RANK-SUM TESTS FOR DISPERSIONS!

By A. R. Ansarr anp R. A. BraprLry?

Virginia Agricultural Experiment Station, Virginia Polytechnic Institute

1. Summary. This paper deals with non-parametric two-sample tests on dis-
persions. Two samples, X- and Y-samples of m and n independent observations
from populations with continuous cumulative distribution functions F(u) and
G(u) respectively, are considered. It is required for the basic test that the dif-
ference in locations (medians) of the two populations be known and, when this
is s0, the two samples may be adjusted to have equal locations. Taking these
location parameters to be zero without loss of generality, we test the hypothesis
that G(u) = F(u) against alternatives of the form G(u) = F(6u), 6 5 1. The
two samples are ordered in a single joint array and ranks are assigned from each
end of the joint array towards the middle. The statistic used is W, the sum of
ranks for the X-sample.

The distribution of W is studied and tables of significant values of W are
provided for m 4+ n < 20 and both upper- and lower-tail significance levels
.005, .01, .025 and .05. The first four moments of W are developed and a normal
approximation to the null distribution of W is devised.

Large-sample properties of the W-test are considered. A proof of limiting
normality is based on a theorem of Chernoff and Savage. Consistency of the
W-test is indicated and its relative efficiency in comparison with the variance-
ratio F-test is obtained as 6/x° when F(u) is the normal distribution function.

Other non-parametric tests of dispersions are reviewed. The W-test is less
efficient asymptotically than some of these other tests but is easier to apply,
particularly with the tables provided.

A modified test is suggested for the case where the difference in population
locations is not known. This involves replacing the two original samples by two
corresponding samples of deviations from sample medians. The procedure of
the W-test is applied to the two samples of deviations. The properties of the
modified test have not been investigated except for a sampling study of rather
limited scope. That study indicates that the moments of W for the modified
test are not greatly different from those under the basic procedure.

2. Introduction. Let X3, - -+ , X,,and Y3, - - -, ¥, represent two independent
samples of sizes m and n of independent observations from two populations
with continuous cumulative distribution functions (c.d.f.’s), F(u) and G(u)
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respectively. We shall assume for the most part that the difference in location
parameters (medians) ux — uy of the two populations is known and it may be
taken to be zero for we may adjust the initial samples by subtracting ux — ur
from each X-observation. The parameters ux and uy need not be known, but
no generality is lost in assuming ux = uy = 0 in what follows. Then F(u) and
G(u) are assumed to be of the same form and to differ at most in the value of a
scale parameter 6, so that G(u) = F(6u). We develop a rank-order test of the
null hypothesis,

(1) Hy: 6 =1, ie., G(u) = F(u),

against either one-sided or two sided alternatives to H, .
The two samples (adjusted by ux — py if necessary) are ranked or ordered
in a combined array represented by

(2) Zl,"‘,Zm+7..

But ranks are assigned from both ends of (2), beginning with unity and working
towards the center. If m + n is even, we have the array of ranks

(3) 1,2,8,---,(m+n)/2, (m4+n)/2---,321;

and, if m + # is odd, we have

(4) 1,2,8,---,(m+n—-1)/2, (m+n+1)/2
(m+n-1)/2,--.,3,2, 1.

The test statistic to be considered is

(5) W= ;R(Z),

the sum of the ranks in (3) or (4) associated with the X-sample. An alternative
form, equivalent to (5) and more useful in mathematical considerations, is

? m+n .
(6) W=Z;i6’f+ Zl(m+n+1——i)6f
i= t=p-+

where 8] = 1 if Z; is an X-observation and 87 = 0 otherwise, and where
p=1[m+n+1)/2],

the largest integer in (m + n -+ 1)/2. Small values of W indicate larger dis-
persion for the X-sample and large values of W indicate larger dispersion for
the Y-sample. Small values of W suggest that § < 1 and large values of W sug-
gest that 8§ > 1. The test based on W and its properties are discussed in the fol-
lowing sections.

Freund and Ansari [5] proposed the W-test and seem to have been the first
to make such a proposal. David and Barton [4] presented a generalized procedure
that includes the W-test as a special case but they did not investigate the prop-
erties of their method. Sukhatme ([13], [14]) has proposed two other rank order
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dispersion tests. The first of these is similar to the W-test but requires knowl-
edge of px and py, not simply of ux — ur.

It is of interest for comparative purposes to note that Sukhatme’s first test
uses the statistic

= _l‘iiX(Xi; Yj)

mn =1 j=1

where
fO<X<YorY <X<0,

otherwise.

1,
x(X,Y) = {
0

Let n_(X), n_(Y), n.(X) and n,.(Y) indicate numbers of negative and positive
X- and Y- observations. Then

mnT = ;R'(Z) — i (X){n(X) + 1} + n(X){n(X) + 1)}

where Y x R'(Z) is the sum of ranks associated with the X-sample when the
ranking is modified as in the array

1’2;3;""n—’ ‘n+7"'73;2;1;

n. = n(X) + n_(Y), ny = n(X) + ny(Y). The statistic 7 depends on
rankings of positive and negative observations separately and on the numbers
of positive and negative values of X. Our statistic W, although a similar statistic,
avoids attachment of any meaning to the zero point of the scale of X.

A statistic W’, associated with W, could also be used for a test procedure;
W' could be obtained directly by ranking from the center of the array (2)
towards the two ends beginning with unities if m -+ n is even and with a zero
if m + n is odd. Now W’ is equivalent to W, since

(7 W =im(m+n)+m-—-—W
if m + n is even and
(8) W=im+n+1)—-W

if m + nis odd. W’ may be preferred to W if a statistic is desired such that
large values of the statistic occur with larger dispersion for the X-sample, but
tests based on W and W’ are equivalent in their properties.

Other nonparametric tests on dispersions are available.> We note papers by
Rosenbaum [11], Kamat [6], Barton [2], Lehmann [7], Terry [15] and Mood [8].
In addition, tests have been proposed that are consistent against more varied
departures from equality of two c.d.f.’s, but these will not be discussed. We do
compare, when possible, the W-test with other tests on dispersions.

3 Sidney Siegel and John W. Tukey [12] in a recent paper have a test similar to the W~
test. They rank the array (2) as: 1,4,5,8,9, --- , 7,6, 3, 2 and this permits use of existing
tables.
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In a final section we discuss what may be done if ux — py is not known. The
W-test cannot then be used directly because it is in some cases sensitive to
differences in locations of the two populations.

3. The Null Distribution of W. When H, is true, 8 = 1 and F(u) = G(u).
Under these conditions, each of (m ;n*- n)

m -+ n positions in (2) is equally likely, and each such assignment yields a value
of W. Probabilities of occurrence of each distinct value of W are obtained as

the product of 1/ (m 7;: n) and the number of distinct assignments that yield

distinct assignments of m X’s to the

that value of W. Tables for the cumulative distributions of W for various values
of m and n may then be prepared.

Ansari [1] has prepared tables showing the complete distributions of W for
m = 2(1)10, m + n = 4(1)20. In Table 1 we give only critical values of W for
significance levels .995, .99, .975, .95, .05, .025, .01, and .005 taken from the
complete tables. If Wy(a) is a critical value of W with significance level o,

P[W % Wo(a)[ Ho] é o
for @ < .05 and P[W < Wo(a)| H)] = 1 — a for « = .95.

Both a recursion formula and a frequency generating function have been
derived to facilitate consideration of distributions of W. Let f(W | m, n) denote
the frequency of occurrence of W given the sample sizes m, n. (The corresponding

probability is P(W|m, n) = f(W |m, n)/ (m o
form = 2is
9) fWlmn+1) =fW|mmn) +f(W—-N-—=1|m—1,n+1)

where m + n = 2N orm + n = 2N + 1 depending on whether m + = is even
or odd. Alternatively, (9) may be written

(10) (m+n+ )P(W|m,n + 1)
=n+1HPW|mn) +mP(W—-N—-1|m—1,n+1).

).) The recursion formula

The frequency generating function is

N
(11) g(u, v) = I_l (1 + u%)? ifm+n=2N
) N
= (1+4"™) [T (1 + u*)? ifm4+n=2N+ 1.
=1

The frequency function f(W | m, n) is the coefficient of 4”»™ in the expansions
of (11).
The recursion formula is very nearly obvious in the form (9). Consider the
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TABLE 1
Lower and Upper Significance Levels of W

Sample Sizes Significance Levels

m n .995 .99 .975 .95 .05 .025 .01 .005
2 5 — — — 2 — — — —
2 6 — — — 2 8 — — —
2 7 — — — 2 9 — — —
2 8 — — 2 2 10 10 — —
2 9 — — 2 2 11 11 —_ —
2 10 — — 2 2 12 12 — —
2 11 — — 2 2 13 13 — —
2 12 — — 2 2 14 14 — —
2 13 — 2 2 3 14 15 — —
2 14 — 2 2 3 15 16 16 —
2 15 — 2 2 3 16 17 — —
2 16 — 2 2 3 17 17 18 —
2 17 — 2 2 3 18 19 — —
2 18 — 2 2 3 19 19 20 —
3 5 — —_ — 4 11 — — —
3 6 — — 4 4 13 13 — —
3 7 — — 4 5 13 14 — —_
3 8 — — 4 5 15 16 16 —
3 9 — 4 4 5 16 17 17 —
3 10 — 4 5 5 17 18 18 19
3 11 — 4 5 6 18 19 20 —
3 12 4 4 5 6 20 21 22 22
3 13 4 4 5 6 21" 22 23 23
3 14 4 5 6 7 22 23 24 25
3 15 4 5 6 7 23 24 25 26
3 16 4 5 6 7 24 25 27 28
3 17 4 5 6 8 25 26 28 29
4 4 — — 6 6 14 14 — —
4 5 — 6 6 7 14 16 — —
4 6 6 6 7 7 17 17 18 18
4 7 6 6 7 8 19 19 20 —_
4 8 6 6 7 8 20 21 22 22
4 9 6 7 8 9 21 22 23 24
4 10 7 7 8 9 23 24 25 25
4 11 7 7 9 10 24 26 27 27
4 12 7 8 9 10 26 27 28 29
4 13 7 8 9 11 27 29 30 31
4 14 8 9 10 11 29 30 31 32
4 15 8 9 10 12 30 32 33 34
4 16 8 9 11 12 32 33 35 36
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TABLE 1—Continued

Sample Sizes Significance Levels
m " .995 .99 975 .95 .05 .025 .01 . 005
5 5 — 9 10 10 20 20 21 —
5 6 9 9 10 11 22 23 24 24
5 7 9 10 11 11 24 24 25 26
5 8 10 10 11 12 26 26 28 29
5 9 10 11 12 13 27 28 29 30
5 10 10 11 12 14 29 30 32 32
5 11 11 12 13 14 31 32 33 34
5 12 11 12 14 15 33 34 36 37
5 13 12 13 14 16 34 36 37 38
5 14 12 13 15 16 36 38 40 41
5 15 12 14 15 17 38 40 41 43
6 6 12 13 14 15 27 28 29 30
6 7 13 14 15 16 29 30 32 32
6 8 14 14 16 17 31 32 34 34
6 9 14 15 16 18 34 35 36 37
6 10 15 16 17 . 18 36 37 38 39
6 11 15 16 18 19 38 40 41 . 42
6 12 16 17 19 20 40 41 43 44
6 13 16 18 19 21 42 44 46 47
6 14 17 18 20 22 44 46 48 49
7 7 17 18 19 21 35 37 38 39
7 8 18 19 20 22 38 39 41 42
7 9 19 20 21 23 40 42 43 44
7 10 20 21 22 24 43 44 46 47
7 11 20 22 23 25 45 47 48 50
8 8 23 24 26 27 45 46 48 49
8 9 24 25 27 29 48 49 51 52
8 10 25 26 28 30 50 52 54 55
8 11 26 27 29 31 53 55 57 58
8 12 27 28 30 32 56 58 60 61
9 9 30 31 33 35 55 57 59 60
9 10 31 32 34 36 58 60 62 64
9 11 32 34 36 38 61 63 65 67
10 10 . 38 39 41 43 67 69 71 72

case with m + n = 2N. Note that f(W | m, n + 1) is made up of two parts:
the frequency of W when W does not contain the rank N + 1 and the frequency
of W when W does contain N -+ 1. The first part is f(W | m, n) and the second
isf(W—N—1|m—1,n+4 1) and (9) follows. The demonstration is similar
when m + n = 2N + 1.
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The frequency generating function is easily proved by mathematical induc-
tion. The fundamental part of the induction is proved using (9). We do not
give details of the proof since it is easy but somewhat cumbersome, and since
Barton and David also considered a generating function from which (11) re-
sults as a special case.

4. Moments and Approximate Distributions under H,. The approximate
distribution of W under H, is of interest for applications of the W-test beyond
the scope of the prepared tables. We examine the moments of W on the hypothe-
sis that all assignments of the X- and Y-observations to the array (2) are equally

likely.
Suppose that m + n = 2N. Then
(12) E(W) = mE (r) = m(m + n + 2)/4,

for we consider Ey(r) as the expectation of an integer chosen at random from
the first N integers and (N + 1)/2 = (m + n + 2)/4. We write

(13) E(W?) = mE (r*) 4+ m(m — 1)E(rs)

and

(14) B(rs) = [z (g’) Eu(rs) +.(];’>2 Ez(rs)] / (25 )

Now Ey(*) = (N + 1)(2N + 1)/6, the expectation of the square of an integer
selected at random from the first NV integers; Ei(rs) = (3N + 2)(N + 1)/12,
the expectation of the product of two distinct integers selected at random from
the first N integers; and Fa(rs) = (N -+ 1)°/4, the expectation of the product
of two integers selected at random separately from two sets of the first N in-
tegers. Coefficients of E; and E. in (14) are the appropriate weighting prob-
abilities. Substitution in (14) and then (13) yields

(15) E(W’) = [n(N + 1)(2N + 1)/6]

+ [m(m — 1)(N + 1)(3N* + N — 1)/{6(2N — 1)}].
Then, from (15) and (12) with replacement of N by (mA—i- n)/2, we have
(16) m=ocw=mn(m+n—2)(m+n-+2)/[48(m + n — 1)].
Through similar arguments,
(17) " pe =0

and

= mn (m +n + 2) \
M B mFa—m - dmFa—pormmE

— 2(m® + 19m'n + 52m°n® + 52m™n’ + 19mn* + n°)
(18) + 4(3m* + 16m’n + 26m™n* + 16mn® + 3n*)
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— 4(6m® — 34m’n — 34mn’ + 6n°)
— 16(2m® + 25mn + 2n%) + 96(m + n)].

Wkenm + n = 2N + 1, derivations of moments are slightly more complicated
but similar. We obtain

(19) E(W) = m(m + n + 1)*/[4(m + n)],

(20) pe = o = mn(m +n + 1)[3 + (m + n)*/48(m + n)7,

(21) ps=mn(n —m)(m+n —1)(m +n + 1)*/[32(m + n — 2)(m + n)7,
and

_ mn(m +n <+ 1)
T 3840 (m + n — 2)(m + n)*

+ 57Tm’n’ + 100m*n® + 100m’n* + 57m’n® + 17mn® + 207)

+ 2(m’® + 14m’n + 47m*n® + 68m*n® + 47mn’ + 14mn® + n®)
+ 2(2m° — 35m*n — 115m*n’ — 115m™n® — 35mn' + 2n°)

+ 15(4m* — m’n — 10m™n’ — mn® + 4n') + 15(2m° + 9m’n
+ 9mn® + 2n*) — 30(m* — mn + nz)j.

The moments above are sufficient to show that

(22)  pa [bmn(m + n)® — (2m" + 17m’n

(23) us/us = 0, m 4+ n = 2N,
(24) w/us = O(N), m+n = 2N + 1,
and

(25) pe/ps =3+ O(N™"), m-+n=2Nor2N + 1.

The limits are considered as N — o with m/n constant. These results suggest
the use of

(26) u=[W-—EW)xil/ow

as a standard normal deviate for large m and n and with E(W) and o obtained
from (12) and (16) or (19) and (20) as m + n = 2N or 2N -+ 1. As is often
done in similar situations, # in the numerator of (26) is a continuity correction
with the sign chosen to diminish the numerator numerically. Comparisons with
the exact distributions of W have shown that the use of the continuity correction
is advantageous. '

In Table 2 we have considered two situations: m = 3, n = 11 and m = 7,
n = 7. Cumulative probabilities, P(W = W), are shown and the corresponding
probabilities based on the normal approximation. It is seen that the normal
approximation is quite useful at these values of m and n and somewhat better
when m = n than when m > n.

The Pearson system of frequency curves may be used to obtain somewhat
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TABLE 2

Comparisons of P(W < W,) Based on Ezact and Normal Approximations* to
the Distributions of W

m =3, n =11 (The distribution of W is symmetric about W = 12)

Wo.ooooviiiiiaiiann. 4 5 "6 ' 7 8 9 10 o1
Exact Prob........ .0055 | .0165 | .0440 | .0824 | .1429 | .2253 | .3297 | .4396
Normal Approx....| .0093 | .0207 | .0422 ) .0775 ) .1357 | .2165 | .3188 .4376

m = T7,n =7 (The distribution of W is symmetric about W = 28)
Wo.ooovvnon. 16 17 18 19 20 21 22 23 24 25 26 27
Exact

Prob....|.0006 |.0017 {.0052 |.0122 |.0256 |.0466 |.0804 |.1270 |.1894 |.2652 |.3537 |.4493

Normal
Approx.{.0016 |.0035 |.0073 |.0141 |.0232 [.0478 |.0794 |.1233 (.1742 |.2604 |.3502 |.4487

* The continuity correction has been used.

better approximations to percentage points of the distribution of W, particularly
when m # n. The statistic « in (26) is again computed but now we also require
B = ui/ub and B2 = ws/us . Table 42 in [9] is then entered with appropriate
values of 8; and B; and selected percentage points of the distribution of u are
read from the table. Trial use of this method suggests that it is better than the
normal approximation but we believe that the latter is sufficiently good for
practical purposes when m -+ n exceeds values in Table 1.

Ansari [1] has shown additional tables like Table 2 and also illustrated the

use of the Pearsonian approximation.
6. Limiting Normality. Limiting normality of W is established through use of
a theorem of Chernoff and Savage [3]. We first define their notation and then

show how the theorem applies to W.
Chernoff and Savage consider two samples as we have done in Section 2. They

define m + n = N, Ay = m/N and require that for all N the inequalities
0<M=EMW=S1-XN<1

hold for some Ay = 1. Sample c.d.f.’s are defined:

F,.(x) = (number of X; < z)/m, G.(z) = (number of Y; < z)/n.

The combined sample ¢c.d.f. is Hy(z) = AyFu(z) + (1 — Ay)G.(z); the com-
bined population c.d.f. is H(z) = MF(z) 4+ (1 — Av)G(z). A statistic Ty is
defined in two equivalent ways. Firstly,

(2n) Tw= [ JulH ()] dFuo),

where Jy need be defined only at 1/N, 2/N, - -+, N/N but may have its domain
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of definition extended to (0, 1) by a suitable convention. Secondly,
(28) mTy = g EniZy:,
where the Ex; are given numbers and Zy; = 1 if Z;is an X and Zy; = 0 other-
wise. The theorem, subject to four conditions, states that

(29) }ViﬂP[(TN — un) /oy St = j;: ,\/157“.3_22/2 i

with puy and oy given in terms of quantities here defined.
Details on the application of the theorem are given in [1] but omitted here
for brevity. W and Ty are associated with

(30) Ty = W/mN.

The association follows when we define

(31) TlHs(@)] = 4 + 55 = |3 + 55 — Hal)

and '

(32) Byi=3+se— |3+ =2,  i=1,-,N
2N 2N N

The four conditions of the theorem may be checked except that the fourth does
not hold when H = 1, a point of measure zero and an exception permitted when
the proof of the theorem is reviewed. B

We may evaluate uy and oy under H, where F(z) = G(z) and obtain uy = %
and oy = n/(48 mN), results asymptotically equivalent to (12) or (19) and
(16) or (20) respectively. In practice, in applying the limiting normal distribu-
tion under Hy, we recommend the normal approximation outlined in Section 4.

The establishment of the limiting normality of W under H, in (1) and under
alternatives with 6 1 is required in the following discussions of relative effi-
ciencies.

6. Consistency of the W-Test. Consistency of the W-Test of (1),
Hy: 6 =1, F(u) = G(u),

against alternatives, H,: F(6u) = G(u), 0 # 1, is indicated by the Chernoff-
Savage Theorem. When H, is true, Tx 5 % since ox = n/(48 mN) — 0 as
m, n — o in constant ratio, or when Ay is bounded as required by the theorem.
When H, is true, it can be seen from the theorem that ¢% — 0 and Ty 5 ux
with

) fm—1l=0=w) [ |F@) - Fem) |aF @) >0, 01,

the last result depending on a zero median, F(0) = . The test based on Ty is
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consistent and consequently the equivalent W-test is consistent against the
alternatives indicated.

7. Relative Efficiencies. The relative efficiency of the W-test in comparison
with other tests of dispersion may be obtained following the method of Pitman
-and Noether [10]. Local alternatives are considered and we define

(33) oy = 1 + v/+/N,

with N' = m + n, 6y replacing § and now dependent on N as required by Noether.
The efficacy Ew of the W-test, or equivalently of the Tx-test, is required and is

(34) By = [dE(Tw | 6)/d6 | o=al’/o3(0) o= -

Eyw is evaluated through placement of n/48mN in (34) for the denominator
and through differentiation of uy with respect to 8 which, with our definition of
Tw , has the special form

(35) B(Tul6) =me = [ 4= 13 = WP(@) = (1= M) | dF(a).
We differentiate under the integral sign and obtain

(36)  dE(Ty|0)/d0 o = (1 — Aw) [f_o of*(z) do — fow of*(z) dx],
where f(z) is the density function associated with F(z). Now

(37) Ey = 48mn [[_: zf*(z) de — fow zf*(x) da::r

m-+n

when Ay is replaced by m/N.

Ew in (37) is correct except for terms O(1/N), for the derivation was based
on asymptotic results from the Chernoff-Savage Theorem. We have also ob-
tained Ew more directly but the derivation is lengthy and will not be given in
detail. We refer to the definition of W in (6) and consider, for illustration, the
case with m -+ n even. The random variables in (6) are the 87 . Let X4 be the
ath smallest X and then .

min.(Z,m)

PEG=1)= 2, P(Zi = x1a)

a=max.(1,4—n)

(38) = 4‘; mn!/{(e — 1) (m — a)!(t — a)(n — 1 + a)!}]

@I - PO F @) 1~ R () da.

From (38) and (6) expressions for E(W |60) and dE(W | 6)/d0 |s—1 may be
obtained and reduced, the final reduction based on an interesting application of
the method of steepest descent in the evaluation of integrals. We used the form
for ¢% in (16) and obtained a result asymptotically equivalent to (37). A form
similar to (38) was also obtained with m -+ n odd.
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Noether set forth four conditions for the validity of the calculation of asymp-
totic relative efficiencies. The first three are easily checked for the W-test and
the fourth involves uniform limiting normality which follows from the Chernoff-
Savage Theorem.

The efficacy of the F-test for variances is

(39) Er = 4mn/[(m + n) (B — 1)]
where

W  a= [ e-s@ra@ /| [ - s@rae |

as described by Sukhatme [13]. The relative efficiency of the W-test to the
"F-test is ewr = limy.o Ew/Er and reduces to

(41) ewr = 12(Bs — 1) l:_[: zf* (z) dz — /ow zf*(z) dx:r .

Special cases follow:
(). I f(z) = € ?/A/2x, ewr = 6/7° = .61.
(ii). Iff(z) =1, = =z = %, ewr = .60.
(iii). If f(z) = 27" ewr = .94.
8. Other Tests of Dispersion. The W-test has the same relative efficiencies as

Sukhatme’s first test [13], as might be expected from their similarity.
Sukhatme [14] has proposed a second test. The statistic is

S=EZ Q(le‘Xk;Yt)—l-zz ZQ(XkyylyYJ)
¢=1 j.k=1 %,J=1 k=1
(42) J#k Rt
—9 ™
+2ERZ2Y Y KX, ),

where
Qlu,v,w) =1 if 0<u<w,0<v<w or w<u<0,w<v<O0,
= 0 otherwise
and
Ku,v) =1 if 0<u<v or v<u<0,
= 0 otherwise.

The relative efficiency esr is

19) e =206~ [2 [ do— [ o) an)

2

In the normal case (i), esr = .69; in the uniform case (ii), esr = .80; in the
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double exponential case (iii), esr = 1.03. Sukhatme’s S-test requires knowledge
of the locations of the two populations.
Mood [8] has proposed the statistic

m 2
(44) M=) (,-‘. - @_'F_g.ﬂ)

=1
where 7; is the rank of X, in (2). The relative efficiency of Mood’s test, as de-
rived in [13], is

45)  ewr =456, = 1) 2 [P @) do — [ apayan].

exr has values (i) .76, (ii) 1, and (iii) 1.08 respectively for the three distribu-
tions considered. Mood’s test requires only knowledge of the relative locations
of the two populations.

Lehmann ([7], pp. 173) has proposed a test that does not depend on knowledge
of even the relative locations of the two populations but even the null distribu-
tion of his statistic is not distribution-free. The statistic, in a form given by
Sukhatme [13], is

W)  r-Treix-xiin-nn/(3) ()
1<Jj <k

where ¢(u, v) = 1if v < v and ¢(u, v) = 0 otherwise. Relative efficiencies are

not known since difficulties are introduced because of the dependency of the

test on the natures of the populations sampled.

The propel'tles of the David and Barton test are those of the W-test in the
special case in which the two are equivalent.

Relative efficiencies have been shown for tests discussed in comparison with
the P-test for variances. The relative efficiency of one rank test to another may
be obtained from the ratio of the two relative efficiencies given.

The W-test is an 1mprovement on Sukhatme’s first test but is less efficient,
though easier to use, than Sukhatme’s second test. Mood’s test is the most
natural one against the background of normal-theory statistics and its efficiencies

_are the best. The W-test is somewhat easier to compute and with tables may be
useful in many situations where a quick and easy test is desired.

9. Discussion. It is a disadvantage in the W-test that the relative locations
of the two populations must be known. This disadvantage—or more serious
ones—is also present for the other tests discussed. If the X- and Y-samples cannot
~ be adjusted so that ux — ur = 0, differences in locations seriously affect all of
the tests of dispersion.

We would like to modify the W-test so that the X- and Y-samples are ad-
justed in locations on the basis of information from the sample itself. One possi-
bility is to consider the sample medians X and ¥, the middle or averages of
middle observations for odd- or even-size samples respectively, and let U; =
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TABLE 3

The Null Cumulative Distribution of W for m = n = 9 from a Sampling Study and
Corresponding Expected Frequencies for W Computed When m = n = 8

W 21 | 28 29 30 31 32 33 34 35 36
Observed Cum. Freq.| . 5 7 12 14 17 24 36 46 55 63
Frequency for W....| 3.6 | 5.7 | 8.7 (12.6 | 17.5 | 23.5 | 30.3 | 37.9 | 45.9 | 54.1
Wi 37 38 39 40 4 Y] 43 4 — 48
Observed Cum. Freq.| 69 80 84 87 91 95 97 99 — | 100
Frequency for W....| 62.1 | 69.7 | 76.5 | 82.4 | 87.4 | 91.3 | 94.3 | 96.4 | — 99.7

X;— Xand V; = Y; — V. A new array like (2) may be formed from the
samples of U and V. We would like to again compute the W-statistic for this
new array and refer to the test based on it as the W-test. But the distributions
of W are unknown and very difficult to investigate since the U’s and V’s are
not independent. It does appear that the W-test should have the same
asymptotic properties as the W-test, but this has not been verified.

We would like to use the W-test as though it were the W-test. The appropriate
way to do this seems to be to drop out the zero-values of U and V when they
occur and to then proceed with the W-test on the reduced samples of U and V.
A check on the appropriateness of this was made by a sampling study. One
hundred pairs of samples with m = n = 9 were taken from a table of random
normal deviates and reduced to samples of U’s and V’s of eight each; the dis-
tribution of W obtained is shown in Table 3. The mean and variance of W from
the sampling study were respectively 35.3 and 19.7. The corresponding values
for a W-test with m = n = 8 obtained from (12) and (16) are 36 and 22.5.
This suggests that the normal approximation for the W-test may be used for
the W-test, but this limited study is not conclusive.

Other generalizations may be possible and merit investigation. The W-test
may be extended to several samples for a rank analogue to a test of homogeneity
of variances. Problems associated with the largest or smallest scale parameter
of a set of populations might be considered.

The problem of ties has not been investigated. The effects of ties could be
studied, but we suggest that the usual procedure of giving a tied rank the average
rank for the set of tied values should be adequate.

We have chosen to consider the test of Hy: F(u) = G(u) against alternatives
F(ou) = G(u), 8 > 1 given that X- and Y-populations have, or may be adjusted
to have, a common, but not necessarily known, location as measured by their
medians. It is interesting to consider what may happen if other alternatives are
met. Firstly, we note that the proof of consistency of the W-test in Section 6 is
dependent on a common median (taken to be zero without loss of generality)
for the two populations but that otherwise (33) applies for any G(z) # F(z)
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replacing F(6z) in (33). Hence the W-test is consistent against a much wider
class of alternatives although power should be best for the situation considered
and this seems to be the important one. The W-test can lose its sensitivity for
detecting differences between dispersions in the presence of differences between
medians. If the difference between population medians is large and dispersions
are relatively small, it can happen that all X-observations precede all Y-observa-
tions in (2). If m = n also, then W = E(W) and H, would not be rejected
even if there are differences in dispersions. It is important, as stated in [5] and
similarly in [12], that in general a rejection of H, may be attributed to differences
in dispersions. There is one exception: if m is very small compared to n, a very
small value of W could be due to a difference in medians but this should be im-
mediately apparent from an inspection of the data.

A concluding remark may be made. There is some interest in possible forms
that statistics may take. Sukhatme’s statistic [13] may be adjusted to estimate
the probability P(] X | < | Y |). The situation is not so clear for the W-test.
We note that W — Min. W is a count of the numbers of X’s nearer the com-
bined sample median than Y’s. If we consider (W — Min. W)/mn, asymp-
totically we have an estimate of P(| X — p| < |Y — p|) when g is the com-
mon median of the two populations. This asymptotic result does suggest that
the W-test will be consistent against alternatives for which

P(X —p|<|Y —u|) =4
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