TABLES FOR UNBIASED TESTS ON THE VARIANCE OF
A NORMAL POPULATION

By JAMES PACHARES
Hughes Aircraft Company

1. Summary. Tables of critical values defining an unbiased test are given
for testing the null hypothesis ¢ = o} against the two-sided alternative hypothe-
sis ¢® % o; where o’ is the variance of a normal population. Use of the tabulated
values leads to the logarithmically shortest confidence limits for ¢*, & > 0. The
critical values have been found to five significant figures for « = .01, .05, .10
where « is the size of the critical region and for » = 1(1)20, 24, 30, 40, 60, 120
where » equals the degrees of freedom of the chi-square distribution. A least
squares equation is given which may be used to find the critical values when » = 10
for « = .01, .05, .10.

Since submitting a revision of the present paper for publication, the article by
Tate and Klett [6] appeared necessitating a second revision. An explanation of
the overlap of the present paper with [6] is included in Section 5. In addition, a
brief discussion of [2], which was called to the writer’s attention by the editor,
has been added in Section 5.

2. The Problem. Suppose that a random sample z;, x;, ---, 2, is taken
from a normal population having mean u and variance ¢* with the thought of
either testing the null hypothesis Hy : ¢* = 0§ against the two-sided alternative
hypothesis H; : ¢° # o5, or constructing two-sided confidence intervals for ¢°.
The usual (equal-tail) procedure is to reject H, at significance level o if
(n - 1)82/03 = xi_1,1_a/2 , O (n - 1)82/0’(2) = Xf»—l,al2 where

(n— 1) =21y (z:i — &) 0% = D i,

and where x5, is the upper 8 quantile of the chi-square distribution with »
degrees of freedom. A set of confidence intervals for ¢* with confidence coefficient
1 — aisthen (n — 1)§/xh 1,02 S ® £ (n — 1)8/x%11ma2 . It is well-know

that such a procedure leads to a biased test. For a discussion of the choice of a
critical region and unbiased tests, see [3] and [5].

3. The Solution. Let f,(t) denote the p.d.f. of x}, let @ = &, + a; where
a1 = [8 £,(t) dt, a2 = [3f,(¢) dt,and let P(\) be the power of the test based on the
critical values A and B when A = ¢*/o¢ , then

PQ\) =1 — [ARf.(¢) dt.

It has been shown, ([3], [5]), that if we choose A and B so that P(\) is a mini-
mum at A = 1, subject to

(1) [if@)dt=1—a,
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we are led to
(2) Af,(A) = Bf,(B).

In the last paragraph of Section 2 on page 8 of [3] Neyman and Pearson give
their personal reasons for recommending an unbiased test; they also give in their
Table I on page 19 the values of A and B and the corresponding values of a; and
as for the following five cases: a = .10, v = 2,9; & = .02, v = 2, 3, 9. Scheffé [5}
has shown that choosing A and B in this manner makes the ratio B/A a mini-
mum which leads to the logarithmically shortest confidence intervals for o*,
k > 0. In addition to being unbiased, K. V. Ramachandran [4] has shown that
the power of such a test procedure has the monotonicity property.

4. Method of Solution. Equations (1) and (2) were solved simultaneously for
A and B to five significant figures for » = 1(1)20(2)120 using Newton’s itera-
tion method. Table I contains the values of A and B for & = .01, .05, .10 and
v = 1(1)20, 24, 30, 40, 60, 120. For convenience, the corresponding values of
a; and a; , which are of interest in themselves, are given in Table II.

The results for » = 12(2)120 were standardized and used to fit a least squares
equation of the form:

(3) Y = a0+ am™? + agm™ + agm™?

where m = v/2, Y = (t — m)m™*, where t = 4/2 or B/2 depending on whether
we want the lower or upper critical values, respectively. The form (3) was
chosen since there is a well-known asymptotic expansion for the percentage
points of the chi-square distribution in powers of v~ derived by Campbell, [1].
Equation (3) was tested for » = 10(2)120, @ = .01, .05, .10 and found to give
results which are accurate to at least four significant figures. The least squares
coefficients are given in the following table.

a = .01 a = .05 a = .10
Lower Upper Lower Upper Lower Upper
ao —2.5753 2.5760 —1.9598 1.9600 —1.6448 1.6449
a 2.2023 2.2098 1.2772 1.2805 .90037 .90181
as —.62981 .69167 —.35077 . 36871 —.24991 .25783
az .051724 .23691 .10022 .18198 .092008 13944

6. Related Tables. Ramachandran [4] gives to two decimals the values of
A and B for « = .05 and » = 2(1)8(2)24, 30, 40, 60 (Table 744).

Tate and Klett [6] give to four decimals the values of A and B for a = .10,
.05, .01, .005, .001 and » = 2(1)29 (Table 680). Values in Table I which also
appear in [6] are those for o = .10, .05, .01 and » = 2(1)20, 24. Values in Table I
but not appearing in [6] are those for « = .10, .05, .01 and » = 1, 30, 40, 60, 120.
Rather than delete the points which overlap, it was thought better to leave
Table I as originally computed for completeness and for comparison with values



TABLE I
Values for unbiased tests on the variance of a normal population

v a = .01 a = .05 a = .10
A B A B A B
1 .00013422 11.345 .0031593 7.8168 .012116 6.2595
2 .017469 13.285 .084727 9.5303 .16763 7.8643
3 .10105 15.127 .29624 11.191 .47639 9.4338
4 .26396 16.901 .6C700 12.802 . 88265 10.958
5 .49623 18.621 .98923 14.369 1.3547 12.442
6 .78565 20.296 1.4250 15.897 1.8746 13.892
7 1.1221 21.931 1.9026 17.392 2.4313 15.314
8 1.4978 23.533 2.4139 18.860 3.0173 16.711
9 1.9068 25.106 2.9532 20.305 3.6276 18.087
10 2.3444 26.653 3.5162 21.729 4.2582 19.446
11 2.8069 28.178 4.0994 23.135 4.9063 20.789
12 3.2912 29.683 4.7005 24.525 5.5696 22.119
13 3.7949 31.170 5.3171 25.900 6.2462 23.436
14 4.3161 32.641 5.9477 27.263 6.9348 24.742
15 4.8530 34.097 6.5908 28.614 7.6339 26.039
16 5.4041 35.540 7.2453 29.955 8.3427 27.326
17 5.9683 36.971 7.9100 31.285 9.0603 28.605
18 6.5444 38.390 8.5842 32.607 9.7859 29.876
19 7.1316 39.798 9.2670 33.921 10.519 31.140
20 7.7289 41.197 9.9579 35.227 11.259 32.398
24 10.207 46.706 12.791 40.383 14.276 37.372
30 14.138 54.762 17.206 47.958 18.943 44.697
40 21.094 67.793 24.879 60.275 26.987 56.645
60 35.967 92.907 40.965 84.178 43.698 79.926
120 84.347 164.51 92.106 153.03 96.258 147.36
TABLE II
Values of oy and a; associated with the unbiased tests
v a = .01 a = .05 a = .10
(23} ay (23} [¢2) [e3] o
1 .009243 .000757 044824 .005176 087647 .012353
2 .008697 .001303 .041479 .008521 .080398 .019602
3 .008289 .001711 .039266 .010734 .075954 .024046
4 .007980 .002020 .037717 .012283 .072964 .027036
5 .007739 .002261 .036570 .013430 .070796 .029204
6 .007547 .002453 .035680 .014320 .069137 .030863
7 .007389 .002611 .034965 .015035 .067816 .032184
8 .007256 .002744 .034376 .015624 .066735 .033265
9 .007144 .002856 .033879 .016121 .065827 .034173
10 .007046 .002954 .033453 .016547 .065053 034947
11 .006960 .003040 .033083 .016917 .064381 .035619
12 .006884 .003116 .032757 .017243 .063792 .036208
13 .006816 .003183 .032468 .017532 .063269 .036730
14 .006756 .003244 .032208 .017792 062802 .037198
15 .006700 .003300 .031974 .018026 .062381 .037619
16 .006650 .003350 .031761 .018239 .061998 038002
17 .006604 .003396 .031567 .018433 .061649 .038351
18 .006561 .003439 .031388 .018612 .061329 .038671
19 .006522 .003478 .031223 .018777 .061034 .038966
20 .006485 .003515 .031070 .018930 .060760 .039240
24 .006362 .003638 .030555 .019445 .059840 .040160
30 .006223 .003777 .029981 .020019 .058817 .041183
40 .006064 .003936 .029325 .020675 .057649 .042352
60 .005873 .004127 .028540 .021460 .056256 .043745
120 .005620 .004380 .027509 .022491 .054430 045569
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given in [2], [4], and [6]. Since five significant figures are given in Table I whereas
four decimals are given in [6], the two tables supplement each other.

Fertig and Proehl [2] give to four decimals the values of P for » = 1(1)50 and
k = .435(.005).500(.010).700(.051).500(.3)3.0 where P is the probability of a
more extreme result than the one observed in the sample when H, is true, using
an unbiased critical region. Specifically, P is the probability of a smaller » than
the one observed, where r = tf,(t), t = vz, = §’/as. The procedure in using the
table in [2] is as follows: First compute # = §*/ot from the sample, then k which
is defined by k = (z — log z)/log 10 is found from the graph on page 197 (Fig. 1)
as a function of z, and finally P is found in Table 1 as a function of k& and ». If
P is less than some preassigned «, we reject Hy at the 100a% level. The table in
[2] does not give the critical values corresponding to a specified « such as .05,
etc., but gives the probability of a result more extreme than the one observed.

6. Conclusions. Using the new values given in Table I it turns out that for
all cases computed a; > /2. See Table II. Both, P(\), the power curve based
on the newly computed critical values and, P*(\), the power curve based on the
equal tail areas were computed and compared. These results are not included
since they would be too space consuming. However, on page 21 (Figure 4) of [3]
there is a comparison of P(\) and P*()\) for the two cases: « = .10, v = 9 and
a = .02, v = 2. In all cases computed it turned out that P(\) > P*(\) when
A < land P(A\) < P*(A) when A = 1.
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