A MONOTONICITY PROPERTY OF THE SEQUENTIAL
PROBABILITY RATIO TEST!

By RoBEET A. WissMAN
Unaversity of Illinots

0. Summary. Using the basic inequalities (1) it is shown that, if, in a sequential
probability ratio test, the upper stopping bound is increased and the lower
stopping bound decreased, and if the new test is not equivalent to the old one,
then at least one of the error probabilities is decreased. This implies the monoto-
nicity result of Weiss [5] in the continuous case, and the uniqueness result of
Anderson and Friedman [1] in the general case. The relation of the monotonicity
property to the optimum property and the uniqueness of sequential probability
ratio tests is discussed.

The monotonicity property is a consequence of the following stronger result.
Let the old and new tests be given by the stopping bounds (B’, A’) and (B, A),
respectively, with B < B’ < A’ < A;let (a1, a3) and (a1, ;) be the error
probabilities and Ae; = a; — a; the changes in the error probabilities; then the
vector (Aay, Aaz) is restricted to a cone consisting of the 3rd quadrant, plus
the part of the 2nd quadrant where —Aas/Aa; < B, plus the part of the 4th
quadrant where —Aoay/Ac; > A. Another consequence of this result is that
(a1, a2) cannot lie in the closed triangle with vertices (a1, az), (0,1) and (1, 0).
Finally, the following monotonicity property follows: If the lower stopping
bound is fixed and the upper stopping bound increased, then o1/(1 — a) de-
creases monotonically. The same holds for az/(1 — o) if the upper stopping
bound is held fixed and the lower stopping bound decreased.

1. Introduction and discussion. We consider Wald’s sequential probability
ratio test [3] with upper stopping bound A and lower stopping bound B. It is
usually assumed that B < 1 < A, but no such restriction will be made in this
paper. Weiss [5] has shown, under certain continuity assumptions, that, if A and
B are separated in such a way that one of the error probabilities remains con-
stant, then the other error probability decreases monotonically. This is a very
useful result, since it not only provides a uniqueness proof, but also it shows that
there exists a test of given strength if and only if the error probability vector lies
in & certain set [6]. In this paper a monotonicity property will be proved which
makes no assumptions as regards to the probability distributions (other than that
they be non-degenerate) and which include Weiss’ result as a special case. The
monotonicity property, stated and proved in Section 2, can be described as fol-
lows: if the upper stopping bound of a sequential probability ratio test is in-
creased and the lower stopping bound decreased, then at least one of the error
probabilities decreases, unless the new test is equivalent to the old one, in
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which case the error probabilities are, of course, unchanged. (Two tests will be
called equivalent, more or less following [1], if their sample sequences differ on a
set of probability 0 under both distributions.) Weiss’ result is obtained as a par-
ticular case by specifying the distributions to be continuous, with positive proba-
bilities in non-degenerate intervals, and by reading the conclusion: then if one
of the error probabilities is fixed, the other decreases.

Before proving the indicated monotonicity property, its relation to the
uniqueness and to the optimum property [4] of sequential probability ratio tests
will be discussed. In [1] it is shown how the optimum property can be used to
prove uniqueness, i.e. the fact that two sequential probability ratio tests with the
same error probabilities are equivalent. The restriction B < 1 < A had to be
made, though, since the optimum property had been proved only under this
condition. Actually, this restriction is unnecessary. It will be indicated in a future
paper [2] that any sequential probability ratio test has the optimum property
among all tests which take at least one observation. In particular, then, every
sequential probability ratio test has the optimum property among all sequential
probability ratio tests, which is all that is needed in the uniqueness proof in [1].
This kind of optimum property will be labeled restricted in the following.

First of all it will be shown now that the restricted optimum property and the
monotonicity property are equivalent. The following notation and terminology
will be used: the error probabilities corresponding to the two distributions under
consideration are denoted by «;, ¢ = 1, 2; the expected sample sizes are »; ; in
passing from one test to another, Aa; and Av; denote the changes in the «; and
;; a test will be called inadmissible if there exists another test such that Aa; = 0,
Av; £ 0,7 = 1, 2, with strict inequality in at least one of the four. Obviously,
the optimum property implies admissibility, and the restricted optimum prop-
erty implies restricted admissibility, i.e. admissibility within the class of sequen-
tial probability ratio tests. Consider a sequential probability ratio test (B, 4)
and another, (B*, A*), with B* < B < A < A* Unless the two tests are equiva-
lent, we have Av; > 0 for both 7 (see Section 2 for support of this statement, and
similar ones to follow). Assume the restricted optimum property. This implies
restricted admissibility, and this implies that Aa; < 0 for at least one ¢. In other
words, one of the a; has to decrease, which is the monotonicity property. Con-
versely, assume the monotonicity property, and compare tests (B, 4) and
(B*, A*), which are supposed to be not equivalent and for which Aa; = 0 for
both . Then we cannot have B* < B, A* < A, for in that case Aoy > 0 and
Aaz < 0. Similarly, B¥ = B, A* = A is excluded. Also B < B* < A* < A is
excluded since otherwise, by the monotonicity property, one of the Aa; would
be positive. Hence the only remaining possibility is B¥* < B < 4 < A*, which
implies Ay; > 0 for both ¢, i.e. the optimum property.

Secondly, the monotonicity property implies uniqueness. For, if the stopping
bounds are changed in the same direction, then both error probabilities change
(in opposite directions), whereas, if the stopping bounds are changed in opposite
directions, then according to the monotonicity property at least one of the error
probabilities changes; unless, of course, the two tests are equivalent.
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It is true that a separate proof of the monotonicity property is not strictly
necessary, since this property is a consequence of the optimum property. How-
ever, the optimum property is a rather deep theorem, requiring a sizable machin-
ery for its proof, whereas the monotonicity property follows in an elementary
way from the basic inequalities (1). Since two interesting properties of sequential
probability ratio tests within their own class—the uniqueness and the restricted
optimum property—are immediate consequences of the monotonicity property,
it seems worth-while to prove the latter independently. Moreover, the methods
used yield a stronger result, which does not follow from the optimum property
and which has, besides the monotonicity property, some other interesting con-
sequences. These further results are obtained in Section 3.

2. Statement and proof of the monotonicity property. Let X;, X,, --- be a
sequence of independent and identically distributed random variables (or vec-
tors) with common density p; with respect to some sigma-finite measure. Here
and in the following, 7 runs over 1 and 2, corresponding to the two hypotheses
under consideration. The trivial case p1 = p. a.e. will be excluded. Let Y, be
the probability ratio at the nth observation, i.e. ¥, = [[71 p2(X;)/p1(X;). If
some stopping rule is defined, let N be the random number of observations. Of
fundamental importance in what follows is the basic double inequality

(1) aPi(a < Yy <b) £ Pi(a <Yy <b) SbPi(a <Yy<b)

for any real numbers a and b, including c. The strict inequality signs within the
parentheses in (1) may be replaced by less-or-equal signs, and we will do so
whenever this is convenient. For instance, the following inequalities will be con-
sidered special cases of (1):

(2) Py(Yy 2 a) = aPi(Yx 2 a)
(3) Py(Yy = b) S bP(Yw £ D).

v

These basic inequalities have been used already by Wald ([3], Section 3.2) and
are briefly discussed there. Also Weiss [5] makes use of (3). An important conse-
quence of (1) is that either

(4) Pia <Yy <b) =P(a<Yy<b)=0
or
(5) Pla<Yy<b)>0 and Pya <Yy <bd)>0.

As an application, compare the sequential probability ratio tests (B, 4) and
(B, A*), with B < A < A*. In (4) and (5) identify a with 4, ¥ with A*, and
N with the random number of observations if test (B, A) is used. If (4) prevails,
the two tests are clearly equivalent. If (5) prevails we can conclude Aa; < 0,
Aaz > 0, Av; > 0 for both 7. Similar conclusions can be drawn if both stopping
bounds are changed, and these facts have already been used in the discussion
in Section 1.
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In a sequential probability ratio test with stopping bounds s and (s < ¢)*
and random number of observations N, the error probabilities «; are functions of
sand ¢,

(6) ai(s,t) = Py(Yy 2t) =1 — P(Yy < ),
(7) (s, t) = Po(Yyn=8) =1— Py(Yy 21).

It is convenient to introduce the functions U; and V; defined by
(8) Ui(s,t) = Pi(Yn < 3)

(9) Vi(s,t) = P(Yn 2 t)

if s and ¢ are the stopping bounds. We have

(10) Ui(s, t) + Vi(s, t) =1,

and the relation between the a; , U; and V' is simply

(11) a(s,t) = Vi(s, t) as(s, t) = Us(s, t).

THEOREM 1. Let (u, v) and (W, v') define two non-equivalent sequential proba-
bility ratio tests, with 0 < u S ¥ < v = v < «, and let Aa; = a;(u,v) —
a;(u',v'), ¢ = 1, 2. Then at least one of the Aa; must be <0.

Proor. Let N be the random number of observations in the test (v, v’), and
define F;(y) = P:(Yy =< y). Then, using (11), we have

(12) Aoy = Vi(u,v) — Vi, v')
(13) Aoy = Uz(u,v) — Uz, v').

We compute®

19 Vi, = [ ane + [ anw

o) = [ an@) + [ v (22) amw)
- Viu, v j;dFy+_/;lV(yy>dFy |

+ f v, (‘5;’—/) dr(y).

In (15) we used the fact that the Y,../Y . are independent and identically dis-
tributed. Substitution into (12) and using (10) gives

(16) Aoy = f:' 14 (1;:-/) dFy(y) — f Uy (;—/‘%) aFy(y).

2 For notational convenience we shall henceforth use lower case symbols instead of 4
and B for the stopping bounds.

3In (14) the lower limits on the integrals should, and the upper limits should not be
included in the integrations. On the other hand, in (15) in the third integral on the right
the lower limit % should not be included and the upper limit %’ should. These facts have not
been made explicit in the formulas, since they are inessential for the proof.
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Similarly,

(17) sy = [ U, (5%) dFy(y) — f: Vs (;-/‘%) dFy(y).

Suppose temporarily that » < v. Then for y in the interval [¢/, v) we have, using
(8) and (3),

(18) Uz(’—‘,ﬂ)é’—‘vl(’-‘,ﬂ)é‘—‘,vl (“)
yy Y yy v vy

and, using (1),
(19) dF:(y) < vdFi(y)
so that

(v <w [ (5 2)
(20) Lo (22)ara) s 2 [ o (%.2) an).
In (19), and therefore in (20), there is strict inequality unless
(21) [ arw) =0 for both 1.
If v = v, (20) remains trivially true. Similarly,
(22) [ () amw 2 [" v (L) amw,

and again this inequality is strict unless
(23) f dF(y) =0 for both <.

The tests are equivalent if and only if both (21) and (23) hold. Therefore, if
the tests are not equivalent, then at least one of the inequalities in (20) and (22)
is strict. Using (16), (17), (20) and (22), it is now easy to verify the following
two inequalities:

(24:) uvAoq + T)lAaz <0
(25) wlAa; + w'Aae < 0.

The conclusion of Theorem 1 is, of course, an immediate consequence of either
of the inequalities (24) and (25).

3. Strengthening of the result. Let Aa be the 2-vector whose components
Aw; are defined in Theorem 1. If the two tests are equivalent, then, of course,
Aa = 0. Otherwise, the conclusion of Theorem 1 states that Aa cannot lie in the
set defined by Aa; = 0 for both 7, i.e. the (closed) 1st quadrant. In other words,
Aca has to lie in the 2nd, 3rd or 4th quadrant. However, the inequalities (24)
and (25) already claim something more: A is not only excluded from the 1st
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quadrant but also from the part of the 2nd quadrant where —Aay/Ac; = uv/v’
(using (24)) and from the part of the 4th quadrant where —Aay/Aa; < uv/vw/
(using (25)). What remains is a cone of angle <x. We shall show now that we
can sharpen the bounds uv/v" and uv/%’ for — Aas/Aa; to u and v, respectively.
This will be the content of

TrEOREM 2. Under the same conditions as in Theorem 1 we have

(26) uAog + Az < 0
(27) vAa; + Aoz < 0.

Before proving Theorem 2 we will indicate some of its consequences. Consider
w’, v' fixed and w, v varying, subject to v < 4’ < v’ < v. Consider all possible
Aa. The cone given by (26) and (27) to which A« is restricted depends on u and
v. To obtain a fixed cone we remark that — Aay/Ac; < u implies — Ao/ Aoy < u’
and —Aap/Aa; > v implies — Aaz/Aay > v’. Therefore, (26) and (27) imply

(28) wAay + Aax < 0
(29) VA + Aap < 0.

The inequalities (28) and (29) are less sharp than (26) and (27), but they do
represent a fixed cone within which A« is restricted as « and » vary. In fact, this
cone is the union of all cones given by (26) and (27) as u and » vary.

We can also consider the a; — a3 plane and see what happens to the vector
of error probabilities as %, v’ is fixed and u, » vary. The only portion of the plane
which needs to be considered is the triangle a; = 0, a1 + a2 < 1. Let a; = ai(u, v)
ai = a;(w, '), and let @ = (o1, on), & = (a1, as). The inequalities (28) and
(29) say that « lies in a cone with vertex o', containing the point (0, 0), and
bounded by two lines with slopes —u’ and —¢'. This cone does not contain any
point of the triangle with vertices o/, (0, 1) and (1, 0). To see this we only have
to look at the slopes of the lines connectmg o' with (0, 1) and (1, 0). The first
1s —(1 — 0{2)/&1, the second —"Olz/(l — al) Now, usmg (2), we have (1 — az)/

= v > o/, and, using (3), as/(1 — a1) < %' < o, which establishes the fact
mentloned Thus a cannot lie in the closed tnangle with vertices o/, (0, 1)
and (1, 0).

There is another consequence which is of enough interest in itself to state

separately. We introduce the quantities

(30) ﬂ; = a1/<1 - az)
(31) Bz = as/(1 — au)

The quantities B: are defined in the same manner in terms of the a;, and AB; =
8:; — Bi. Then B is the tangent of the angle that the line through « and (0, 1)
makes with the ae-axis; 8 has a similar interpretation. The result of the pre-
ceding paragraph, namely that « is excluded from the closed triangle with
vertices o/, (0, 1) and (1, 0), is then seen to be equivalent to

(32) Aoy < 0= Aﬁl < 0
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(33) Aaz < 0= AB: < 0.

This result can also be stated as

CoROLLARY 1. Under the same conditions as in Theorem 1, at least one of the
AB; must be < 0.

Now Aaq; < 0 is in particular satisfied if v = v/, and Aay < 0 if » = ’. Using
this, and referring to (32) and (33), we have

COROLLARY 2. Let the B; be defined by (30) and (31). If the lower stopping bound
u of a sequential probability ratio test is fixed, B1 is a monotonic non-increasing
function of the upper stopping bound v. The function is strictly monotonic except
in any point v for which there is a v* > v such that the tests (u, v) and (u, v*) are
equivalent. A completely analogous statement for Bz is obtained by fixing v and de-
creasing u. ’

Finally, we remark that Theorem 2 can be generalized slightly. So far we have
considered only sequential probability ratio tests whose continuation region is
an open interval. We can also consider a sequential probability ratio test whose
continuation interval contains one or both of its endpoints. In Theorems 1 and
2 we shall then consider tests with continuation intervals I and I’, where I has
endpoints u, v, and I’ has %', v’, and such that I’ < I. With this generalization
the conclusion (26) and (27) remains valid, except that one of the inequalities
may be an equality.

We proceed now with the proof of Theorem 2, which starts with (24) and (25).
Notice that for very small changes from %’ to » and v’ to v we have almost u/u’ =
1 and v/v' = 1 so that then (26) and (27) follow approximately from (24) and
(25), respectively. The idea of the proof is to link the tests (v, v) and (u, v)
by a chain of intermediate tests, each of which is close to the next one.

Proor or TueoreM 2. Consider the chain of tests (v, v'), (w, v') (4, v1), - -+,
(u, v,) in which v, = vand v, - - -, v,1 is & sequence to be specified later. Put
(Aa;)o = a,-(u, v’) - ai(u’, v’) and (Aa,-)k = a,-(u, vk) - a,v(u, vk_l), k= ]., Ty
n, where we identify v, with »’. In passing from (v, v’) to (u,v’) we have (Aay)o =
0, with strict inequality unless (v, v') and (u, v’) are equivalent. Consequently,
using (25) in the second inequality, u(Aa1)e + (Aaz)o = u(v/u')(Aar)e +
(Aaz)o = 0, with equality if and only if (v, v’) and (u, v’) are equivalent. Then
there exists & > 0 such that for all e with 0 < ¢ < & we have

(34:) u(Aal)o + (1 nd €)(Aaz)o é 0

with the same remark about equality as before. For fixed ¢, 0 < ¢ < ¢, choose
V1, ,U,ainsuch awaythat 1 — e < v_1/vxs < 1,k =1, -+, n. In passing
from (u, vx_1) to (u, v.) we have (Aaz)r = 0 so that u(Aay)r + (1 — €) (Aag)r <
u(Aa)r + (Vp—1/vx) (Aaz)r . The right hand side of the last inequality is =0,
by (24), with equality if and only if (w, vx—1) and (u, v:) are equivalent. We have
established now

(35) u(Aon)k + (1 — €) (Aas)r < 0, E=0,1,---,n
(for k = 0 this was established as (34)). In (35) there is strict inequality for
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at least one k, otherwise (%', v') and (u, ») would be equivalent. Adding the
inequalities (35) for k = 0, 1, - - - , n yields

(36) ulAaoy + (1 - G)Aaz < 0.

Letting ¢ — 0 then gives the desired result (26). Inequality (27) is proved
analogously, using a chain of tests (v/, v'), (¢, v), (U, v), -+, (Un, v), with
Un = U.
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