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1. Introduction.

1.1. A¢ms. In Section 2 of a previous paper [1] a viewpoint was described
under which one can compare within one framework a wide class of randomized
experimental designs, namely those designs called in [1] random allocation de-
signs. To make such comparisons one needs to know how each design performs,
which, from our point of view, means finding the variances of linear unbiased
estimators under the randomization hypothesis. The aim of this paper is to take
a beginning step towards finding some variances analytically.

The previous paper [1] defined some very general classes of techniques of
linear unbiased estimation. The practical use of these general methods is in-
hibited by two difficulties. Firstly, the computations with data are laborious
and unfamiliar, and, secondly, the calculation of the variances of the estimators
presents formidable mathematical difficulties. In this paper we avoid the first
difficulty by considering a smaller class of estimators, within the general class,
consisting only of estimators which lead to familiar data computations. The
mathematical difficulties remain however, so that the calculation of variances is
attempted only by indirect approximate methods which apply only to simple
random allocation designs as defined in [1]. The restriction to simple random
allocation, although very stringent, does allow answers to some interesting
questions, for this case is, in a sense, the most radical form of random balance
design. .

1.2. The class of data analysis techniques. We postulate data consisting of n
quantities corresponding to a subset of n of the N cells of a complete crossed
k-factor array, i.e.,

N=RC---L, ,

where R, C, -+, L are the numbers of levels of the first, second, - -- , kth fac-
tors. In broad terms, the techniques under consideration have two stages, the
first stage consisting of the least squares estimation of a selected set of effects,
and the second stage consisting of further estimation and testing based on the
residuals from the first stage.

When a mathematical statistician is confronted with an unbalanced fraction
of a complete array, his first thought is to set up a linear model with various
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selected main effect and interaction terms plus random errors, and then to
estimate these effects by least squares. It is assumed that the reader knows how
to do this (e.g., by setting up the so-called normal equations and solving them
as in Wilks [4] p. 192). This is precisely the first stage of our analysis. We do
not, however, commit ourself to the model which led to this first stage estimation,
but proceed to look for further effects. In general, we denote by m the number of
effects selected for fitting at the first stage, and we may choose any m such that
0 < m = n. In practice one always chooses m = 1, for one always fits at least
the grand mean, and one generally allows n — m to be moderately large in order
to have some interesting variation left in the residuals.

The second stage of our analysis uses as input the n residuals after the first
stage fitting. The simplest way to think of the second stage computations is to
imagine a complete array of N cells whose n entries corresponding to the ob-
served cells are the residuals from the first stage, and whose N — n entries corre-
sponding to the remaining cells are all zero. The second stage computations are
simply the usual analysis of variance computations on this complete array of
size N, i.e., the usual linear estimators and the usual mean squares. Of course,
the linear estimators and mean squares corresponding to effects estimated at the
first stage will be zero, and it is only the remaining effects, and not necessarily
all of these, which are of interest at the second stage.

It is clear that the linear estimators calculated at the second stage are not un-
biased, for the N — n zeros in the array have the effect of reducing the absolute
value of the average of such an estimator. Thus a correction factor is needed to
make such a raw estimator into an unbiased estimator. The approximate theory
of Section 2 suggests, at least for the case of simple random allocation, that an
approximate correction factor for unbiasedness is

N—-—m

(12.1) ¢=

It is also suggested, again for the case of simple random allocation, that ratios of
mean squares coming from the second stage analysis of variance may be tested
as F statistics with the same degrees of freedom as would be used if the full
array of size N were observed. In effect this suggestion is saying that the F tests
are sufficiently robust to be approximately valid when applied to non-normal
data where the observations are zero with probability 1 — (n/N) and other
quantities with probability n/N. This suggestion arises more precisely from the
approximate theory of Section 2.

The foregoing is intended to be a verbal description of how to carry out data
analysis for a general technique in the class of techniques under consideration.
To be more concrete we take the example of a 3-factor design where N = R-C- L.
The choice of a particular technique in the available class of techniques is made
by deciding which effects to estimate by least squares. In our example let us
decide to estimate by least squares the grand mean, the row main effects and the
column main effects. Thus we observe a subset of n of the N quantities v;; for
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1=+=R,1=j= Candl £k £ L, and, as the first stage of analysis, we find
.., 9;. and 9. ; which minimize the quantity

E (1),;,'1, — b — i);. - 0.,‘)2,
where summation is over the n observed cells. Because of linear constraints
(e.g., we may require ) 1 #;. = > 1 9.; = 0) we are here fittingm = R + C — 1
parameters. We shall assume for simplicity that all of the parameters are uniquely
estimable. The first step in the second stage of analysis is to consider the array

Y{jk = v — D.. — 05 — 0.,' if cell (’I., j, k) is
observed
=0 otherwise.

From this array one computes in the usual way linear estimators ... , 9;;. , 9.z,
9.5 and 9,5, , and also the corresponding meansquares (MS) ., (MS)ze , (MS)zz ,
(M8)cr and (M8S)rcr . Here, for example,

1 R 4 1 R 4 L
D =E§ZY.,I,—R——CL;§"_I Y
1 R 4

and
1 L 2
(MS)L = L———_ 1 I; (ﬁk) .

Supposing now that the n observations come from a simple random allocation
scheme we multiply these second stage linear estimators by ¢ from (1.2.1) to
make them approximately unbiased, and we test the mean squares, for example
by regarding (M S)./(M8)zcz as an F-statisticon L — 1 and (R — 1)(C — 1)
(L — 1) degrees of freedom.

1.3. The theoretical approach. The statistical model under consideration is as
follows. Using 3-factor notation for simplicity, we suppose that, corresponding
to each of the N cells (¢,j, k) for1 £ ¢ < R, 1 =< Candl = k < L, there
is a quantity v;5 which is observed if an experiment is performed at levels (7, j, k).
We also suppose that

(1.3.1) Vijg = Vijp + €ij

where the »;j are non-random quantities and the e;; are uncorrelated random
variables with common mean zero and variance o°. We shall further assume that
the e;; are normally distributed only when discussing F-ratios. In the case of
simple random allocation we suppose that a simple random sample without
replacement of n of the N quantities v, is observed. Using these data and an
arbitrary member of the class of techniques described above, we compute the
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first and second stage linear estimators along with the second stage ratios of
mean squares. Our basic objectives are to find the first and second moments of
these linear estimators and the distributions of the ratios of mean squares. It
should be emphasized that the randomness in these statistics arises from two
sources, first, the discrete randomness induced by the randomization hypotheses,
i.e. the random choice of the subset of n of the N cells, and second, the random-
ness induced by the e;;, . These sources are assumed throughout to be statistically
independent.

Unfortunately any attempt through mathematical analysis to meet the ob-
jectives posed runs into great difficulties. It just does not appear feasible to
compute directly the distributions of the various statistics under the randomiza-
tion hypothesis. For this reason the main mathematical results of this paper,
presented in Section 2 and derived in Section 4, refer to a quite different statistical
model underlying the randomness of the computed statistics. As statistical
theory relating to a well-defined model these results stand on their own. On the
other hand these results are intended as approximations to the corresponding
results for the simple random allocation model. A completely satisfying dis-
cussion of the accuracy of these approximations is beyond the scope of this
paper, and indeed seems feasible only by Monte Carlo methods. Thus any inter-
pretations of the results, such as those given in Section 3, must be regarded as
suggestions whose verification will require Monte Carlo methods.

The second or approximating model replaces the discrete randomization
probability mechanism by an analogous continuous probability mechanism, and
henceforth this model will be referred to as the continuous analogue model. The
detailed definition of the continuous analogue model requires considerable care
and is postponed to Section 4. Likewise the discussion of the motivation and
partial justification of this model is deferred to Section 5.

2. Results.
2.1. Formulas for means and variances. This discussion will be carried out

using the terminology and notation of Section 3 of [1] except that we shall now
use general notation not restricted to a 3-factor case. Thus we suppose that the
N factor level combinations are labeled 1 to N, and we define a Euclidean vector
space F in terms of unit orthogonal basis vectors Vi, Vz, ---, Vy which are in
correspondence with the N cells of the basic array. The cells have associated
quantities

(2.1.1) v, = v; + e; for 17N

where »; is observed if the experiment corresponding to cell 7 is performed.
Formula (2.1.1) is the same as (1.3.1) using different subscripts, so that the v;
are fixed quantities and the e; are uncorrelated random variables with means
zero and variances all o°.

Our aim is to provide unbiased linear estimators for linear combinations of the
v, i.e., for quantities like D 1 ci»;. These quantities may be regarded as the
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values of a linear functional g over E defined by
N
(2.1.2) : g«(V) = 21 Civ;

where V = > ¢V, is any vector in E. Now the first stage of estimation, the
least squares stage, estimates g.(V) where V belongs to a selected m-dimensional
subspace of E which we shall denote by E,, . The second stage of estimation esti-
mates g:(V) where V belongs to the (N — m)-dimensional subspace of E orthog-
onal to E, , and this subspace we shall denote by %, . It will be convenient to
define Wy, Wy, ---, Wy to be an alternative unit orthogonal basis of E such
that

W:ecE, for 1 =4¢=<m,
and

W.ckE, for m+1=<7=ZN,

and to denote g,(W;) by w; . Then the least squares stage of estimation provides
an estimator &, for any w, = )1 aw; = g,(W.), where W, = D T a;W,; isany
vector in K, . Similarly the second stage provides a raw (i.e., uncorrected for
bias) estimator @, for any wy, = D my1 biw; = g«(W,), where W, = DN bW,
is any vector in £, .

The following formulas are derived in Section 4.3 and are exact formulas
relating to the continuous analogue model. Denote by A* and B? the quantities
D raiand Y N, b, and set

N

(2.1.3) (M2);; = ¥ 1 > Wl

— M i=m41

Then
(2.14) ave {@} = wa,

. 2 _ 2 N-—n 2 N—m-—1 ,,
(2.1.5) ave{(é)a)}—wa+mA(M2)II+—_n_m_' 1A"’

n—m '
wp

216)  ave (&} = 77—
and

2, _ n—m n_m+2_ 1 2
o1 ave{((ﬁb)}—N_m_l[(N—m+2 N - )wb

n—m-+ 2 2 1 2 2
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Thus @&, is unbiased for w, with variance

N-r vz, + Yo m o1 g
n—m-—1

(2.1.8) var (&,) =
: n—m-—1

and (N — m)&/(n — m) is unbiased for w;, with variance

Var(N—mé))=.—N___’”t_.
n—m N—-m+42

N —n N-—-m-—2 2 N-—-m 2
(2.1.9) n—m [(N—m)(N——m— 1) wb+mB(M2)n]
+N_mBzo'2.
n—m

The factor (N — m)/(n — m) applied to & explains the factor ¢ in formula
(1.2.1). It is worth noting, without actually displaying the formulas, that the
general theory of Section 4.3 also provides formulas for all covariances among
such estimators.

For concreteness let us apply these formulas to the specific case discussed in
Section 1.2 of a 3-factor design where grand mean, row main effects and column
main effects are estimated at the first stage. In this case m = R + C — 1 and
E., is the subspace spanned by the three subspaces Ey , Er and E. defined in
Section 3 of [1]. If we revert to the notation of (1.3.1) we may define (MZ)y,
(MZ)g, -+, (MZ)ger to be the mean squares arising from the analysis of
variance of the complete array »;; . Expressed in terms of these quantities,
(MZ);of (2.1.3) is given by

(N =m)(MZ)nr = (L — 1)(MZ). + (B — 1)(C — 1)(MZ)zc
+ (B — 1)(L — 1)(M2)re
+ (€ = 1)(L = 1)(MZ) L
+ (B —1)(C = 1)(L — 1)(MZ)zer .

Now a typical example of an w, to be estimated at the first stage is the differ-
ence of two row main effects, i.e.

1 (4 L
We = CT'L ]Z-al kZ—; (V'iljk - V'iz;ik);

(2.1.10)

for which A* = 2/CL, and hence the variance of the least squares estimator is
given by (2.1.8) with (MZ) given by (2.1.10) and A* = 2/CL. Similarly a
typical example of an w; to be estimated at the second stage is the difference of
two layer main effects, i.e.,

(4]

Z (Vijkl - V'ijkg),

R
7=l je=l

?dl,_.
Q

wp =



RANDOM ALLOCATION DESIGNS, II 393

for which B*> = 2/RC and formula (2.1.9) applies directly to give the variance
of the unbiased estimator of wy .

It should be clear from this example how to write down variances for any
estimator from any particular technique in the class considered, and for an array
with any number of factors.

2.2. Significance tests. Consider the W; and w; introduced above, in particular
those entering at the second stage of analysis where m + 1 < 7 < N. Suppose
that N — m = M, + M, + M;, that we are willing to assume that w; = 0 for
m+ M+ M:+ 1 =< i = N, and that we wish to test the null hypothesis that
w;=0form + 1= 7= m+ M, with w; arbitrary form + M, + 1 =7 =
m + M, + M, . Then, denoting by &; the raw second stage estimator of w,, the
natural test statistic for this null hypothesis is (MS)./(M8); , where

m+My
221) (MS), = A—}; 2 (@
and
(222) M8 =L T

M3 iomt it my+1

The main result of Section 4.4 states that, under the continuous analogue
model and assuming normality of the e¢; of (2.1.1.), (M S):/(M S); has exactly the
F distribution on M; and M; degrees of freedom regardless of the values of w;
form+M1+1§z§m+M1+M2

Thus, for the standard 3-factor example, if we denote by (MS)., (MS)zc,

-, (M 8)gcL the mean squares arising from the second stage analysis of vari-
ance, and if we are willing to assume (MZ)gcr = 0, then we may test the null
hypothesis that (MZ), = 0 by regarding (M S)./(MS)zrcL as an F statistic on
L —1and (R — 1)(C — 1)(L — 1) degrees of freedom. Similarly the second
order interactions may be tested against the third order interaction.

Note that it is not true that the numerator and denominator of such a test
statistic are distributed as multiples of independent x* random variables, but
only that the ratio has the stated F distribution. By more detailed arguments of
the type given in Section 4.3 we could specify the distributions of the numerator
and denominator, and we could specify the non-central distribution of the test
statistic. Since the resulting distributions are not of familiar simple types this
analysis has not been pursued. We can, however, say something simple which is
related to the non-central distribution of the test statistic, for formula (2.1.7)
allows us to write down formulas for the average values of the numerator and
denominator mean squares. For example

n—m n—m-4+ 2 1
ave{(MS)l}=N—m—l[<N—m—|—2_N—m)(Mz)1

n—m-+2 1 2
+(“m>(m)"+(“zv_m”)]'

(2.2.3)
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Obvious similar formulas hold for (MS). and (MS);, or for (MS),, ---,
(M8)gcy in the 3-factor example.

3. Interpretations. To show how the formulas of Section 2.1 may bear on a
practical problem we now attempt a comparison between a simple random alloca-
tion scheme and a more orthodox fractional factorial. Suppose n = 2" observa-
tions are to be allowed on a factorial structure with 2" — 1 factors at 2 levels
each, so that

N — 22'—-1

It is well known (c.f., [2]) to be possible to determine a fixed fraction of size 2
with the property that all 2" — 1 main effects are unconfounded and estimable
using 2" — 1 simple orthogonal linear combinations of the data points. If such a
fraction is chosen, and if, in advance of using it, the labels of the levels of each
factor (i.e., 1 or 2) are assigned at random, then this design is a random alloca-
tion design within the definition given in [1]. On the other hand one could design
a simple random allocation experiment by choosing a simple random sample
without replacement of 2" out of the 2°" factor level combinations. For values
of r in the range r = 4, 5, 6 the question of the relative performance of these
alternative designs is of some practical interest. From our point of view the way
to compare these designs is to compare the variances of linear unbiased esti-
mators where variances are found by averaging both over the randomness of the
randomization hypothesis and over the randomness of the ‘“‘error”’ superposed on
the observations. (The pros and cons of this point of view were discussed in
Section 2 of [1].)

In the case of the fixed fraction there is only one standard method of estimating
main effects, and the computation of variances for these estimators is easy. For
the simple random allocation fraction there are many different approaches to
estimation, for example all of those described in Section 1.2, and the computa-
tion of variances is difficult. Thus we are obliged to use the approximate formulas
of Section 2.1 and to treat the results as tentative and subject to checking by
Monte Carlo methods. The plan is to make a first comparison in terms of (a) an
initial model underlying the data and (b) an initial method of estimation for the
unbalanced data. Further comparisons will be made modifying both (a) and (b).
The initial model is a main effect model, i.e., the model of (2.1.1) with the restric-
tion that »; is made up only of main effect terms so that

2r—1

(3.1) vi=p+ ; (£A),

where A, is the main effect of factor ¢ and the sign of A, is 4 or — according as
v; is an observation at the upper or lower level of factor ¢{. The initial method of
estimation is the simplest practical method in the class described in Section 1.2,
namely the method where only the grand mean u is estimated at the first stage
and all other effects are estimated at the second stage.
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Under the initial model the estimator of A; from the balanced fraction data is

1 (mean of the 2"" observations at the upper
level of factor ¢ — mean of the 2"
observations at the lower level of factor ¢).

This clearly has variance
(3.2) 2774

Notice that this estimator is unbiased with the given variance conditional on the
particular design chosen under randomization, and so has the same properties
when averaging is carried out over the random choice of design. The comparable
formula for the simple random allocation design is given by (2.1.9) where

m=1 N=2"" n=2,
=}-N-(2/N)" =277,

and
2r—1

If this formula is simplified by ignoring distinctions between n — m and n,
N—nand N,N —m + 2and N, etc then the variance from (2.1.9) is seen to
be approximately

2r—1
(33) 27 (A% + 2 A+ 02).

Now it is clear that the latter variance (3.3) is worse than the former (3.2),
and even that it could be enough worse to destroy the value of the estimator.
This is not the whole story, however, for the proponent of simple random alloca-
tion may argue that he can eliminate from the variance (3.3) as many of the
offending A’ terms as he wishes, simply by altering his method of analysis to fit
the corresponding A, main effects by least squares in the first stage of analysis.
This is true, and corresponds to what would be done in practice, but two new
disadvantages of simple random allocation appear at this point. Firstly, it will
not be known which A, are offending except from prior beliefs or from trial
analyses of the data. Secondly, there is a price to be paid in additional variance
for the least squares removal of the oﬁ”endmg A, terms. Note that both (2.1.8)
and (2 1.9) contain factors of (n — m) lor (n —m — 1)~ which were treated
as n " in (3.3). However, if m comes to be an appreciable fraction h of 2 then
the variance in (3.3) should be altered not only by omitting the fitted A% terms
but also by multiplying by factor (1 — k)™ The first disadvantage is less a
criticism of the technique than it is a statement that trial analyses affect the
properties of the technique in an unknown way. The second disadvantage is more
illuminating, and could be important if a substantial proportion of the main
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effects were large. The author believes that, provided we can accept the main
effect model, the discussion of this paragraph gives a clear pléture of how the
simple random allocation fraction yields efficiency to the balanced fraction.

However, the proponent of simple random allocation may claim that inter-
action effects should not be ignored, and he may insist that we compare variances
after putting in the terms corresponding to interactions. In the case of the
balanced fraction each main effect A, is confounded with

p=(2"7/2)

interaction effects whichmay be denoted by A; ., for1 £ ¢t <2"—land1< s < p°
and we may generalize the model in (3.1) to

2r—1

P
(34) vi = u+ ; <=L'-At + 82_; =+ At,s) .

When the formula generalizing (3.2) is sought, it is found that, on account of
the confounding, the estimators for the balanced fraction design are not even
unbiased until averaging is carried out over the random choice of design, and
also that the confounded effects enter into the variance in the obvious way
resulting in variance

P
(3.5) DA+ 27
8=1

The formula generalizing (3.3) comes as before from (2.1.9), the only difference
being the inclusion of all of the A terms in (MZ);; . Thus (3.3) becomes

(3.6) 27 [At + 25_5 (A + Z A%, ) + a]

Formula (3.6) differs from (3.5) in that it has approximately 2" times as many
A? terms as (3.5), these additional terms being compensated for by the factor
27", Thus, if interaction effects are entering substantially into a few of the
variances (3.5), then these effects will be greatly spread out when (3.6) applies,
and it is no longer at all clear that the balanced fraction is superior to the simple
random allocation fraction.

4. The theory of the continuous analogue.

4.1. Geometrical considerations. We now describe the general two stage estima-
tion procedure in geometrical terms, following the notation of Section 3 of [1]
as introduced in Section 2.1 of this paper. We suppose that a linear functional
fi over E is defined by

N N
(4.1.1) S (X; CiV.'> = 21 CiVi,

where D1 ¢;V;is any vector in E. The data provide the values of f;(V) for any
vector V in the n-dimensional subspace £, of E spanned by the V; corresponding
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to the n observed cells. In fact, we may regard the information in the data as
providing the functional f:,, , where

Jio(V) =f(V) for VekE,
=0 for VL E,.

The first stage of estimation provides the least squares estimators &, of wa =
9:(W,) for any W, in E,., and the second stage of estimation provides raw
estimators & of w, = g:(Ws) for any Ws in &, . Our immediate purpose is to
characterize vectors Z, and Z; , both in E, , with the properties that

(4.1.3) &, = fi(Zs) and & = fiu(Zs).

As a preliminary we define a one-to-one correspondence between linear func-
tionals f and vectors F. Given any linear functional f over E defined by

f(U:) = s

for 1 £ ¢ £ N, where the U; are a unit orthogonal basis of E, we may define an
associated vector F as the vector with components u; relative to the basis U;.
Conversely, from F one may recover f. It may be easily checked that the corre-
spondence thus defined does not depend on the particular choice of basis U;.
It is also clear that, if f; and f; are two functionals with corresponding vectors
F; and F,, then ayfi + aofs has corresponding vector aiFy + a:Fs. Thus the
set of all linear functionals over E and the set of all vectors in E form isomorphic
vector spaces in an obvious manner and we may use interchangeable languages.
For example, we may regard the information in the data as fi, or its corre-
sponding F; .

Now the well-known geometrical interpretation of least squares (c.f., Scheffé
[3], p. 12) uses vector language and states that the process of least squares
fitting is equivalent to splitting F;, into

(4:.1.4) Fg,p = F] + F[I

where F; and F;; are both in E, but Fy;is in E, N B, and F; is perpendicular
to E, N E, . F; represents the fitted variation and Fy; represents the residual
variation. However the complete solution of the least squares problem requires
the determination of a functional f;- such that

for(Wo) = &  for W,oe En,
fr(V) =0 for VekE,.

(4.1.2)

(4.1.5)

The crucial property which this functional must possess is that it must reproduce
the fitted variation on E, , i.e., we must define f;- , satisfying (4.1.5) and
(4.1.6) fo (V) = (V) for VeE,,

where f; is the functional corresponding to the vector F;.
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Given any V in E, we may remove its component along E, N E,, and bave
left a vector Z, in E, but orthogonal to E, N E,. . Then it is clear that

(4.17) ft(za) = ft,p(za) = fl(v)'

From Z, we may further remove its remaining component along E,, and have
left a vector W, in E,, . Conversely, given such a W, we can determine uniquely
its corresponding Z, as follows: Z, is that vector in E,, which (¢) differs from
W, by a vector in £, and which (¢¢) is minimum distance from W, subject to
(). Here E,, is the subspace of E, formed by the intersection of E, with the
space spanned by W, and E,. . This situation is pictured in Figure 1. If we assume
that every w, is estimable, i.e., that no vector in E,, is orthogonal to E,, then
every W, in E,, can be reached in this way by some Z, in E, and we have a one-
to-one linear correspondence between every vector W, in E,, and its correspond-
ing Z, . If we now define

fr (W) = fu(Zs) for W,e E,

418
(4.18) fr(V) =0 for Vek,,

then it follows from (4.1.7) and (4.1.8) that
fo(V) = fr(Wa) = fu(Za) = f1(V)
for any Vin E, , as required by (4.1.5), and we conclude that
Ga = fi(Za)

is the least squares estimator of ws = ¢:(Wa).

The situation with the second stage estimators is simpler, for the raw estimator
of wy = g:(Ws) is simply f1:(W,) where Fy; is defined in (4.1.4). Since f1(V) =0
for any V in E,, it is clear, as stated in Section 1.2, that the second stage anal-
ysis of variance simply gives zero for those effects w, estimated at the first stage.
Also, if Zy is defined to be the component of Wy in £, N £, , then

Fu(Wy) = fu(Zs) = fi.0(Z) = fi(Zo),
so that
&y = ft(Zb)’

where &, is the raw second stage estimator of wy = g:(W3).

4.2. The model for the continuous analogue. The formulas (4.1.3) indicate how
the estimators &, and @, may be expressed in terms of the underlying functional
f. and the subspace E, where E, is at the choice of the experimenter. The sub-
space E, used in an actual experiment is necessarily one of the discrete set of

<g) subspaces E, determined by which n of the N cells are used. No other E,

can be observed with n observations. However one can postulate a model under
which f; is observed on other n-dimensional subspaces with positive probability,
and (4.1.3) provides reasonable definitions of &, and & for such a model.
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In the simple random allocation scheme the random subspace E, is that
spanned by a simple random sample of n of the N unit vectors V;, Vo, ---, Vy.
In the continuous analogue model all directions, not just those of a unit orthogonal
set, are regarded as “equally likely” in the following sense: E, is taken to be that
random n-dimensional subspace of E which is spanned by 7 independent spherz-
cally distributed vectors. A random vector in F is said to be spherically distributed
if the distribution of its direction is invariant under any orthogonal transforma-
tion of F leaving the origin fixed. The simplest analytical realization of a spheri-
cally distributed vector is a vector whose components relative to a unit ortho-
gonal coordinate system are independently N (0, 1). The random subspace E,
defined in this way may also be called a spherically distributed random subspace
of dimension 7.

The author believes that, for reasonably large N and n, the distributions of
&, and &, for the simple random allocation scheme may be reasonably well
approximated by the corresponding distributions under the continuous analogue
model. This issue was discussed briefly in Section 1.3 and is discussed further
in Section 5. Sections 4.3 and 4.4 derive certain distribution properties of the
continuous analogue model.

FIGURE 1.
Geometrical picture of Zo , Zy , Wa , Wy, and various subspaces.

4.3. Derivation of formulas. Formulas are now derived for the first and second
moments of & and & under the continuous analogue model. For given w, =
> Paw: = go(Wa) and wp, = D msa biw; = ¢.(W;) we introduce a new basis
Uy, ---, Uy of unit orthogonal vectors in E with the properties that

W, = AU, U,cE, for 1 <7=<m,
W, = BU,,;, and U;cE, for m+1=<:=N.

Here, as before, A> = > 1 aj and B* = ) ., b%. Figure 1 gives a picture of the
various relevant vectors and subspaces of E, except that E, ., E, N K, and E.
are pictured as having 2, 1 and 2 dimensions rather thann — m 4+ 1, n — m
and N — m dimensions respectively.
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Suppose Z, makes angle & with U;. The spherical distribution of £, in E
induces a spherical distribution of E, ., in the space spanned by U; and &, so
that & is distributed like the angle between a spherically random (n — m + 1)-
plane and a fixed direction in (N — m + 1)-space. This is the same as the dis-
tribution of the angle between a fixed (n — m + 1)-plane and a spherically
random direction, i.e.,

08" ~ By(n—m11) 4—n) 0=® = 3m).
Similarly if 6 is the angle from Z; to U4, , then
cos’0 ~ Bin—m) 3 (¥—n) (0= 0= 3m),

and this is valid conditional on any given ® so that 8 and ® are independent.

Now we may write Z, = AU; + A tan®Z, and Z, = B c0s’0U,,41 + Bcos 8
sin 0 Z, where Z, is a unit vector in £, orthogonal to Z, and Z, is a unit vector
in E,, orthogonal to U,y . Since &, + & = fi(Zs + Zy) = Af(U;) + A tan ®
fi(Z,) + B 05’0 fi(Um41) + B cos 8 sin 0 fi(Z;), the only unspecified random
elements in the expression for this statistic are f,(Z;) and f:(Z,). The marginal
distribution of Z, given 6 and ® but not Z; is simply spherical in £, and the mar-
ginal distribution of Z, given 8 and ® but not Z, is spherical in the (N — m 4+ 1)-
dimensional subspace of £, orthogonal to V, . The joint distribution of Z,
and Z. is much more difficult to specify but for purposes of second joint moments
this is not necessary. For suppose Z, makes angle & with U; (¢ =m + 1, -+ ,N)
and Z, makes angle »; with U; ( = m + 2, --- , N). Since cos & or cos 7; are
symmetrically distributed about 0 their averages are 0. Similarly, given £; the
unknown conditional distribution of cos &; or cos = is still symmetrical about
0 and thence the following relations hold:

ave {cos &;cos 5 =0 if 4=

ave {cos £; cos 9;} =0

ave {cos n; cos 9} = 0 if 7= j.
The marginal distributions of cos £; and cos 7; are given by

2
€os” & ~ By yw—m-1

and
cos” nj ~ By(v—m-2)-
If we set fu(U;) = u; for ¢=1,---, N we have
fu(Zy) = ;_Z:Zu U; o8 &;
and

N

f(Zs) = D uicos mi.
7 +2

=m
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Thus we can write
N

Go+ G = Auy + Atan® Y, u;cos & + B cos’ Oumys
. t=m+1
N

-+ B cos @ sin 6 Z U; COS 14 .

T=m+2
Now we are in a position to average over the randomness induced by random

E, , regarding f; as fixed. Since ® and 6 are independent of the &; and 5; we need
only replace the trigonometric functions by their averages. Thus

ave {&;, + &} = Auy + Bu,41 ave {cos” 0}

= Au, + ;:Z:Bum+l
= wa-l-;']/___m Wy ,

where w, = ¢:(W.) and w, = g:(W). Also
ave {(6q + @)%} = A’ui + 24 Bunys ave {cos” 0}

N
+ B2, ave {cos' 0} + A’ ave {tan’®} D ui ave {cos’ &)}

i=m+1
N
+ B ave {cos’ 0sin® 0} . u? ave {cos’ n:}

T=m+2
= Azuf +2]7:r__7:lnAulBum+1
(n—m)(n —m+2) : N—-n <& . 1
+(N—m)(N—m+2)Bu'"+1+An—m—l;-zm;nu’N—m
LB (n — m)(N — n) ot 1

N—m®N —m+2)izmte N—m-—1

L, n—m n—m)(n—m-+2) ,
(4.3.1) —wa+2mwawb+(N_m)(N_m+2) Ws

N —
n—m

(n — m)(N — n) 2 1 2
+(N—m—1)(N—m+2)[B(MS)"_N—mwb:|

+ 4 = (MS)

_ .2 n—m n—m n—m+2_ 1 2
_w“+2N—mw"wb+N—m—l<N—m+2 N — >wb
+ 4t N ()

2 n—m n—m-+2
+BN—m—1<1_N—m+2)(MS)H’
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where

}_‘, w}.

— M i=m+1

(M8)u =

Finally we average over the randomness of f,, i.e.,
ave {w,} = w,, ave {wp} = wp,
2 2
ave {wi} = wi + A%, ave {Wes} = wewp ,

ave {wy) = wp + B'%¢* and ave {(MS)r} = (MZ);; + o

where
(4.3.2) (MZ)1 =
_m1.=m+l
Thus
(4.33) ave {&; + G} = ws + ]1:7: ZZ wp
and '
ave{(aa+@b)2}=w§+2;\; Wa Wp
pnm=m (n—m+2_ 1 >w2
N—-m—-1\WN-m+2 N — b
(4.3.4) o N=n gy N om— 1
n—m—1 n—m—1
2 M —m n—m-+2
+BN—m—1<l N—m+2>(Mz)1

m 1 2 2
+ B N—m—l(l_N—m)Bo.

Formulas (2.1.4) and (2.1.6) are simply special cases of (4.3.3) and formulas
(2.1.5) and (2.1.7) are simply special cases of (4.3.4). Note also that, if w,
and wy are alternative parameters estimated by &, and & at the first and
second stages, then from formulas (4.3.3) and (4.3.4) we can find var (&, + &),
var (&, + &) and var ([@, + 4] + [@ + &]) and hence deduce cov (&, + & ,
a’a’ + &b’)-

4.4. The distribution of the ratio of mean squares. The purpose of this section is
to prove the following theorem. Suppose the random functional f: vs defined by
(4.1.1) and (2.1.1) where the e; are normally distributed. Suppose E, ts spherically
random according to the continuous analogue model. Suppose &; is the raw second
stage estimator of w; form + 1 < 7 < N and (MS), and (MS); are as defined in
(2.2.1) and (2.2.2). Suppose, according to the null hypothesis, that w; = 0 for
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m+1=2i=m+Mandm—+ M+ My+ 1 = 7 £ N, but that otherwise the
w; are arbitrary. Then (MS)./(MS8); has the F distribution on My and M; degrees
of freedom.

Denote by E; the M;-dimensional subspace of &, spanned by W;form + 1 <
i £ m + My, by E; the M;-dimensional subspace of %, spanned by W; for
m—+ M, + M, + 1 =7 = N, and by E, ; the space spanned by E, and E; to-
gether. Denote by F;; the vector in E; ; whose components are &; along W; for
m+1=2i<m+Mandm+ M, +M,+1= 17 < N, ie., Fi;isthe com-
ponent of F;; of (4.1.4) in B ;. Under the hypothesis of the theorem, f,(W;) =
d;, where the d; are independently N (0, ¢°) form + 1 < ¢ < m + M, and
m+ M, + M, + 1 = ¢ < N, so that the distribution of f, is invariant under
any orthogonal transformation of E, ;. Similarly the distribution of E, is in-
variant under any orthogonal transformation of E; ; , and E, and f, are assumed
independent. Since f; and E, determine F;; it follows that Fy, is spherically

distributed in E, ; , and hence that

(MS), _ M, (component of F ;in E;)*
(MS);s M, (component of F 3 in Ej)*

has an F distribution on M; and M, degrees of freedom.

5. Discussion of the continuous analogue model. In constructing the con-
tinuous analogue model an arbitrary choice was made, namely the choice that,
under the continuous model, E, should be the subspace spanned by #» inde-
pendent sample vectors from- some multivariate normal distribution over E.
This choice was made partly for mathematical convenience and partly because
of the author’s not infallible intuition in N dimensions. The particular choice of
the spherical multivariate normal distribution was dictated by the requirement
that, as with simple random allocation, the distribution of E, should be in-
variant under all N! permutations of the coordinate axes V;.

For moderately large N and n this particular continuous analogue has some
intuitive appeal as an approximation to simple random allocation, for a discrete

distribution with a large number (nN) of equi-probable n-spaces and with sym-

metry under any permutation of the V; is approximated by a continuous dis-
tribution with analogous continuous uniformity and symmetry properties.
Of course, intuition in N-dimensional space is uncertain. Certainly, statistics can
be found whose discrete and approximating continuous distributions under the
randomization hypothesis are quite different, especially in the sense that the
discrete distribution is very discrete and so not fitted well by any continuous
distribution. For example,

fio(V1) =0 with probability n/N

=0 with probability 1 — (n/N)
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under the discrete hypothesis, but under the continuous hypothesis is fitted with
a continuous distribution with some dependence on v;, - - - , v, as well as on v, .
However, the real issue for our purposes is whether the approximation is ade-
quate for first stage estimators @, , second stage estimators &, , or second stage
ratios of mean squares. This issue is, for the most part, beyond the scope of this
paper.

One comparison between discrete and continuous case formulas is easy, and
this we now carry out. We now compute the discrete case formulas analogous to
(2.1.6) and (2.1.7) appropriate for the special method of data analysis where the
first stage of analysis is empty, i.e., m = 0. In this case every »; and all linear
combinations Yy ¢;v; are partlcular cases of w, parameters, and & = D 1 c:
where

v; = v; if the 7th cell is observed
= (0 otherwise.

Under simple random sampling

and

n(n —1)
NN —1)

Thus, under the randomization hypothesis,

ave { Z Civ;,

ave {v; v;} = v;V;,

and
N N N
n NSz, pn—1)
ave {(&)?} i ; Ci Vs + < NV =1 ‘Z_;: ;_1: CiCiviv;.

_n(n—1) PN —n) & 2 2
=) <§" ”) TN D &S
Further averaging over the randomness of »; = »; + e;, we get

(5.1) ~ ave {@) = n]—vwb

and

(5.2) ave {(&)*} = % [(?—V—_——_IT) w + (1 )Z civi+ _l,

where B* = ) 1 ¢} . If m = 0is substituted in (2.1.6) and (2.1.7) it is seen that
(5.1) agrees with (2.1.6), thereby justifying the correction factor ¢ = N/n in
this case, but that (5.2) differs from (2.1.7) in two ways. Firstly, the coefficients
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depending on N and n differ, but their ratios approach unity as n and N increase.
Secondly the expression B*(MZ);; in (2.1.7) is replaced by D1 ¢’ in (5.2).
The second difference is due to the symmetrizing effect of the continuous ana-
logue model. If symmetrized average squares or symmetrized variances are
considered as in Section 6 of [1], then the difference disappears. In particular,
when the basic array consists of & factors at two levels each, i.e., N = 2, and
when main effects or interaction terms are estimated, then the ¢; are all identical
and so BX(MZ);; = 2.1 ¢iv:. In this case variance and symmetrized variance
are the same.

Further analytical comparisons of the above type become very complex; even
the trivial case of least squares estimation of the grand mean with m = 1 results
in very messy algebraic detail. Spot-checking by Monte Carlo seems to be the
only method available.

6. Details on the class of data analysis techniques. It was stated in Section
1.1 that the class of techniques described in Section 2.1 falls within the more
general class described in [1]. Furthermore we have tacitly assumed throughout
that estimators like &, and &, are unbiased except for constant scale factors. This
is true for any type of random allocation design, with the justification following
from the theory of [1] together with a proof that the methods of Section 1.2 are
covered by the general methods of [1].

The required proof now follows. Suppose, as before, that W, and W; are general
vectors in E., and &, respectively, and consider the statistic &, + & . We claim
that this statistic is a special case of what was referred to in [1] as a A-mini-
mum extension, i.e.,

B + & = f)\(Wa + Wb)’

for a particular choice of A\-metric. In [1] unbiased estimators were defined from
£ just as we have defined them from &, and &, in this paper.

Consider the second characterization of f, given in Section 4.2 of [1]. Consider
also the characterization of &, and @, in (4.1.3) of this paper. These two charac-
terizations coincide for the limiting choice of A-metric where the A-values corre-
sponding to W;, -+, W, all tend to «, and the A-values corresponding to
Wi, * -+, Wy are all equal to unity. For Z, + Z;, can be characterized as that
vector in E, which is at minimum distance from W, + W; subject to the condi-
tion that the components corresponding to A = o are not allowed to count,
ie., Z, + Z, is that vector in E, nearest to W, 4+ W, subject to the condition
that Z, + Z, — W, — W has zero component along E,, . This completes the
proof.
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