SECOND ORDER ROTATABLE DESIGNS IN FOUR OR MORE
DIMENSIONS!
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0. Introduction. The technique of fitting a response surface is one widely used
(especially in the chemical industry) to aid in the statistical analysis of experi-
mental work in which the ‘‘yield” of a product depends, in some unknown
fashion, on one or more controllable variables. Before the details of such an
analysis can be carried out, experiments must be performed at predetermined
levels of the controllable factors, i.e., an experimental design must be selected
prior to experimentation. Box and Hunter [2] suggested designs of a certain
type, which they called rotatable, as being suitable for such experimentation.
Such designs permit a response surface to be fitted easily and provide spherical
information contours. A second order rotatable design aids the fitting of a
second order (i.e., a quadratic) surface.

Let us assume that the measurements of the factors have been coded, permit-
ting the use of cartesian axes in k-dimensional space to describe an experimental
design for k factors. Suppose, in an experimental investigation with k factors,
N (not necessarily distinct) combinations of level are employed. Thus the
group of N experiments which arises can be described by the N points in & di-
mensions (L, , Tau, *** , Tew), ¥ = 1,2, -+ -, N, where, in the uth experiment,
factor ¢ is at level x:, . This set of points is said to form a rotatable arrangement
of the second order in k factors if

Z x?u = Z xgu = = Z xlltu = >\2N,
Z x:u = Z x;u = = Z xltu = 32 x%uxgu = 3)\4N, (i = ])7
u u % u

and all other sums of powers and products up to and including order four are
zero, where all summations are over u = 1 to 4 = N. The point set is said to
form a rotatable design of second order if the conditions above are satisfied and
a certain matrix used in a consequent least squares estimation is non-singular.
Box and Hunter [2] show that the necessary and sufficient condition for this to
be so is A\g/As > k/(k + 2), a condition which may always be satisfied merely
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24 NORMAN R. DRAPER

by the addition of points at the center (0, 0, 0) of the design. The inequality
becomes an equality only when all the design points lie on a k-dimensional
sphere.

When presenting a rotatable design, it is customary to “scale” it. By this it
is meant that the scale of the coded controllable variables is chosen in such a
way that A, = 1. The reason for this is as follows. Given a second order design
with a specified value of A/ A3 , there are an infinite number of values possible for
A2 > 0. Since these designs can be derived one from another merely by change of
scale, we do not regard them as different. Thus the scaling condition A, = 1
fixes a particular design and enables better comparison between two designs with
different Ay/A3’s.

A previous paper by Bose and Draper [1] presented a new method for obtain-
ing infinite classes of second order rotatable designs in three dimensions. In the
present paper it is shown how the method previously employed may be used
to obtain infinite classes of second order rotatable designs in dimensions higher
than three by a suitable generation and combination of basic point sets. Also
presented here is a method for adding to a second order rotatable design in
(k — 1) dimensions in order to convert it to a second order design in k dimen-
sions—a method useful in situations where it is desired to add an extra variable
while making use of data already obtained.

1. The generation of point sets in four or more dimensions. Let (1, 22, * -+ , %&)
be a point in k dimensions and let P be the symmetric group of order k, that
is, the group of all permutations of & elements. Thus we obtain k! points by

operating upon (21, 22, -+, 2x) with the elements of Pi . Let R be the trans-
formation on k-space which takes the point (x1, z2, -+, @i, -+, @) into the
point (1, @2, +++, —%i, -*+, &). From a single point (1, @2, *- -, Tk), by
an application of the k! elements of P: and/or the k transformations R,
(it =1,2, ---, k), we can obtain a set of 2*It! points all of which are distinct,
provided that x;, z2, -+ -, @ are all non-zero and distinct. The set, which we
shall call H(zy, 2, - -+ , 7x) and which consists of the points
(:l:xil y EZip, o0, ixik)
where 4y, 42, + -+, % run through every possible permutation of 1, 2, ---, k,

satisfies the following conditions:
Dahe = (b — )12l + ab + -0+ 3i),

Sat, =t — )12t + 2t + - + 3,

TJ=

k
> 2t = (b — 2)12° 3 alal, (i j),
u 1

and all odd sums of squares and products up to and including order four are
zero, where 4, j = 1,2, -+, k; and u is summed from 1 through N, the total
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number of points. Hence

k k
Ex(H(zy, 22, -+, 2] = (b = 2)12[(k — 1) 2 2; — 33 ala)

= %)=
where Ex[H] is the excess of the point set H and was defined in [1]. For H as de-
fined above, it is the amount by which the pure fourth moment ., 3, exceeds
three times the mixed fourth moment D, £33, . The number of points in this
set is too large for use in a design and it will be necessary to reduce the size
of the set by making several of the z; equal to one another and/or putting some
of the z; equal to zero.

We note that we could have begun this discussion by considering a set of
only 2°7'k! points. The group of all permutations has, as a subgroup, the group
of all the even permutations. The set obtained from a point (z;, @2, -+, k),
when 2, 25, -+, & are all distinet, by application of the even permutations
only is such that its moments are symmetrical in the way we desire. However,
nothing will eventually be gained by this procedure, for, once we make two of
the z;’s equal in the more general set, we shall obtain double the set we would
have obtained from the set generated by use of even permutations alone. Thus,
except in the most general case when z;, x5, - -+, 2 are all distinct, no addi-
tional reduction will be achieved by our commencing with a half set. Note
that when k > 3, a cyclic permutation of coordinates does not achieve symmetry.

When there are k factors, the number of constants to be estimated for a
second order modelis 1 + &k + &k + k(k — 1)/20r (K + 3k + 2)/2. For4 < k
< 7, we have the following table:

k | 4 5 6 7
B+3k+2 | 15 21 28 36°

To obtain a design consisting of a number of points equal to twice the number
of constants to be estimated will be regarded here as a very desirable achievement.
Unfortunately, because of the large number of moments to be balanced when
selecting design points, such an achievement is rarely possible with the method
of this paper. Thus some of the designs to be presented are useful only when a
fairly large number of design points is allowable. In order to restrict the number
of points in a generated set, we shall consider only cases where no more than
three of 21, 72, - - -, x are distinet.

Consider the fraction of H(p, -+, p;q, *++, q; 7, *++, r) which contains all
possible points once and once only. Let p occur z times, ¢ occur y times, and r
oceur 2z times, so that * + y + 2 = k. Let » be the number of zeros if any of
p, q, and r are zero. For example, if p # 0, ¢ # 0, r = 0, then » = 2. Hence
the desired fraction of the whole set, which may be denoted by H(p", ¢*, r°),
contains

k! k—v
zlylel



26 NORMAN R. DRAPER

points. Therefore, the set may be written as [x! y! 2! 2'T™ H(p", ¢, *), in nota-
tion consistent with earlier usage (see [1]).
This set has sums of powers and products as follows:

Saty = E=Dlgr gt 4 yg + o)

” zlyla!
E—1)! 4y
. xiu = (—xm?r 2" [xp4 + ?/q4 + 37'4];
k—2)! s
St = E- D e - 08 + - D'

+ 2(z — 1)r* + 22yp’q" + 2y2qr
+ 2zar"p’,
and all other sums of powers and products up to and including order four are
zero. Hence
(k — 2)!
z!ylz!
+y(k — 3y + 2)¢* + 2(k — 32+ 2)r*

— 6ayp’q’ — Byzg'r’ — 6zar’p’]

Ex {[z!y! 2! 2T H(p", ¢, )} = 2" [2(k — 3z + 2)p*

is the excess of this generated set of (k!/z!y!2!)2*” points.

By giving specific values to p, ¢, 7, z, ¥ and 2, we shall obtain the more useful
sets of this type. In particular, we shall reject any set that contains more than
48 points in four dimensions. If p, ¢ and r are distinct and all are non-zero, there
are 4!2/2 = 192 points in four dimensions. If p # 0, ¢ # 0, r = 0, and
z = 1 = v, there are 4!2°/2 = 96 points in four dimensions. Thus if there are
three distinct values for p, q¢ and 7, we must put » = 0 and allow p and ¢ to
occur once only in order to maintain a reasonable number of points. This leads
us to consider the generated set

S(p7 q, Ok—2) = [4(k - 2) !]—IH(p7 q, 07 Tty O)

obtained by setting r = 0, x = y = 1. The set has 4k(k — 1) points and its
excess is 4(k — 1)(p* + ¢*) — 24p°¢". A short table of the number of points in
this set follows:
k | 4 5 6 7
4k(k — 1) | 48 80 120 168
S(p, ¢, 0°%) by itself forms a rotatable arrangement if

4k — 1)(p* + ¢') — 24p°¢" = 0

or
P/¢ =18+ V09— (k- 12/(k —1).
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Since k& = 4, this is possible only when k¥ = 4 and p’/¢" = 1. But if p* = ¢,
the set can be reduced by half so that

(S(p) 9, Ok—2) = [S(k - 2)]-—1H(p7 D, 07 ] 0))

consisting of 2k(k — 1) points, forms a rotatable arrangement. The single de-
sign which arises from this calculation is already known and is called the ex-
tension of (25) by Gardiner, Grandage and Hader [3]. If we consider only
S(p, p, 0°7%) to begin with, this result is trivial, since the excess of S(p, p, 0*7%)
is 4(k — 4)p* which can be zero only if k = 4, since p # 0.

Although it would be possible to use the 4k(k — 1) points of S(p, ¢, 0°™) in
combination with other sets to form a rotatable design, we shall not do this
because of the large number of points which would be involved. This leads us to
mention one other point set that will not be used, given by z = 0,
=1,y =k — 1, namely, [(k — 1)!|"H(p, ¢"). This contains k2° points,
too many for our purposes as the short table which follows shows.

k| 4 5 6 7
k25 | 64 160 384 896

By the usual methods, it may be shown that when
P =3+ V2% + 4)¢

and
¢ =N/22 + k+ Vo + 4),

a rotatable design is obtained, a design already quoted by Gardiner, Grandage
and Hader [3] as an extension of their design (23).

Thus it becomes clear that the only point sets which are a fraction of
H(p", ¢*, ") and which obey all the required moment conditions except that

TABLE I
Selected point sets

X Value of N (k)
Set Points of Set No. of k]?)omts Excess

k=4 |k=5k=6k=1

Si (*a, £a, -+, £a) 2k 16 | 32 64 | 128 —2k+igt
%+ 8: (k = | one half replicate of k-1 16 32| 64 — kgt
5 only) S1

Se (e, 0, --+, 0) and 2k 8 | 10 12 | 14 2ct
permutations

S; 0, %f, -+ ,£f) and k2k1 32 | 80 | 192 | 448 — (2k — b5)2k1f4
permutations

S (+p, £p,0,---,0) | 2k(k — 1) | 24 | 40 60 | 84 4(k — 4)p*

and permutations
S | (x£p, 2p, £p,0, |4k(k—1) | 32 | 80 | 160 | 280 | 4(k — 2)(k — T)p*
e, 0) | (B —2)/3
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their excess is not zero and which, in addition, contain what we shall consider
a reasonable number of points are obtained by setting z = 0, ¢ = 0 (i.e., let-
ting the coordinates take two distinet values, one of which is zero) or setting
z = y = 0 (i.e., allowing only one possible value for the coordinate). Proceeding
in this way, we consider the five sets listed in Table I as suitable for combina-
tion with one another for the formation of rotatable designs. We shall not use
the fractional set notation here because of its unwieldiness. Other possible sets
are neglected on the grounds that they contain too many points for our purposes.
Several features of the sets above are immediately noticeable:
S; and S; have negative excess.
Ss has negative excess if k < 7, positive excess if k¥ > 7 and zero excess if
k = 7. (Thusif £ = 7, the points of S; form a rotatable arrangement; the
design thus formable will be derived later).
S: has positive excess.
S4 has positive excess if & > 4.
These facts determine the combinations of sets we shall choose to form several
infinite classes of rotatable designs analogous to those formed in three dimen-
sions.

2. Infinite classes of second order designs in four or more dimensions. The
generated sets may now be combined in the same way as was done previously in
the three dimensional case [1]. Six of the more useful combinations are presented
in Table II. All of the previously known designs (apart from the two mentioned
separately in Section 1) occur as special cases of the classes in the table.

3. A method of constructing a second order design in k dimensions using a
second order design in (¢ — 1) dimensions. Select a second order rotatable
arrangement of points in (¢ — 1) dimensions to which the scaling condition
A2 = 1 has not yet been applied. Then we shall have (say) N’ points

(xlu, xZu, crt ,xk—l,u) ]- é u g NI,
for which
> at, =A% N,
Zxéu = 322;%“1:?14 = 307 say, (2 ¢]): 7’7] =1, 2’ ) (k - 1)’

and all odd sums of powers and products up to and including order four are
zero. Consider all the points obtained by adding a further coordinate ., = =£b
to the coordinates of the (k — 1) dimensional points. Thus we obtain a point
set in k& dimensions

(3.1) (xlu y L2uy **° y Th—1,u, -+ b), u = 1, 2, ey, N’

consisting of 2N’ points.
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Consider the point sets

(3.2) 0,0, ---,0, £ p)

(3.3) 0,0, ---,0, £ q).

Then the values of p and ¢ may be so adjusted that the three sets (3.1), (3.2)
and (3.3), together with any center points which may be added, form a second
order rotatable design in % dimensions. The number of points in the derived
designis N = 2N’ + 4 + no.

This may be shown as follows. The addition of the extra coordinate z; to the
(k — 1) dimensional point set contributesonly to Y 2, , > a5, and D i,

t=1,2, -, (k — 1). It is clear that moments which were previously zero
remain zero and that odd sums of powers and products involving z; are zero
because x is constant (=b). Thus these sums of powers and products will be
zero either for each set of N’ points separately or else for the two sets combined.
Thus for all of the N = 2N’ + 4 + n, points,

Xu:xfu = 24, 1

lIA

i<k —1,

fou = 6C, 1

IIA
lIA
=
|
J—l

D 2t = 2C, 1Si=j<k—1,
3.4
(3.4) Do xk, = 2NV + 2(p° + ¢°),

>z, = 2NV 4+ 2(p" + ¢),

IIA

where u is summed from 1 through N, and all other sums of powers and products
up to and including order four are zero.
There will be symmetry in the moments up to fourth order provided that

p'd+ N = 4,
(3.5) ‘ '+ ¢ 4+ N'b' = 30,
AV = C.

Thus, if these conditions can be satisfied by choice of p, ¢ and b, the N points
will automatically form a second order rotatable arrangement, since the equa-
tions above imply that D i Zin = 3D we1 i3 = 6C for ¢ 5 j and 4, j =
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1,2, «--, k. From (3.5)
b = C/A,

(3.6) P+ ¢ = (4= N'C)/A4,

p'+ ¢ =34 — N'C)/4
Solving the simultaneous equations of (3.6) we obtain
(3.7) P, ¢ = [(A° — N'C) = /2C(34* — N'C) — (A* — N'C)?/24.
We now apply the scaling condition A\ = 1, which gives 24 = N or A = N/2,
and this must be substituted into the expressions for p* and ¢* above. Hence,
(38) ', ¢ =[(N*— 4N'C) £ v/8C(3N* — 4N'C) — (N* — 4N'(C)*]/84.

In order that both p* and ¢’ should be real and non-negative, i.e., in order that
a new design should be obtainable, the original design must satisfy the condi-
tion
(3.9) 2z¢ 21,
where ¢ = (A® — N’C)*/C(34® — N’C). It is necessary to determine in the
usual way for individual cases whether or not the addition of center points is
required.

As an illustration of the method we now derive a second order design in four
dimensions from a second order design in three dimensions. Consider the well
known cube plus octahedron arrangement in three dimensions with no center

points, given by

(+a, +a, +a),

(:I:c’ O’ 0))
(3.10)

(o, +c, 0),

( O) O’ :I:c))

In the notation of this section,
3C = 8d* + 2¢' = 24a' = 3(0).

Hence
¢ = 8a' = (2"%)! = (1.682a)",
so that ‘
C = 8!,
(3.11) A =8a" + 2¢° = 4(2 + V2)d’, and
N’ = 14.

Thus ¢ = 1.55, and use of the method is possible.
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Consider the point set in four dimensions given by

(*a, +a, +a, +b),

(e, 0, 0, +b),
( 0, e 0, =+b),
(0, 0, ¢, =b),
(o, 0, 0, =£p),
(o 0, 0, =q).

These points form a second order rotatable arrangement if the solutions for p’
and ¢’ which result from substitution of (3.11) into (3.7) are real and non-
negative, which they are, since 2 = ¢ = 1. Performing the calculation, we find
that p* = 4.196400 o, ¢" = 1.259446 o’, so that p = 2.049 a, ¢ = 1.122 a. We
recall that ¢ = 1.682 a, while b = +/(C/A4 = 0.765 a. Thus we have a second
order rotatable arrangement in four dimensions with 32 points given by

( +a, +a, +a, +0.765 a),
(%1.682 a, 0, 0, +0.765 a),
( 0, +1.682 a, 0, +0.765 a),
( 0, 0, +1.682 a, +0.765 a),
( 0, 0, 0, +2.049 a),
( 0, 0, 0, +1.122 a),

where a is to be determined by application of the scaling condition A\ = 1. The
separate sets which comprise the arrangement have radii v/3a? + b2, v/¢* + b?
p and ¢, that is a/3.585, a\/3.414, p and ¢, or 1.189 a, 1.848 a, 2.049 a and
1.122 a. Thus the arrangement is not spherical, and it can be used as a design
without addition of center points. However,

M/Ns = 16a*/N = .02144N,

where N = 32 + n,. Hence \y/A\; = .686, when no = 0. This is greater than
the singular value of .667 (for £ = 4), but not very much so; it would there-
fore be preferable to use a few center points with this design. When, for example,
no = 4, \o/As = .772. After deciding on the number of center points to be used,
we can determine the value of a which specifies the design points from the
scaling condition. This gives

& = (2 — V2)N/16 = .03661 N.
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