If ¢i(n) is the cost of taking n
observations and c.(L) is the cost of an interval of length 2L, then a cut can
be defined by the minimization of the total cost, ci(n) + cft'®s/~/n], with
respect to 7, for given s. Since total cost is minimized for every s, the expected
total cost is a minimum.

b. Weighted mean. In the exact Stein procedure, a weighted mean of the
observations provides an estimate of u. The weights depend on s, and must
satisfy the conditions:

(i) Sum of all weights = 1.

(ii) First-sample observations are each given the same weight, a.

(iii) Sum of squares of the weights = z/s” where z is a pre-assigned constant.

It is also possible and desirable to require the condition.

(iv) All weights are non-negative.
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The total sample size, n, is determined by

82
n = ma,x{[-z—:l + 1,n0 + 1} .

Case 1. If s’ turns out so small that z/s* = (1/ne) + ¢, € > 0, then only one
additional observation is made, which is given the weight (1 — na) to satisfy
condition (i). Condition (iii) requires that nea® 4+ (1 — noa)® = (1/no) + e The
quadratic in a has two solutions, but one of them makes (1 — moa) negative
and is inadmissible by (iv). The other solution is

e —_ -

ne + 1
1 — noa = 1 {1+l\/1+eno(n +1)}> 1
no + 1 no 0 no + 1

Hence, the weighting is uniquely determined. The last observation is given an
excessive weight, thereby reducing the precision to the pre-assigned value.
Case 2. s°/2 > mo . Then, n = [s*/2] + 1. Let

2 2
5=§__[8_:|,
2 2

There is considerable freedom in the choice of weights but we can require, for
simplicity, that the first (n — 1) observations be given the same weight, a.
Then the last observation receives weight, 1 — (n — 1)a.

Under this restriction there are still two admissible solutions, one of which

is

1 1 1
“=B+M/<n—1><n—1+a>

1, n—1 1
I=(=Da=_+— 1/(n—1)(n—1+5)'

This gives the last observation a reduced weight. One can interpret this weighted
average as a simple mean of all the observations except for a fraction of the last
observation—in effect, making the total sample size a continuous variable.
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