THE EXISTENCE AND CONSTRUCTION OF BALANCED
INCOMPLETE BLOCK DESIGNS'

By Hamm Hanani

Technion, Israel Institute of Technology, Haifa, Israel

1. Introduction. Given a set E of v elements, and given positive integers,
k, 1 (I £ k = v) and )\, we understand by a tactical configuration Clk, I, \, v]
(briefly, configuration) a system of subsets of E, having & elements each, such
that every subset of E having [ elements is contained in exactly A\ sets of the
system.

A necessary condition [13, 9] for the existence of a configuration C[k, I, \, v]
is that

() x(’l’: )/(;c:’}:>=integer, h=0,1,--,1—1.

Clearly, A (”) / (?) is the number of elements of C[k, I, \,v] and

l
v — k —
*Q—>/Q—D

is the number of those elements of C[k, I, A, v] that contain & fixed elements of E.

A balanced incomplete block design (BIBD), Blk, X, v, (k < v) is a configura-
tion C[k, 2, \, v] with [ = 2. The elements of Blk, A, v] are called blocks.

In the usual terminology, a BIBD is an arrangement of v elements in b blocks
of k& elements each so that every element occurs in r blocks and every pair of
elements occurs A times in all [8].

From (i) follows:
A necessary condition for the existence of a BIBD is

(ii) ANMv —1)= 0(mod (k — 1)) and M(v — 1) = 0(mod k(k — 1)).

In the sequel we shall consider (ii) as a condition on v for fixed & and A.

Steiner triple systems [17] are BIBD with £ = 3, A = 1. It has been proved by
Reiss [15] and by Moore [12] that in this case condition (ii) is also sufficient for
the existence of a BIBD. Bose [1] proved that condition (ii) is also sufficient in
the case bk = 3, A = 2.

On the other hand, there are known cases in which condition (ii) is not suffi-
cient. A BIBD with k = n + 1, A = 1 and v = n* + n + 1 is a finite projective
plane of order n. For such planes condition (ii) is clearly satisfied; it was how-
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ever, already conjectured by Euler [5], and proved by Tarry [20], that no pro-
jective plane of order n = 6 exists. Bruck and Ryser [2] have proved moreover
that no finite projective plane exists if n = 1 or 2 (mod 4) and the square-free
part of n contains at least one prime factor of the form 4m + 3.

The purpose of this paper is to prove that condition (ii) is sufficient for the
existence of a BIBD for k = 3 and 4 (and every \) and also for k = 5,\ = 1,4
and 20.” The proof is given by induction on v for any pair of fixed values of k and
), and it enables effective construction of the designs. The induction works also
for larger values of k, but in these cases the existence of designs for initial values
of v remains undetermined.

Tactical configurations C[k, I, 1, ] with A = 1 have been introduced by Moore
[13] as tactical systems S[k, I, v]. From (i) it follows that a necessary condition
for the existence of a system S[k, [, v] is that

(iii) (1;: >/(§c:z>=integer, h=01,---,l—1.

This condition again is not always sufficient, as the nonexistence of a finite pro-
jective plane of order n = 6 shows. So far, it has been proved that (iii) is suffi-
cient for £ = 3, Il = 2 (the mentioned Steiner triple systems) and for £ = 4,
I = 3 [9]. In the present paper, sufficiency of (iii) is also proved for k = 4,
l=2,(65),andfork = 5,1 = 2,* (7.10). No other general sufficient conditions
on the existence of systems S[k, [, v] are known so far; the special cases of systems
known to exist may be found listed in [23].

For some detailed information on incomplete balanced block designs and for
bibliography, see the excellent survey by Hall [8].

Considering the rather tedious proofs of combinatorial character a special
subdivision into sections has been adopted. Every subsection denoted by two
figures consists of one of the following: a definition (e.g., (2.1)), a theorem (5.1),
a proposition (3.4), a lemma (5.3), or a proof of a part of a theorem (5.5).
Some of these subsections contain auxiliary lemmas which for reference are
denoted by three figures (e.g., (5.3.1.)).

2. T-systems.
(2.1) DEerINITION. Let a class of m mutually disjoint sets r;,2 = 0,1, ---,m — 1
having ¢ elements each be given. If it is possible to form a system of £ m-tuples
(i.e., sets having m elements each) in such a way that

(i) each m-tuple has exactly one element in common with each of the sets
r,1=0,1,--- /m—1,and

(ii) every two m-tuples have at most one element in common, then we denote
the above system of m-tuples by To[m, f].

The class of all numbers ¢ for which systems T'o[m, t] exist will be denoted by

To(m).

2 With the possible exception of B [5, 1, 141].
3 Ibid.
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(2.2) DerFintTION. If 8 system To[m, {] exists and if moreover there are in the
system at least e subsystems (0 < e =< ¢) each consisting of ¢ mutually disjoint
m-tuples, then we denote such a system by T.,[m, {].

The class of all numbers ¢ for which systems T',[m, #] exist will be denoted by
Ty(m).

As a direct consequence of the definitions we obtain
(2.3) Let a system T.[m,t] (0 < ¢ < t) be given and let A ¢ r;, B e 7;,1 < j,
then there exists exactly one m-tuple of T.m, t] containing both elements A and B.
(24) Ife = d, then T.(m) C Ta(m), i.e., t &€ To(m) implies t € Ta(m).

(2.5) teTi(m) is possible only if t = m. '

We shall now prove
(2.6) If tis a power of a prime, then t € Ty(t).

For t = p* (p prime, a a positive integer) finite projective planes PG|2, p°|
have been constructed with ¢ + 1 points on a line [21]. Through every point in
infinity go—besides the line in infinity—¢ otherwise mutually disjoint lines.
Omit the line and the points in infinity and choose any ¢ mutually disjoint lines
of the remaining Euclidean plane EG[2, p°] as the sets 7;,4 = 0,1, --- , ¢ — 1.
The remaining lines form a system T'[¢, #]; compare [19].

(2.7) If t e T.(my) and my = my , then also t & T,(my).
- Thisis obtained by omitting the m; — mysets 7,5 = mg ,ma + 1, -+ ,my — 1.

(28) IfteT.(m)ands e Ti(m), then ts & Toa(m).

Consider a 3-dimensional finite lattice of points with integral coordinates
0=2=m—-1,0=y=<t—1,0=2=s—1. In thislattice the m-tuples of
T[m, t] may be described as functions y = yi(z),h = 0,1, -+, £ — 1, and the
m-tuples of T4[m, s] as functions z = z;(z),j = 0,1, --- , s* — 1. For every pair
of indices (&, j) we form the m-tuple defined by the pair of functions y = y,(z),
z=2i(z),h=0,1,---,#—1,j=0,1,---, s — 1. Taking for r; the planes

=1,1=0,1, ---,m — 1, it is easily verified that the conditions of the defini-
tion (2.1) are fulfilled and thus the obtained m-tuples form a system Tom, ¢s].
In order to show that this system is a T.s[m, ts], we remark that if the functions
Y= Yn(x),a = 0,1, --- ¢t — 1, are mutually disjoint and also the functions
z = 2j,(x),8 =0,1, ---,5 — 1, are such, then also the ¢s m-tuples given by the
pairs of functions y = ys,(2), 2 = 2;,(z) are mutually disjoint.

From (2.6) and (2.7) by repeated use of (2.8) follows:

(2.9) Let t = pi'ps® --- pa", where p; are primes and «; positive integers,
i=1,2, - nlIfpi* 2mi=1,2 --- n, thenteTi(m). \

Proposition (2.9) is equivalent to the theorem proved by MacNeish [10] and
later by Mann [11] that under the conditions of (2.9) there exist at least m — 1
mutually orthogonal Latin squares.

(2.10) teT(m — 1) if and only if ¢t € To(m).

If t € To(m), then every element of 7, belongs to ¢ otherwise mutually
disjoint m-tuples. By omission of 7.—; we thus obtain the required system
Tim — 1, ¢]. If on the other hand ¢ ¢ T.(m — 1), then, for every subsystem of ¢
mutually disjoint (m — 1)-tuples, we adjoin a fixed element to all the (m — 1)-
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tuples of such subsystem. Denoting by r.—; the set of these additional elements,
we obtain a system T'o[m, f].

From (2.10) and (2.5) follows:
(2.11) t e To(m) s possible only if t = m — 1.
(2.12) IfteT.(m) and s e To(m), then ts € Ty2(m).

Consider a 3-dimensional finite lattice of points with integral coordinates
0z=m—-—1,0=y=<t—1,0= 2z = s — 1. In this lattice denote by

y=y=),i=0,1, -+, t— 1, the functions corresponding to the ¢ m-tuples
of the jth subsystem of mutually disjoint m-tuples of T,[m, t],7 = 0,1, --- ,s — 1,
and by y = ya(2),h = 0,1, ---, £ — ts — 1, the functions corresponding to

the remaining m-tuples of T.[m, #]. By z = z(z), k = 0,1, ---, s — 1, denote
the functions corresponding to the m-tuples of To|m, s]. Now form the pairs of
functions

(i) Yy = yﬁ‘i)(x)’z = z(z) +j(mods), (¢=0,1,---,t— 1;5=0,1, -+,
s—1;k=0,1,---,8 — 1),

(11)1/= y(z), 2 = z;,(x), (h=0,1, --- stz—'ts_ k=01, --- ’82 - 1)’
obtaining their values in the yz plane. These functions are m-tuples, any two
of which have at most one element in common. Moreover for every fixed k,
k=0,1,---, & — 1, the s functions (i) are mutually disjoint, for different
J’s are namely the functions z = 2z,(z) + j disjoint and for fixed j and different
’s — the functions y = y”(z).

From (2.10), (2.4) and (2.12) follows
(2.13) IfteTy(m) and m — 1 € Tpa(m — 1), then t(m — 1) & Tm—y2(m).

3. B-systems.
(8.1) DrrFmiTION. Let a set E having v elements be given; further let
K = {kg}i- be a finite set of integers 3 < k; < v, ¢ = 1,2, ---,n,and A a
positive integer. If it is possible to form a system of blocks (subsets of E) in
such a way that

(i) the number of elements in each block is some k; ¢ K and

(ii) every (unordered) pair of elements of E is contained in exactly A blocks,
then we shall denote such a system by B[K, A, v].

The class of all numbers » for which systems B[K, ), v] exist will be denoted by
B(K, M).

If K = {k} consists of one number k only we shall write B[k, \, v] and B(k, \)
instead of B[{k}, A, v] and B({k}, \) respectively.

The systems B[k, A, v] are the BIBD introduced in Section 1.
(3.2) DermnrTioN. If a system B[K, A, v] exists and if moreover there exists
an element A ¢ E and a number m ¢ K such that (m — 1) divides (v — 1) and
the set E — {A} can be split into (v — 1)/(m — 1) mutually disjoint subsets
E;,i=1,2---, (v —1)/(m — 1), each having (m — 1) elements, in such a
way that each of the sets E; U {4},7=1,2, ---, (v — 1)/(m — 1), appears
exactly A times as a block in the system B[K, A, v], then we denote such system
by B.[K, A, v], and the class of all numbers v for which systems B.[K, \, v]
exist by B.(K, M).
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(3.3) DermiITION. If a system Bk, A, v] exists and if moreover there exists a
number m ¢ K such that m divides v, and the set E can be split into v/m mutually
disjoint subsets E;, ¢ = 1,2, - - -, v/m, each having m elements and each appear-
ing exactly A\ times as a block in the system B[K, A, v], then we denote such
system by Bn[K, \, v].

As an immediate consequence of the definitions we have:
(84) Fromv & B,(K, \) follows v € B(K, \).
(3.5) Fromv e Bu(K,\) followsv € B(K, \).
(8.6) Fromv e B(k, 1) follows v € By(k, 1).
(8.7) IfK' C K thenfromv e B(K', \) fullowsv ¢ B(K,\).
(8.8) If N\ is a factor of \ or if N = 1 then from v ¢ B(K, '), v € Bu(K, \')
and v € Bu(K, N') followv € B(K, \), v € Bn(K,\) and v & B,',.(K, M) respectively.
(89) IfveB(K',N)and if for every k' e K', k' ¢ B(K, \"), then v ¢ B(K, \),
where N = N\

We shall now prove the following proposition
(8.10) Ifv = (m — 1)u + 1, where u € B(K', N') and if for every k' € K’,
(m — DK 4+ 1 & Bnu(K,\N"), thenv e B.(K, \), where A = N\

Consider a 2-dimensional finite lattice of points (z, y) with integral coordi-
nates 0 S 2 S u—1,0< y = m — 2 and a point A. The total number of
points is clearly ». Denote

(A’i)={A7(i)y):O§y§m_2}'

Now for every block 8 of the system B[K’, \’, u] consider the set Uieﬁ(A, 7).
On this set we may construct a system B(8) = B.[K, N, (m — 1)8 + 1],
(B is the number of elements in 8) in such a way that each of the sets (4, ),
i € B, appears in B(B) as block exactly \” times. We construct now. a system
B.[K, N\, ] as follows: take all the blocks of all the systems B(g),
B & B[K’, N, u],—except of the blocks (4, 7),7 = 0,1, ---,u — 1,—as often
as they appear, and the blocks (4,7),¢ = 0,1, ---, 4 — 1, A times each. It
is easily checked that the number of elements in each block is a number of
K(m € K by definition) and that each pair appears in exactly A blocks.

In the same way it can be proved:

(8.11) Ifv = mu where u e B(K', \') and if for every k' e K', mk' B.(K,\"),
then v € Bu(K, \), where A = \'\”.

Putting in (3.10): K = {k} and m = k we obtain
(312) Ifv = (k — 1)u + 1, where u ¢ B(K’, N') and if for every k' ¢ K',
(k — 1)k’ + 1 & By(k,\"), then v € By(k, ), where A = N'\".

Further we prove:

(8.13) Lett s,s+ 1&eB(K,1),teTy(s)andqeB(K,1)orgqg=0orl;then
u = st + qe B(K, 1).

Consider a 2-dimensional lattice of points with integral coordinates
0<zr=<t—1,0y<s—1and0 =z =<q— 1,y = s. Take all the s-tuples
of T'Js, ]; there are among them ¢ subsystems of ¢ mutually disjoint s-tuples each
and we adjoin to all the s-tuples of the jth subsystem,j = 0,1, ---, ¢ — 1, the
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point z = j, y = s. We form now B[K, 1, u] taking the blocks of the ¢t systems
B[K, 1, s + 1] on all so obtained (s + 1)-tuples, the blocks of the {(t — ¢q)
systems B|K, 1, s] on the remaining s-tuples of T'[s, t], and also all the blocks of
the systems B[K, 1, {] on each of the linesy = 4,2 = 0,1, ---, s — 1, and if
g > 1 — the blocks of the system BI[K, 1, ¢] on the line y = s.

By the same proof we may obtain the more general result:
(3.14) Lett s,s+ 1ecB(K,\),teTys) andqe B(K,\) or g = 0 or 1; then
u=st+ qeB(K,N\).

The following propositions may also be proved in a similar way:
(3.15) Lett+ 1,se B(K,\) andt e To(s),thenu = st + 1 ¢ B(K, \).
(8.16) Lett+ 1,s,s+ 1eB(K,\),teT(s)andq+ 1eB(K,\) orqg=0,
thenw = st + ¢+ 1 ¢ B(K, )\).

4. Block designs with v = p°.
(4.1) Let E be a set of v = p” elements (p prime, « a positive integer). We
may denote the elements of £ as marks in a Galois field (see e.g., [3] pp. 242-

288) and more specifically as polynoms > i% az’, a; = 0,1, -+, p — 1;
t=20,1, -+, @ — 1. In order to shorten.the notation we shall in the sequel
denote such marks by (g),
a—1
g=2> a;z’, a;=0,1,---,p—1,{=0,1,---,a — 1.
i=0

Putting 2% = iz ¢, where 2% — D% ¢’ = 0 is an irreducible equation
in the field and taking all coefficients modulo p, (for @ = 1 we take for z a primi-
tive root of p) we are able to reduce any polynom to a mark in the Galois field
and in the sequel such reduction will always supposed to be performed.

For v = p® BIBD may in some cases be constructed in a simple way as the
following propositions show (compare also [1, 6, 16]).
(42) Ifv = p° thenv e B(k, k(k — 1)).

The blocks are:

{(g+xﬁ)’ (g+xﬁ+l)’ Tt (g+xﬁ+k~l)}’ B8 = 0, 11 0 — 2.

Considering that g obtains the values of all the marks of the Galois field it is
sufficient to show that for a fixed g each non-zero mark of the field appears
exactly k(k — 1) times as difference between the elements of the blocks. Now for
each pair of integersv,8, (0 =y =<k —1,0=< 6=k — 1,y £ §) the differences
(g 4+ 2" — (g + 2*°) = 2°(¢” — 2°) runforg = 0,1, --- , » — 2 through all
the non-zero marks of our field. The number of the pairs v, § being k(k — 1) our
assertion is proved.

As a further check we remark that the number of blocks in the design should
be (v — 1)/(k(k — 1)). In our case A = k(k — 1) and the number of blocks
is as it should be v(v — 1). )

In the same way it may be proved:

(4.3) Ifv = p° and q is the greatest common factor of (v — 1) and k, then
ve Bk, k(k — 1)/q).
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The blocks are:
{g+2"7)iy =0, (0 —1)/g,2(0 — 1) /g, -+, (¢ — 1) (v — 1)/g;
6=0’17""k/q_1}7 ﬁ=0,1,~~,(v-—1)/q—1.
(44) Ifv = p® q is the greatest common factor of (v — 1) and k, and 2 is a
common factor of (v — 1) and (k — 1), thenv e B(k, k(k — 1)/(2q)).
The blocks are:
{(g + xﬁ+1+6):7 =0, (v — 1)/Q7 2w —=1)/g, -+, (g — (v — 1)/q’

y 8=0’1}"';k/q—1}7 B=O,1,---,(v—1)/(2q)—1.
(4.5) Ifv = p” and q is the greatcst common factor of (v — 1) and (k — 1), then
veB(k k(k—1)/q).

The blocks are:

{(g)’ (g + xﬂ+7+5):7 = 07 (1) - 1)/9, 2(” - 1)/% ) (q - 1)(” - 1)/9,

6=0,1;""(k—1)/q_1}’ B=O;1""7(v—1)/q—1'
(4.6) Ifv = p° q is the greatest common factor of (v — 1) and (k — 1), and 2
s a common factor of (v — 1) and k, then v € B(k, k(k — 1)/(2¢)).

The blocks are:

{(g)’ (g + x;‘3+7+6):7 = 07 (1) - 1)/Q: 2(1) - 1)/Q: ] (q - 1)(1) - 1)/q’
6= O, 1, R (k_ 1)/9— 1}’ B = O: 1’ ] (l) - 1)/(2Q) - L

5. Block designs: k = 3.

(5.1) THrEOREM. A necessary and sufficient condition for the existence of BIBD
of v elements, with k = 3 and any \ is that

(i) AMv — 1) = 0(mod 2) and M(v — 1) = 0(mod 6).

Proor. The necessity of (i) follows from (ii) Section 1. It remains to prove
its sufficiency. From (i) follows that

if A= 1 or 5(mod 6), then » = 1 or 3(mod 6);

if A= 2 or 4(mod 6), then » = 0 or 1(mod 3);

if A = 3(mod 6), then » = 1(mod 2);

if A = 0(mod 6), there are no restrictions on v.

Consequently by (3.8) it remains to be shown that
(5.2) foreveryov = 3,

v= 1 or 3(mod 6) implies v € B(3, 1),
v= 0 or 1(mod 3) implies v € B(3, 2),
v = 1(mod 2) implies v ¢ B(3, 3)
and for every v, v ¢ B (3, 6) holds.

The proof of (5.2) will be given with the help of the following lemmas:
(5.3) If u= 0or1(mod3) andu = 3, then u e B(K3, 1), where K3 = {3, 4, 6}.
The proof of this lemma is given by induction. Note that by (2.9),
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t & T(3) whenever t = 0, 1 or 3(mod 4) and by (2.13), ¢ & T4(3) when ¢ =
2(mod 4) and ¢ = 6. Consequently 3 & T'5(3) and fort = 4, ¢ ¢ T4(3). Now for
for u & K our proposition is trivial and for u = 7 we have:
(5.3.1)* 7 & B(3,1), (compare (4.4), the projective plane PG2, 2]).

Elements: (), (¢=01,---,6).

Blocks: {(¢ + 3", ( + 3%, (5 + 3Y)}.

For other values of u, i.e. v = 9 makes use of (3.13) putting K = Ki,s=3

and taking the values of g and ¢ as follows:

for u= 0(mod9), ¢=0, t= 3u;

= 1(mod9), ¢=1, t=3%(u—1);
= 3(mod9), ¢=0, t=3u;

= 4(mod9), ¢=1, t=3(u—1);
u= 6(mod9), ¢=3, t=3u-—3);

u= 7(mod9), ¢=4, t=43u—4).

(54) Ifu = 3,thenueB(K3, 1) where K5 = {3,4,5,6,8,11,14).

The proof is again by induction and we make again use of (2.9) noting that
t e T; (3) whenever ¢ = 0, 1, or 3(mod 4) and that ¢ & T’ (4) fort = 4,5 and 7.
Now for u ¢ K? the proposition is trivial, for v = 7 see (5.3.1) and for other
values of u we insert in (3.13) K = Kj3 and take the values of ¢, s and ¢ asfollows:

for 9=« = 10, g=u— 9, s=3, t=3;
12 < u £ 13, g=u—12, s=3, t=4
5<u=<20, u*17, g=u—15 s§=3, t=235;
u = 17, q=1, s=4, t=4;
20 u=x28 u=23 g=u—21, s=3, t=17;
u = 23, qg =3, s=4, t=25;
u = 29, g=1, s=4, t=17,;
30 = u = 36, g=u—27, s=3, t=29;
37 = u =44, g=u—33, s=3, t=11;
45 = u = 50, g=u—239, s=3, t=13;
u = 51, ¢= u (mod 12), 3 = ¢ = 14, s =3,

N.
Il
cols
~~
13
|
)
N

We now proceed to prove (5.2):

(5.5)* Ifv=1or3(mod 6), then v & B(3, 1), (see also [15, 12, 18]).

For v = 3 this is trivial. For v = 7 we may write v = 2u + 1 where u satisfies
the conditions of (5.3). Putting in (3.12): k = 3, K’ = K3, N =\ = 1, it
remains by (5.3) and (3.6) to be shown that 2u + 1 ¢ B(3,1) for u ¢ K; .
For u = 3 see (5.3.1) and for u = 4 and 6 we have:

(5.5.1)* 9 ¢ B(3,1), (the Euclidean plane EG[2, 3]).
Elements: (4,5), (1 =0,1,2;5 =0, 1, 2).
Blocks: {(0, ), (1,4), (2,1}, {(4,0), (3, 1), (3, 2)},
{(5,0), ¢ +2°, 1), (i + 277, 2)}, =01

4 The propositions denoted by * have been known. They are proved here for the sake of
completeness and partly because the new method of proof seemed to be interesting.
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(5.,6.2)* 13 ¢ B(3,1), (compare (4.4)).
Elements: (z),(¢=10,1, ---,12).

Blocks: {(i + 2°), (z + 2°™), (z + 2°%%)}, B=0,1.
(5.6)* Ifv= 0or 1(mod 3), thenv £ B(3, 2), (see also [1]).
Putting in (3.9): K’ = K3, K = {3}, N = 1, \” = 2 the proposition follows

from (5.3) provided that v & B(3 2) forv ¢ Ka For v = 3 this is trivial and
for v = 4 and 6 we have:
(5.6.1)* 4 £ B(3,2), (compare (4.3)).
Elements: (g), (g = a0+ aiz;a; = 0,1;2=0,1);2° = 2 + 1.}
Blocks: {(g + 2°), (g + "), (g + 2*)}.
(5.6.2)* 6 ¢ B(3,2).
Elements: (7,7), (¢ =0,1,2;5=0,1)
Blocks: {(3, 5 + 1), (5, 4), (¢ + 2, )}, {(5,0), G + 2°, 1), (s + 2!, 1)},
{(0,0), (2% 0), (2, 0)}.
(5.7) For every v, v € B(3, 6) holds.

Putting in (3.9): K’ = K3, K = {3}, N = 1, \” = 6, it remains by (5.4) to
be shown that v &€ B(3, 6) for v ¢ K3 . For v = 3 this is trivial and for v = 4
and 6 this follows from (5.6.1) and (5.6.2) respectively. For other values of »
we have:

(5.7.1) 5 & B(3,3), (compare (4.5)).

Elements: (7),(¢=0,1,2,3,4).

Blocks: {(), (1 4+ 2%), (z + 2°%%)}, B=0,1.
(5.7.2) 8¢ B(3,6), (compare (4.2)).

Elements: (g), (g = @0+ ez + axz*;a; = 0,1;¢=0,1,2);2° = 2 + 1.

Blocks: {(g + 2°), (g + 2°™), (¢ + ")}, =01, ,6.
(5.7.3) 11 £ By(3,3).

Putin (3.12):w = 5,K’ = {3}, k = 3, = 3,\” = 1 and makeuse of (5.7.1)

and (5.3.1) with (3.6).
(5.74) 14 £ B(3, 6).
Elements: (), (¢=0,1, --+,12) and (4).
Blocks: {(1 + 2°), (¢ + 2°™), (¢ + 2°%)}, 8 =0, 1, taken 5 times,
(G+2), G+ 2°), (i + 2%,
((4), (1 + 2™, (4 4 2"}, v=0,1,2
(5.8) Ifv= 1(mod 2), then v € B(3, 3).

For v = 3 this is trivial, for v = 5see (5.7.1). Forv = 7 we havev = 2u + 1,
where u satisfies the conditions of (5.4). Putting in (3.12): k = 3, K’ = K3,
N = 1,\” = 3 it remains by (5.4) to be shown that 2u + 1 £ B3(3, 3) for u ¢ K3 .
Making use of (3.6) and (3.8) this follows for u = 3, 4, 5 and 6 from (5.3.1),
(5.5.1), (5.7.3) and (5.5.2) respectively. For v = 8 we have
(5.8.1)* 8 ¢ B(4, 3), (see e.g. [3] p.- 429 and [7]).

Elements: (4,7), 4 =10,1,2,3;7 =0,1.)
Blocks: {(0, by), (1, by), (2, b2), (3, bs)}, Zb; = 0(mod 2),
{(s,0), (1), (¢, 0), (¢, 1)}, i <.

8 The primitive marks throughout this paper are taken from [3] p. 262 and the primitive
roots from [19].



370 HAIM HANANI

Now 17 € Bs(3, 3) follows from (3.12) by putting v = 8, K’ = {4}, k = 3,
N = 3, X = 1 and applying on (5.8.1) and (5.5.1). To prove 23 & B;(3, 3)
putin (3.12): w = 11, K’ = {3}, k = 3, \' = 3, \” = 1, then use (5.7.3) and
(5.3.1). For v = 14 we show
(5.8.2) 14 £ B({3, 4}, 3).

Elements: (z), (¢ =0,1, ---,12) and (4).
Blocks: {(z +2"), (i +2""), (6 +2"™), (i + 2"}, vy=20,1,
{(4), (429, (+29, (+ 2}, {( +2), (+2°), (¢ +2°)}.

29 & By(3, 3) is obtained by putting in (3.12): v = 14, K’ = {3, 4}, k = 3,

N = 3,\” = 1 and applying to (5.8.2), (5.3.1) and (5.5.1).

6. Block designs: & = 4.
(6.1) THEOREM. A necessary and sufficient condition for the existence of BIBD
of v elements, with k = 4 and any \ is that

(i) Mv — 1) = 0(mod 3) and (v — 1) = 0(mod 12).

Proor. The necessity of (i) follows from (ii) Section 1. In order to prove its
sufficiency we remark that from (i) follows that

if A= 1 or 5(mod 6), then » = 1 or 4(mod 12);
if A= 2 or 4(mod 6), then v = 1(mod 3);

if A = 3(mod 6), then v = 0 or 1(mod 4);

if A = 0(mod 6), there are no restrictions on .

Consequently by (3.8) it remains to be shown that
(6.2) for every v = 4,

= 1 or 4(mod 12) implies v € B(4, 1),

v = 1(mod 3) implies v € B(4, 2),
v= 0or 1(mod 4) implies v ¢ B(4, 3)
and for every v, v € B(4, 6) holds.

The proof of (6.2) is analogous to that of (5.2) and will be given with the help
of the following lemmas:

(63) If w = 0 or 1(mod 4) and w = 4, then weB(Ki,1) where
Ki = {4,5,8,9, 12}.

The proof is given by induction. Note that by (2.9), ¢t ¢ T:(4) if ¢ 5% 2(mod 4)
and ¢ % 3 and 6(mod 9), and by (2.13), ¢t e Ty(4) if ¢ 52 2(mod 4), { = 3 or
6(mod 9) and ¢ = 12; consequently ¢ ¢ T':(4) for ¢t = 4, 5 and 8, and ¢ & T9(4)
ift= 0 or 1(mod 4) and ¢ = 9. Now for u & K} the lemma is trivial and for
u = 13, 28 and 29 we have:

(6.3.1)* 13 £ B(4, 1), (the projective plane PG|[2, 3]).
Elements: (i), (¢ = 0,1, ---,12).
Blocks: {(i 4+ 2%, ( +2Y), (¢ + 2°), (s + 2°)}.
(6.3.2)* 28 ¢ B(4,1), (see [1]).
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Elements: (z,7),(¢=0,1,---,6;7=0,1,2,3).
Blocks: {(z,0), (¢ + 6,1), ( + 5,2), (+ + 3, 3)},
(1,0), (+ + 5, 1), (¢ + 3, 2), (¢ + 6, 3)},
(’i’ O)’ (i’ 1)’ (Z" 2)’ (’i’ 3)})
(t+1,0),(#+30),(E+41),#+5 1)
(t+1,1), (1 +3,1), (+4,2), (5 + 5,2)},
(1+2,2),(5+6,2),(¢+13), (#+33)}
(1+4+2,3),(1+6,3), (1+4,0), ( + 5,0},
(t+2,0),(Z+6,0), (+1,2), ¢+ 3,2)},
{(t+2,1),(+6,1), (+4,3), (s +5,3)}.

It may be of interest to note that in this design the 63 blocks form 9 groups of 7
mutually disjoint quadruples each.
(6.3.3) 29 e B({4, 5}, 1).

Take 28 elements as in (6.3.2) and an additional element (A). Adjoin this
element (A4) to each of the 7 (mutually disjoint) quadruples

{(5,0), ¢+ 6,1), (¢ +5,2), 5+ 3,3)}

of (6.3.2) thus forming 7 quintuples. These quintuples together with the remain-
ing 56 quadruples of (6.3.2) form the required block design.

For other values of u we make use of (3.13) putting K = Kj, s = 4 and
taking for ¢ and ¢ the values as follows:

{
{
{
{
{
{
{
{

for 4= O(mod 16), u =16, ¢q=0, = %u;
u= 1(mod 16), wu =17, ¢=1, t=3(u—1);
u= 4(mod 16), % =20, ¢q=0, = 3u;
u= 5(mod 16), u=21, ¢g=1, t=%(u—1);
u= 8(mod 16), u=24, qgq=4, t=3(u—4);
u= 9(mod 16), u =25 ¢q=5, t=1(u—5);
u = 12(mod 16), u =44, ¢q=8, ¢t = %(u — 8);
u = 13(mod 16), u =45, ¢=19, t= %(u—9).

(64) Ifu = 4,thenueB(K:, 1) where
K: =1{4,5,6,7,8,9, 10, 11, 12, 14, 15, 18, 19, 22, 23}.

The proof is by induction. We shall make use of (2.9) and especially of the
fact that t £ T.(4) if ¢ # 2(mod 4) and ¢ 5% 3 and 6(mod 9), further ¢ £ T:(5)
for t = 5, 8 and 13 and 9 & Ts(7). For u ¢ K} the proposition is trivial, for
u = 13 see (6.3.1) and for 4 = 27 and 31 we have:

(6.4.1)* 31 £ B(6, 1), (the projective plane PG[2, 5]).
Elements: (¢), ¢ = 0,1, ---, 30).
Blocks: {(¢ + 3%, (¢ + 3", (¢ + 3%, ( + 3%, (¢ + 3%, (s + 3¥)}.
(6.4.2) 27 ¢B({4,5,6},1).
Delete from the block design (6.4.1) any 4 elements no 3 of which are
“collinear”’, e.g., the elements (27), (28), (29) and (30).
For other values of u make use of (3.13) putting K = Kj and taking for g,
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s and ¢ the values as follows:

% q s ¢ % q s 1
16 s us17 u— 16 4 4 68=u=s 7| u-— 64 4 16
0=us2 u — 20 4 5 80=us 95| u— 76 4 19
u =24 4 4 5 96 < » < 103 u — 92 4 23
25 S u <26 u—25 5 5 104 Sus119 | u—100 4 25
288=us29 u — 28 4 7 120 s 4 s143 | u— 116 4 29
u =30 5 5 5 144 24 S175 | u— 140 4 35
32=us35 u—28 4 7 176 S us211 | w— 172 4 43
36=u=s39 u — 32 4 8 212 S w5259 | uw— 208 4 52
40=sus45 u — 36 4 9 260 < u <319 | u — 256 4 64
46 S u S 47 u — 40 5 8 320 S us391 | u— 316 4 79
48 u=55 u — 44 4 11 392 S us479 | u— 388 4 97
56 = u =65 u — 52 4 13 480 = u S 583 | u — 476 4 119
u = 66 1 5 13 58 = u <723 | u— 580 4 145
u = 67 4 7 9 u(mod 144) 4 |1
v\ <0< 147 i®-9

We are now able to prove (6.2).

(6.5) Ifv= 1 or 4(mod 12), then v ¢ B(4, 1).

For v = 4 this is trivial. For » = 13 we may put v = 3u -+ 1 where u satisfies
the conditions of (6.3). Putting in (3.12): k = 4, K’ = Ki, N’ = \” = 1 it remains
by (6.3) and (3.6) to be shown that 3u + 1 & B(4, 1) for u ¢ Ki. For u = 4
and 9 this is proved in (6.3.1) and (6.3.2) respectively and for « = 5, 8 and 12
we have:

(6.5.1)* 16 ¢ B(4, 1), (the Euclidean plane EG[2, 4]).

Elements: (g,7), (g = @+ a1z;a: =0,1;4=0,1;=0,1,2,3);2’ =z + 1.

Blocks: {(0, ), (z',5), (2, 7), (", 1)}, {(g,0), (g, 1), (9, 2), (g, 3)},

{(gy 0), (9 + xﬂy 1), (g + 1ﬁ+l) 2), (g =+ xﬁ+2, 3)}7 =012

(6.5.2)* 25 ¢ B(4,1), (see [1]).

Elements: (g), (9 = a0+ az;a: = 0,1,2,3,4;4=0,1);2° = 2z + 2.

Blocks: {(g), (g + "), (g + 2™™), (¢ + ™™}, y=0,1
(6.5.3) 37¢B(4,1).

Elements: (¢), (¢ =0,1, ---, 36).

Blocks: {(7), (¢ + 2'%), (z + 2%, (¢ + 2%}, B=0,1,2.
(6.6) Ifv= 0or1(mod 4), then v ¢ B(4, 3).

Putting in (3.9): K’ = Ki, K = {4}, N = 1, \” = 3, this proposition follows
from (6.3) provided that » ¢ B(4, 3) for » &€ Ki . For v = 4 this is trivial and for
v = 8 it is proved in (5.8.1). For other values of » we have:

(6.6.1) 5 ¢B(4,3), (compare (4.3)).
Elements: (7), (@ = 0, 1, 2, 3, 4).
Blocks: {(¢ + 2°), (z + 2Y), ( + 2%), (¢ + 2%)}.
(6.6.2) 9 e B(4,3), (compare (4.3)).
Elements: (g), (9 = a0+ axz;0; = 0,1,2;4 = 0,1);2° = 2z + 1.
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Blocks: {(g + 2°), (g + 2°), (¢ + 2°™), (g + "%}, B=0,1.
(6.6.3) 12 ¢ B(4, 3).
Elements: (7,7), (¢ =0,1,2;5 =0, 1,2, 3).
Blocks: {(1+2%7), (i +245), (5, + 1), G+2%j+3)}, ~=0,1,
(G+27), G+2,0),6+2,7+2),G+2,7+2)},7=0,1
{(¢,0), (45 1), (¢,2), (4, 3)}.
(6.7) For every v, v e B(4, 6) holds.

Putting in (3.9): K’ = K3, K = {4}, N = 1, \” = 6, the proposition follows
from (6.4) provided that v £ B(4, 6) for v ¢ K3 . For v = 4 this is trivial and for
v = 5,8, 9 and 12 it follows from (6.6.1), (5.8.1), (6.6.2) and (6.6.3) respec-
tively. For other values of v we have:

(6.71) 6¢cB(4,6).
Elements: (4,7), (¢ =0,1,2;7 =0, 1).
Blocks: {(4,5 + 1), (5,4), (¢ + 2, 7), (¢ + 2',5)},
(4,0, G+2%5, G5+ 1), (+ 2,7+ 1),
{(14+2,0), (¢ +2,0), ¢ +2,1), G+ 2, 1)}
(6.7.2) 7 ¢ B(4,2), (compare (4.6)).
Elements: (z), (¢ = 0,1, ---, 6).
Blocks: {(7), (s + 3°), (¢ + 3%), (i + 3%)}.
(6.7.3) 10 e B(4, 2).
Elements: (4,7), (1 =10,1,2,3,4;7 =0, 1).
Blocks: {(7, 1), (¢ + 2 0), (¢ + 2%, 0), (i + 2°, 0)},
(G, 0), (45 1), (£ +2° 1), (i + 2°, 1)},
{(1,0), 1 + 2°,0), (3, 1), (i + 2°, D)}.
(6.7.4) 11 ¢ B(4, 6), (compare (4.3)).
Elements: (¢), ¢ =0, 1, ---, 10).
Blocks: {(i + 2%), (s + 2°*), (¢ + 2°™), G + 2°*%)},8 = 0, 1, 2, 3, 4.
(6.7.5) 14 ¢ B(4, 6), (see also [9]).
Elements: (¢,7), (¢ =0,1,---,6;5 = 0,1).
Blocks: {(4,j + 1), (1 + 3", ), (i + 8, 7), (i + 34, )}, 5 times,
{(5,0), (i +3%,0), (4, 1), (¢ + 3%, 1)}, B=0,1,2
(6.7.6) 15 & B(4, 6).
Elements: (¢,7), (1 =0,1,2,3,4;5 =0, 1,2).
Blocks: {(1 +27), (¢ +2,7), (5,4 + 1), G + 2,5 + 1)}, 5 times,
((,0), G +2°0), G5+ 1), (4,5 +2)}, B=01
(6.7.7) 18 ¢ B({4,5},2).
Elements: (g,7), (9 = a0 + aw;a; = 0,1,2;¢ =0,1;5 = 0, 1);
2 =2z + 1.

BIOCkS: {(g7 1)7 (g + xo’ 0)7 (g + xz? 0)7 (g + x47 0)) (g + xe, O)}7
{(g,0), (g, 1), (g + 2", 1), (g + 27 1)}, B=0,1,
{(9,0), (g +2%0), (g + ¥, 1), (¢ + 277, 1)}, B=0,1.
18 £ B(4, 6) follows from (3.9) with K’ = {4, 5}, K = {4}, N = 2, M= 3

applied to (6.6.1).
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(6.7.8) 19 € By(4, 2).
Elements: (4,4, h), ( = 0,1,2;5 = 0, 1I;h=0,1,2) and (4).
Blocks: {(A)y (I‘) jy O)y (7’7 jy 1)7 ('Ly jy 2)}} tWiCC,
(these blocks show that 19 ¢ By),
(G +25,h), G+ 24,h), (4,7 + 1, h), (6,4, h + D},
(G+25,h), G+245,h), G+ 2%+ 1L,k + 1),
(4,7 + 1,k 4 2)},
1(,0,R), (4,1, h), (i 4+ 2°,0,h + 1), (¢ + 2, 1, h + 1)}.
(6.7.9) 22 ¢ By(4,2).
Putin (3.12):u =7, K’ = {4}, k = 4,\ = 2, )" =1 and apply to (6.7.2)
and (6.3.1).
(6.7.10) 23 £ B(4, 6), (compare (4.3)).
Elements: (), ({ = 0,1, ---, 22).
Blocks: {(¢ 4 5%), (i 4+ 5"™), (s + 5°*1), (1 + 5°2)},
B=0,1, - 10.
(6.8) Ifv= 1(mod 3), then v ¢ B(4,2).

For v = 4 this is trivial, for v = 7 and 10 it is proved in (6.7.2) and (6.7.3)
respectively. For v = 13 we may put v = 3u + 1 where v satisfies the conditions
of (64). Putting in (3.12):k = 4, K’ = K2, ) = 1,\” = 2 it remains by (6.4)
to be shown that 3u + 1 £ B4(4.2) for w ¢ K% . Now for u = 4,5,6,7,8,9and
12 this follows from (6.3.1), (6.5.1), (6.7.8), (6.7.9), (6.5.2), (6.3.2) and
(6.5.3) respectively; for u = 10, 19 and 22 we put in (3.12): k = 4, K’ = {4},
A = 2,)" =1 and apply to (6.3.1) and to (6.7.3), (6.7.8) and (6.7.9) respec-
tively; for = 18 we put in (3.12): k = 4, K' = {45}, N =2, N =1and
apply to (6.7.7), (6.3.1) and (6.5.1). For other values of « namely u = 11, 14, 15
and 23 we have:

(6.8.1) 11 & B(5,2), (compare (4.4)).
Elements: (¢), (1 = 0,1, ---, 10).
Blocks: {(i +2°), (1 +2°), (i 4 2'), (1 + 2%, (i + 2%}.

34 £ By(4, 2) follows from (3.12) with u = 11, k = 4, K’ = {5}, N = 2,
\” = 1 applied to (6.5.1).

(6.8.2) 43 £ By(4,2).
Elements: (¢, 4, h), (+ = 0,1, -+, 6;7=0,1;h =0,1,2) and (4).
Blocks: {(4), (4, 4,0), (4,4, 1), (4 4, 2)}, twice,
(these blocks show that 43 ¢ B,),
(G +3%5,h), (+ 3" 5, h), (4,5, h + 1 — %),
i+ LA+ (1—2)(1+8), =012
{(7'7] + 1} h + 2)7 (I‘ + 337yj: h + 1 - 2.7)} (I‘ + 337+27j7 h)y
('L + 337+4)jy h—1 + 2.7)}7 Y= Oyly
(G +3%0,h), (64 3,0,h), (i + 3 L,h + 2 — g),
C+3 Lh+2-p), =012
(6.8.3) 46 £ By(4, 2).
Elements: (7,4, 4), (1 =0, 1,2, 3, 4,7=0,1,2;h = 0,1,2) and (4).
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Blocks: {(4), (3,74, 0), (3,74, 1), (3,4, 2)}, twice,
(these blocks show that 46 ¢ By),
{G+2%5,0), G+2%5+ 1,k +6), 6+ 22,5 + 2,1 + 20),
(5,5 +2 6)}y 8=016=0,1,2,
(4,5, 8), G+ 2°4,h), G+ 25, h+ 1), 6+ 2% 5, h + 1)}.
(6.8.4) 70 & By(4,2).
Elements: (4,7), (¢ = 0,1, ---,22;5 =0, 1,2) and (4).
Blocks: {(4), (4,0), (s, 1), (¢, 2)}, twice,
(these blocks show that 70 ¢ B,),
(G+ 5,0, G+ 57,5, 6+ 5,5+ 1), G+ 57+ 1),
=01, ---,10.

7. On block designs & > 4. In this section we shall prove some general theo-
rems which will enable us to show by induction the existence of BIBD for some
given k and A and an infinite set of values of v, provided that for some fixed finite
subset of values of v such designs exist.

To give some example we shall thereafter use those theorems for discussing

the case k = 5. .
(71) Leta = 2,d = 2 and m = 2 be inlegers and let R be a set of some residue
classes modulo d with O € R. Then there exists an integer n such that for every u
satisfying w e R(mod d) and w = m, uw ¢ B(K(a, d, R; m, n), 1) holds, where
K(a,d, R;m,n) = {a,a + 1, z:x e R(mod d) and m = z < n}.

Let pi, 7 = 1,2, ---, h, be the primes p; < aand a;,%2 = 1,2, --- , h,the
smallest integers satisfying p;* = a; further let N be the smallest common
multiple of [ ][4 p?* and d, and & the smallest integer satisfying SN = m. We
take n = a(a + 8)N + m and obtain the proof of our proposition by induction.
For u € K(a, d, R; m, n) the proposition holds trivially and for 4 ¢ R(mod d),
u = n we make use of (3.13) putting ¢ = u(mod aN), m = ¢ < m + aN;
s=a,t=a (u—q)and K = K(a, d, R;m, n). The conditions of (3.13) are
satisfied because by definition a ¢ K and a¢ + 1 ¢ K, further ¢ = u(mod d)
because d is a factor of N, alsom =< ¢ < m 4+ aN < n and consequently ¢ ¢ K.
Asfor t we have t = g and by (2.9), t € T':(a), consequently by (2.4), t ¢ To(a);
we have also { = 0(mod d) ¢ R (mod d) and by induction assumption we may
put t ¢ B(K, 1).

In the sequel we shall use (7.1) with the valuesa = d =m =k, 6§ = 1 ex-
clusively. Now the set K(k, k, R; k, n) has a large number of elements and is
therefore inconvenient in applications. We can however by methods of Section 3
and especially proposition (3.13) reduce this set to its subset

K(k, R)  K(k, k, R; k, n)

with relatively few elements. We obtain thus from (7.1):
(7.2) Let R be a set of some residue classes modulo k with O & R. Then there exists
a finite set K(k, R) of integers (which includes the integers k and k + 1 and whose
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all other elements belong to R(mod k)) such that for every u satisfying u € R(mod k)
and u = k, uw ¢ B(K(k, R), 1) holds.

From (7.2) and from (3.9), (3.12) and (3.11) respectively we obtain (with
notation of (7.2)):
(7.3) If for every k' ¢ K(k, R), k' € B(k, N) holds then for every v ¢ R(mod k),
v € B(k, \) holds as well.
(74) Ifv = (k — 1)u + 1 where u e R(mod k) and v = k and if for every
k' eK(k, R), (k— 1) ¥ + 1 & Bi(k, \) holds, then v € By(k, \).
(7.5) If v = ku, where u sR(mod k) and w = k and if for every k' ¢ K(k, R),
kk' & Bi(k, ) holds, then v & Bi(k, \).
(7.6) We shall now use the obtained results for ﬁndmg conditions under which
BIBD with k = 5 exist. From (ii) Section 1 follows that the necessary condition
for the existence of such designs is

Av — 1) = 0(mod 4) and M(v — 1) = 0(mod 20).
For specific values of A the necessary conditions imposed on v are accordingly:

(i) fora=1,3,7,9,11, 13, 17 or 19(mod 20), »= 1 or 5(mod 20);

(ii) for A = 2, 6, 14 or 18(mod 20), v = 1 or 5(mod 10);
(iii) for A = 4, 8, 12 or 16(mod 20), v= 0or 1(mod 5);
(iv) for A = 5 or 15(mod 20), v = 1(mod 4);

(v) for A = 10(mod 20), v = 1(mod 2);

(vi) for A = 0(mod 20), every v.

We shall show that in the cases (i), (iii) and (vi) the above necessary condi-
tions are also sufficient.® By (3.8) it suffices to prove the following
THEOREM.

v»= 1 or 5(mod 20) implies v € B(5, 1),
v= 0 or 1(mod 5) implies v € B(5, 4)
and for every v v € B(5, 20) holds.

This is proved in (7.10),” (7.11) and (7.12) respectively. Regarding the case
(iv) it shall be proved in (7.13) that » = 1(mod 4) implies v £ B (5, 5), provided
that v € Bs(5, 5) forv = 4u + 1, u ¢ K(5, {0, 1,2, 3,4}), (see (7.9)). Concerning
the case (ii) it has been proved by Nandi [14] (see also [4, 7]) that no BIBD,
B[5, 2, 15] exists which shows that in this case the necessary condition is not
generally sufficient.

We begin with proving a general result, namely
(7.7) K(5,R) C {z:5 £ x = 579} for every R.

By definition 0 ¢ B. We make use of (3.13) by putting s = 5 and taking
5<q=tt= 0(mod5),? 24, 6(mod8),ts 3,6(mod9). For u = 580 we

6 With the possible exception of » = 141 in the case (i).
7 Ibid.
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put accordingly the values of ¢ and ¢ as follows:

% q t % q t

580 = u £ 690 u — 575 115 || 2851 = u = 3390 u — 2825 565
691 < u < 810 u — 675 135 || 3391 = u < 4050 u — 3375 675
811 = u = 960 u — 800 160 | 4051 < u < 4830 u — 4025 805
961 = v <1110 u — 925 185 || 4831 = uw = 5790 u — 4825 965
1111 £ » £ 1290 u — 1075 215 || 5791 = u < 6870 u — 5725 1145
1291 = w £ 1470 u — 1225 245 || 6871 = u = 8160 u — 6800 1360
1471 £ u = 1680 u — 1400 280 | 8161 = u = 9750 u — 8125 1625
1681 = » = 2010 u — 1675 335 || 9751 < u < 10804 u — 9725 1945
2011 £ u < 2400 u — 2000 400 u(mod 1800)

2401 < u < 2850 u — 2375 475 u 210805 |5 < ¢ <1804 |} (u — q)

(7.8) K(5,{0,1}) = {5, 6, 10, 11, 15, 16, 20, 35, 36, 40, 70, 71, 75, 76}.

We shall prove, that for every u = & satisfying v = 0 or 1(mod 5),
u e B(K(5, {0, 1}), 1) holds. For u ¢ K(5, {0, 1}) the proposition is trivial and
for v = 31 see (6.4.1). For u = 21, 41 and 45 we have:

(7.8.1)* 21 £ B(5, 1), (the projective plane PG[2, 4]).
Elements: (¢,7), @ =0,1,---,6;7=0,1,2).
Blocks: {(¢ +3',7), (6 +3,5), 6 +3,5), (7 + 1), G,j + 2)}.
(7.8.2)* 41 £ B(5, 1), (see [1]).
Elements: (¢), (¢ = 0,1, ---, 40).
Blocks: {(i + 6%), (i + 6"), (i + 6%, (s + 6%™), (¢ + 67},
g=0,1.
(7.8.3)* 45 ¢B(5,1), (see [1]).
Elements: (g,7), (9 = a0+ ax;a;,=0,1,2;¢=0,1;7=0,1,2, 3,4);
=2z + 1.
Blocks: {(g, 0), (g, 1), (9, 2), (g, 3), (9,4)},
g+, 0 +29, g+ 5+ 1, ¢+ + 1),
) (9,5 + 3)}, g =01

For u = 46, 50, 51 put in (3.16): s = 5, ¢ = u — 46, t = 9; for u = 120,
121 use (3.13) with 8 = 10, ¢ = w — 110, ¢ = 11; for v = 151 use (3.15) with
s = 6,¢t = 25; for u = 271 use (3.13) with s = 10, ¢ = 21, ¢ = 25; and for
u = 580 see (7.7). For other values of 4, ¥ = 0 or 1(mod 5) we make use of
(3.13) with s = 5, putting for ¢ and ¢ the following values:

q i u q t
25 =ug 30 u— 25 5 200 = u £ 240 u — 200 40
55 =u = 66 u — 55 11 241 = u £ 270 u — 225 45
80 =u= 96 u— 80 16 275 = u = 330 u — 275 55
100 = » = 116 u — 100 20 331 = u =390 u — 325 65
125 £ v £ 150 u — 125 25 391 = u = 426 u — 355 71
155 = u < 186 u — 155 31 430 = u = 510 u — 425 85
190 = v = 196 u — 180 36 511 £ u =< 576 u — 505 101
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(7.9) K(5,{0,1,2,3,4})
= {x(5 = z = 20), 22, 23, 24, 27, 28, 29, 32, 33, 34, 38, 39}.

We shall prove that for every u = 5, u ¢ B(K(5, {0, 1, 2, 3, 4}), 1) holds.
For u ¢ K(5, {0, 1, 2, 3, 4}) the proposition is trivial and for » = 21 and 31 see
(7.8.1) and (6.4.1) respectively. For u = 37, 44, 49 and 58 we have:

(79.1) 37¢B({5 9},1).
Elements: (%,7),(¢=0,1,---,6;7=0,1,2,3) and (4, h),
(h=01,---,8).
Blocks: Out of the elements (7,7), (¢ =0,1, ---,6;5 = 0,1, 2, 3) form
the design (6.3.2) and adjoin the element (A, k) to each of the 7
disjoint quadruples of the Ath group, (h = 0, 1, - - -, 8). Further
form the block {(4, k):h = 0,1, -, 8}.
(7.9.2)* 49 £ B(7, 1), (the Euclidean plane EG[2, 7]).
Elements: (4,7), (¢=0,1,---,6;5=0,1,---,6).
BloCks: {(O’j)’ (\l’j)f (27j)’ (3’j)’ (4’j)’ (57j)7 (6’-7.)}7
{(¢,0), (5 1), (3,2), (4 3), (44), (5 5), (3, 6)},
((5,0), G+ 3, 1), (¢ + 37, 2), (1 + 377, 3), (i + 3°%, 4),
(¢ + 3‘9“7 5); (7 + 3ﬁ+57 6),, 8=0,1,---,5.
(7.9.3) 44 ¢ B({5,6, 7}, 1.
Delete from the design (7.9.2) any 5 elements no 3 of which are collinear, e.g.
the elements: (0, 0), (0, 1), (1, 0), (1, 1), (2, 2).
(7.94)* 64 £ B(8, 1), (the Euclidean plane EGI[2, 8]).
Elements: (g,7),(g = ap + &z + an’;a: = 0,1;4 = 0, 1,2;
7=0,1,---,7);2" =z + 1.
Blocks: {(07.7.)’ (lyj): (.’)J,j), (xzyj)’ (1 + x’j)’ ((L‘ + xzyj)
‘ A +z4+2, 5, 1+ 2,5,
{(g,0), (9, 1), (9, 2), (9, 3), (9, 4), (9, 5), (g, 6), (9, 7)},
{(9,0), (g + 2% 1), (g + 27, 2), (g + 2", 3), (g + 27, 4),
(g + xﬂH’ 5)’ (g + xﬁ+5’ 6)7 (g + xﬂ+6’ 7)}’ B = 0’ 1) <, 6.
(7.9.5) 58 ¢B({5,6,7,8},1).

Delete from the design (7.9.4) any 6 elements no 4 of which are collinear,
e.g. the elements: (0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2).

For u = 580 see (7.7) and for all other values of » we make use of (3.13)
taking for g, s and ¢ the values as shown at top of next page.

We are now able to prove the theorem stated in (7.6):

(7.10) Ifv= 1 or 5(mod 20) and v = 141, then v ¢ B(5, 1).

For v = 5 the proposition is trivial. For v = 21 we may write v = 4u + 1
with u = 0 or 1(mod 5) and « = 5. Putting in (7.4):k = 5, R = {0, 1}, x = 1
and considering (3.6) it remains to be shown that 4u + 1e&B(5, 1)
for u € K(5, {0, 1}), (see (7.8)). For u = 5, 10 and 11 this is proved in (7.8.1),
(7.8.2) and (7.8.3) respectively and for other values of u we prove:

(7.10.1)* 25 £ Bs(5, 1), (the Euclidean plane EG[2, 5]).
Elements: (4,7), (¢ =0,1,2,3,4;5 =0,1,2, 3, 4).
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u q s i u q s i
25 = u =26 u— 25 5 5 8 =u= 9 u— 80 5 16
u =30 5 5 5 97 < u < 102 u— 85 5 17
3 =u =36 u — 35 5 7 103 = u = 114 u— 95 5 19
40 = u =42 u — 35 5 7 115 = v =119 u — 102 6 17
u = 43 1 6 7 120 £ v < 138 vw—115 | 5 23
45 = u =48 u — 40 5 8 139 < u = 150 u — 125 5 25
50 = u =54 u— 45 5 9 151 = u = 174 u — 145 5 29
55 = u < 56 u — 55 5 11 175 < v = 192 u — 160 5 32
u = 57 1 7 8 193 < u < 222 u — 185 5 37
u = 59 5 6 9 223 = u = 258 u — 215 5 43
60 = u < 66 u — 55 5 1 259 < u = 294 u — 245 5 49
u = 67 1 6 11 295 = u = 336 u — 280 5 56
68 < u <69 u — 63 7 9 337 = u = 390 u — 325 5 656
MW=u=sT8 u — 65 5 13 391 = u =< 462 u — 385 5 77
79 <u=x8l u— 72 8 9 463 = u = 546 u — 455 5 91
82 =<u=s84 u—T77 7 11 547 = u = 579 u — 535 5 107

Blocks:  {(0,7), (1,7), (2,4), (3,7); (4, 1)},
(these blocks show that 25 ¢ Bs)
{(0), (4, 1), (4, 2), (4,3), (4, 4)},

(5,0, G+ 2, 1), (i + 27, 2), (6 + 2%, 3), (i + 2°%, 1)},

8=01,23.
(7.10.2)* 61 ¢ B(5,1), (see [1]).
Elements: (7), ( =0, 1, , 60).
Blocks: {(z + 2%), (+ + 2”“2) (5 + 2%, (5 4 21, (4 + 2%ty
8=0,1,2.

(7.10.3)* 65 e B(5, 1), (see [1]).
Elements: (4,7), (¢=0,1, ---,12;5 =0, 1, 2, 3, 4).
Blocks: {(¢,0), (3, 1), (4, 2), (¢, 3), (4, 4)},
(4250, G+270, G+ 27,7+ 1), G+ 2,5+ 1),
(5,7 +3)}, 8= 0,1,2.
(7.104) 81 ¢B(5,1).
Elements: (g), (9 = D toa’;a; =0,1,2;4=0,1,2, 3);
=2+ 2+ 4 1.
Blocks: {(g + 2*"), (g + 2"*"™), (g + 2¥7%), (g + 2#T7HE),
(g9 42N}, B=0,1;7 =0, 1
(7.10.5) 141 ¢ B(5,1)?
So far no proof is available. On the other hand we remark that in the proof of
u e B(K(5, {0, 1}), 1) for v > 35 (in Section (7.8)), we made no use
of 35 ¢ K(5, {0, 1}) and therefore the omission of proof of (7.10.5) does not
impair the validity of proposition (7.10) for other values of v.
(7.10.6) 145 ¢ B(5,1).
Elements: (4,7),(¢=0,1, ---,28;5=0,1,2,3,4).
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Blocks: {(¢, 0), (% 1), (7, 2), (4, 3), (4, 4)},
(G + 2 5), (6 + 27 5), G + 27,5 + 1), (z+2"+”,1 +1),
(7').7+3)}) B—O 1 6-
(7.10.7) 161 £ B(5, 1).
Elements: (z,7), ¢ = 0, 1, ,22;5=0,1, , 6).
Blocks: {(4,7), (i + 5“’, j -I- 32") ( + 5“‘9“,3 + 3t
G + 511.‘3+s i+ 327-&4) G + 51w+12 + 32'y+8)}’
8=0,1; 7—0,1,2,
(G, 0, (6 +5,7), (6 + 5%4), (i + 5% ), G + 5% )},
{(G+5%0), 6+ 5%7), G,j+3, (5,5 +3), G5+ 3}
(7.10.8) 281 ¢ B(5; 1).
Elements: (¢), (# =0, 1, 80).
BlOCkS. {(z + 325) ( + 32ﬂ+56) ( + 32ﬂ+ll2) (Z + 32ﬁ+168)
GG+ 35, 50,1, -, 13.
(7.10.9) 285 ¢ B(5,1).
Elements: (4,7), (¢ =0,1, ---,55;5 =0,1,2,3,4) and 4, k),
h=01,23,4).
Blocks: For every j, (j = 0, 1, 2, 3, 4) take the 61 elements
(4,4), 1 =0,1, ---,55) and (4, h), (h =0, 1, 2, 3, 4) and
form a design B[5, 1, 61] as in (7.10.2) such that
{(4,0), (4,1), (4,2), (4, 3), (4,4)}
is one of the blocks. The union of the systems B[5, 1, 61] for
7 =0,1,2, 3, 4 and of the system T's[5, 56] with
i =§) {(4,:¢=0,1,---,55},5 =0,1,23,4
gives the required design.
(7.10.10) 301 £ B(5,1).
Elements: (4,5),(:1=1,2,---,60;7 =0,1,2,3,4) and (4).
Blocks: Consider the system B[5, 1, 61] constructed in (7.10.2). For every
quintuple {(0), (b1), (be), (bs), (bs)} of this system containing the
element (0) take the set of 21 elements (b, j), (be, J), (bs, 7),
(bs,7), (7 = 0,1, 2, 3, 4) and (4) and form out of them the
system B[5, 1, 21] as in (7.8.1).
For every quintuple {(ao), (@), (a2), (as), (ad)} of B[5, 1, 61] which
does not contain the element (0) form the blocks
{(a0,9), (a1,] + @), (@2,] + 2a), (45,7 + 3a), (as,] + 4a)},
(G3=0,1,23,4;a = 0,1,2,3,4). All the blocks so constructed
together with the a. m. systems B[5, 1, 21] form the required
design.
(7.10.11) 305 ¢ B(5, 1).
Elements: (¢,7),(z =0,1, ,60;5=0,1,2,3,4).
Blocks: {(z, 0), (z 1), (s, 2), (l, 3), (2, 4)},
{G+25,7), G+270), G+ 275+ 1), 6+ 2"”‘“,: +1),
(4,5 +3), =01, , 14.
(7.11) Ifv= 0or 1(mod 5), then v € B(5, 4).
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By (7.3) with k = 5, R = {0, 1}, A\ = 4 we have to prove that » e B(5,4)
forv e K(5, {0, 1}), (see (7.8)). For v = 5 this is trivial and for v = 11 it follows
from (6.8.1). For other values of » we prove:

(7.11.1) 6 £ B(5,4).

Elements: (4,7), (¢=10,1,2;j =0, 1).

Blocks:  {(4,7), (¢ + 2',7), (4 + 2,), G+ 2,5 + 1), (6 + 24,5 + 1)}.
(7.11.2) 10 £ B(5, 4).

Elements: (4,7), (¢ =0,1,2;5 = 0,1,2) and (4).

Blocks: {(4), (4,4), G+ 1,5), (45,5 + 1), (i + 1,5 + 2)},

{(0,7), (1,5), (2,5), (4,5 + 1), G+ 1,5 + 2)}.
(7.11.3) 15 £ B(5, 4), (for nonexistence of B[5, 2, 15] see [14, 4, 7]).
Elements: (2,7), (¢=0,1,2,3,4;5 = 0,1, 2).
Blocks: {(7,7), (¢ + 2,7), (¢ 4+ 3,4), (5,5 + 1), (i + 4,5 + 2)},
1,9, G+ 1,5, (6,5 +1), G+ 2,5+ 1), (5,5 + 2)},
{(5,0), G +2,1), 6 +3,1), (+4,1), (i + 1,2)},
{(5,0), (¢ +1,0), G +2,1), (+3,2), (4 + 4,2)},
{(0) a)) (lya)) (21 a)7 (3; a)y (4y a)}? a = 07 2.
(7.114) 16 € B(5, 4), (compare (4.3)).
Elements: (g), (g = D i0aix’; a; = 0,1;2=0,1,23);2" =z -+ 1.
Blocks: {(g + "), (¢ + 2°*°), (g + 2°*%), (g + &™), (g + &*™™)},
8=0,1,2.
(7.11.5) 20 ¢ B(5, 4).

Elements: (¢,7), (1 =0,1,2,3,4;5 =0,1,2, 3).

Blocks: {(4,7), (i + 4,5), (6,4 + 1), G+ 2,5 + 1), (4,5 + 2)},
(o), G+ 1,5), G5+ 1), (43,5 + 1), G+ 1,5 + 3)},
16,0, G+ 4,5), G+ 1,7+ 1), (4,5 +2), 6 + 2,5 + 2)},
{(ha), 0+ 1e), +2,a4+1),(E+4,a+1),E+33

a=20,1,2; for a=2, take a4+ 1 =
{(0, 3), (1, 3), (2, 3), (3, 3), (4, 3)}.
(7.11.6) 35 ¢ B(5, 2).
Elements: (¢,7), (¢ =0,1,---,6;5=0,1,2, 3,4).
Blocks: {(z, 0), (4, 1), (4, 2), (4, 3), (3, 4)}, twice,
(G + 3,5, G435, 6+ 87+ 1), (1 + 3*H i+ 1)
(¢, +3)}, 8=0,1,2.

)}
0.

(7.11.7) 36 £ B(5, 4).
Elements: (g, ), (9 = @0 + az; 01 = 0,1,2;5=0,1;; = 0,1,2,3);
2 =2z + 1.

Blocks: {(g + 2", 7), (¢ + 2™*,7), (g + 2™, j + 1), (¢,5 + 2),
(9 + x2ﬂ+6’j +3)}, 8= 0,1,2,3,
g+ 25, (g + 2,9, (9,5 + 1), (9,5 + 2), (9,7 + 3)},
Y = 0’ 1)

(9,9, (9 + 27, (¢ + 2%, 7), (g + 2, 1), (g + 2°,5)}.
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(7.11.8) 40 ¢ B(5, 4).
Elements: (g,7),(9 = a0 + a1z + a2’; 0, = 0,1;¢ = 0, 1, 2;
j=0,1,2234);2" =z + 1.
Blocks: {(g, 0), (g, 1), (9, 2), (g, 3), (9, 4)}, 4 times,
g+ 0, g4+ 270, 9+ 27,5+ 1), (9 + 27,5 + 1),
(g:j+3)}7 B=01,---,6.
(7.11.9) 70 ¢ B(5,4).
Elements: (¢,7,h), (¢=0,1,2,3,4;7=0,1;Ah=0,1,---,6).
Blocks: For every h, (h = 0, 1, ---, 6) form the blocks
{(ao, h): (al ) h)7 (a2 ) h), (a3 ) h), (a4 ’ h)},
where {(ao), (a1), (@), (as), (as)} are blocks of the design
B[5, 4, 10] formed out of the elements (7, j), (¢ = 0, 1, 2, 3, 4;
J =10,1), (see (7.11.2)). Further form the blocks:
{(3,4, h), (i + 27 j 8, b+ 3%), 5+ 22"V, 5 + 5, h + 3%
(i +2%j -I-v,h + 3P (2% 5y 1, b+ 39
8=01,2;9y=01;6=0,1.
(7.11.10) 71 ¢ B(5, 2), (compa,re (44)).

Elements: (¢), (¢ =0, 1, , 70).

Blocks: {(i + 7°), (¢ + 7ﬂ+“), (z + 7“"%) G+ 7, (¢ + 7’”56)}

) 8=0,1,---,6.
(7.11.11) 75 € Bs(5, 4).

Putin (8.11):m = 5,4 = 15, K’ = K = {5}, N’ = 4, \” = 1 and apply to
(7.11.3) and (7.10.1).

(7.11.12) 76 £ B(5, 4).

Elements: (4,7), (¢ =0,1, ---,14;5 =0,1,2, 3,4) and (4).

Blocks: Apply the design (7.11.11) to the elements (7,7), (¢ = 0,1, ---, 14;
j=0,1,2,3,4). The design may be arranged in such a way that
among the blocks should appear the quintuples

{(%, 0)7 (% 1): (z’ 2): (z: 3)7 (z: 4)}7 T = 0» lr Tty 147
four times each. Leave all other blocks of (7.11.11) without
change and instead of the block {(¢, 0), (3, 1), (¢, 2), (3, 3), (4, 4)}
taken 4 times take the design (7.11.1) on the elements:
(A)) (i’ 0)) (7'7 1): (i: 2)) (i, 3)7 (’L, 4)7 1= 0: 1) Tty 14.
(7.12) For every v, v £ B(5, 20) holds.

By (73) with k = 5, R = {0, 1, 2, 3, 4, A = 20 we have to prove
thatv £ B(5,20) forv e K(5, {0,1,2,3,4}), (see (7.9)). Forv = 5 this is trivial
and forv = 6,10, 11, 15, 16 and 20 this follows from (7.11.1), (7.11.2), (6.8.1),
(7.11.3), (7.11.4) and (7.11.5) respectively. For other values of v we have:
(7.12.1) 7 ¢ B(5, 10), (compare (4.5)).

Elements: (¢), (¢ = 0,1, -+, 6).

Blocks: {(4), (¢ + 3°), (4 + 3**), (i + 3°™), ¢ + 3**")}, 8=0,1,2.

(7.12.2) 8 ¢ B(5, 20), (compare (4.2)).

Elements: (g), (¢ = @0+ a1z + a2’;a: = 0,1;5=0,1,2);2* = z + 1.
Blocks: {(g + 2°), (9 + &™), (9 + &), (9 + &™), (¢ + “)},
B = 0: 1, ’ 6
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(7.12.3) 9 ¢ B(5, 5), (compare (4.5)).
Elements: (g), (¢ = a0+ ax;a; =0,1,2;7 =0, 1); 2 =2z + 1.
Blocks: {(g), (g + 2%), (g + ™), (9 + ™), (g + 2*™)}, =0, 1.
(7.124) 12 € B(5, 20).
Elements: (g,7), (¢ = a0 + ax;8, =0,1;2=0,1;5 =0, 1, 2);
=z + 1.
Blocks: {(g + 2%, 7), (9 + 2™, 35), (¢ + ™, 5), 4 + 2%,i + 1),
(g+ 277 +2), 8=012, twice,
{g+2%0), (g+ 20, g+ i+ 1), (g+ 25+ 1),
(g+2"7,i+2)}, =012,
g+ 2,0, (g+2,0), g+, (6i+1), i+ 2)}
twice.
(7.12.5) 13 ¢ B(5, 5), (compare (4.5)).
Elements: (¢), ¢ = 0,1, ---,12).
Blocks: {(3), (i + 2°), (s + 2°%), (i + 2**°), G + 2°%)}, B =0, 1,2.
(7.12.6) 14 ¢ B(5, 20).
Elements: (7,j5), (¢=0,1,---,6;7 = 0,1).
Blocks: {(3,5), (i + 3%,5), G + 3*,7), (s + 3°%,5 + 1),
G+3ji+1), 8=01,2 twice,
{(5,0), C+3%7), G+ 375, +3%,7+1), ( + 3, i+ 1)},
=012
{(5,9), G+ 3%7), G+ 3,4, ¢+ 3", Gi+ 1)}
vy =0,1, twice.
(7.12.7) 17 ¢ B(5, 5), (compare (4.5)).
Elements: (¢),(z=0,1, ---, 16).
Blocks: {(7), (¢ + 3%), (¢ + 3, (¢ + 3™, (s + 3°"™)},
B=0,1,2 3.
(7.12.8) 18 & B(5, 20).
Elements: (g,7), (¢ = @0+ ax;0:,=0,1,2;2=10,1;5 =0, 1);
2 =2z + 1.
Blocks: {(g,7), (g + 2% 3), (9 + &7, 5), (9 + 2", + 1),
(9 + xﬁ+6)j + 1)}, 8=0,1,2,3, twice,
{(9,9), (g+2%39), (g + 29, (g + 27,5+ 1),
(g+xﬂ+4:j+l)}) B = 071)273:
{(9,9), (g + 2" 3), (g + 277 5), (g + =", +9),
g+ ji+8}, v=01; §=0,1,
(9,9, g+ 20, (9 + 25, (g+ 2,5+ 1), (g+ 2" i+ D}
(7.12.9) 19 & B(5, 10), (compare (4.5)).
Elements: (¢), (: =0,1, ---, 18).
Blocks: {(3), (3 + 2%, (z + 2°™), (s + 2°%%), (s + 2°™%)},
B=01,---,8.
(7.12.10) 22 & B(5, 20).
Elements: (%,7), (¢ =0,1,---,10;5 = 0,1).
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Blocks: {(G,7), (i +2°7,), (i + 27, ), G + 2°*, 5 + 1),
(i + 2ﬂ+6:j + 1)}y B=01234, tWice,
{(5,0), G +2%5), G+2°7,5), G+ 25+ 1), (6 4+ 2°*,5 + 1)},
B=0,1,2,3,4,
(G4 2%5), G+2°7,5), G+ 2°7,5), G+ 2°,9), (5,5 + )},
B =0, 1:2’ 3:4’
{G+2%5), G+ 2,7, G+ 2,7, ¢ +2%7), (¢ + 2% 5)}.
(7.12.11) 23 e B(5,10), (compare (4.5)).
Elements: (¢), ¢ =0,1, ---,22).
Blocks: {(¢), (s + 5%), ( + 5°'), (¢ + ™), (5 + 5°*%)},
g=0,1,---,10.
(7.12.12) 24 £ B(5, 20).
Elements: (g,7), (¢ = a0+ axz + a2’;0: = 0,1;4=0,1,2;5 = 0,1, 2);
: =z + 1.
Blocks: {(g + 2%,7), (g + 2", 5), (@ + 7,5 + 1), (¢ + &, 5 + 1),
(g,j+2)}, g = 0’ 17 76,
{0, @+ 20, g+ 2,0, (9,§ + 1), (g +(;v",1j + 2)é,
ﬂ =401, ", 0
{(g+ 2,7, (g+27), g+ 20, g+ 27,5 + 1),
(g +x7+6:j + 1)}7 Y= 07 17 e ,5,
{(g+ 20, (g+ 20, (g 4+ 25, (9 + 25,7+ 1),
(g + x26+3,j + 1)}) 6 = 0’ 1)
{(g+20, (g+ 2,0, (¢ +275), (9,5 + 1), (g + 2°,5 + 2)}.
(7.12.13) 27 ¢ B(5, 10), (compare (4.5)).
Elements: (g), (¢ = a0+ a1z + aaa:z;ai =0,1,2;7 =0, 1,2);::;3 =z + 2.
Blocks: {(g), (g + 2°), (g + &%), (g + "), (g + 2°™)},
B= :1) "':12'
(7.12.14) 28 ¢ B(5, 20).
Elements: (4,7),c =0,1,---,6; 7=0,1,2,3).
Blocks: {(z + 8%,7), (i + 8%*, /), i + 8%, i + 1), (5,5 + 2),
i+ 3% i+ 3), 8=0,1,2 taken 3 times,
{G+3%7), G+ 35, i+ 1), Gi+2),Ei+3),
8=0,1,2 twice,
{G+ 38,7, C+3%5),E+3" 0N, Gi+1),6E5+2),
vy = 0,1, taken 3 times;
fG+3%7, G+ 38,7, G+3%7),6Gi+1), Gj+3)
, 3 times,
{(5,0), G+ 3,4), G+ 3,7, G+ 347, Gi+ ), a3
8=1,23.
(7.12.15) 29 ¢ B(5,5), (compare (4.5)).
Elements: (¢), (¢ =0,1, ---,28).
Blocks: (3), (¢ + 2°), (s + 2°7), (5 + 2°%), (s + 2™},
B=0,1,---,86.
(7.12.16) 32 ¢ B(5, 20), (compare (4.2)).
Elements: (g), (g = D i0az’;a; =0,1;¢=0,1,2,3,4);2° = 2> + 1.
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Blocks: {(g + 2), (g + 2", (g + "), (g + &™), (9 + &™)},
g=0,1,---,30.
(7.12.17) 33 & B(5, 5).
Elements: (¢,7), 2 =0,1,---,10; j = 0,1,2).
Blocks: {(s + 2°7), G +2°%, ), G+ 2°", 5 + 1), G + 2°%%, 5 + 1),
(4,7 +2)}, 8=0,1,2,3,4,
(G + 20, G+ 259, G+ 24,0, G+ 255, G+ 2,5,
(6,5, G+ 250, Gi+1), E+2,7+1), C+2,j+2),
(G, 7), G+259, G+ 2,0, 6i+1), 65+ 2)}
(7.12.18) 34 ¢ B(5, 20). i
Elements: (4, j), Z=0,1,---,16; 7 =0, 1).
Blocks: {(3,7), & + 3% ), (6 + 3°%,5), G + 3™, + 1),
(G+38*i+1)} 8=01,---,7,
((4,5), (i + 3% 3), 6+ 375, (5,5 + 1), G+ 3, i + 1)},
ﬁ’_'O,l, '”’7)
{6+ 3% 7), @+ 375, G+ 37, (6 + 3777,
(%j + 1)}’ Y = 0’ 17 2) 3: tWice’
(G5, G+ 3,7, G+3%5), 6+ 37 +1),
G+3"j+1), »=1,23,56,
(G, ), G+ 347, G+ 37, G+ 3"+ 1), G5+ D}
B = 0) 47
{(5,7), G+ 3%7), G+ 3%7), (¢ + 3%, 1), G+ 3%,5)},
((3,7), G+ 3,5), (6 +3,4), 6+ 3,4, ¢+ 3,0}
(7.12.19) 38 e B(5, 20).
Elements: (4,7), (¢=0,1,---,18;5 =0, 1).
Blocks: {(5,7), (i + 2% 7), G+ 2°, ), G+ 22,5 + 1),
(7: + 2ﬂ+loyj + 1)}’ B = 0: l) ct 17’
((4,7), G+270), G+ 2™, 7, G+2",+1),
($+ 27+27j+ 1)}, Y = O: 1: e )8)
{(% + 236+e, j), ('L + 236+¢+l’ ]), (z + 236+e+2’ ]),
GH+2% ), Gi+ 1D}, §8=01,2;¢=0,1,
(5, 9), G+ 2% 3), G + 2%%,5), (6 + 2°%, i), G + 27, 7)),
6=0,1,2
(G, GH240), G+ 2575, G+ 25, (i + D}
(7.1220) 39 ¢ B(5, 10).
Elements: (4,4), 4 =0,1,---,12; j=0,1,2).
Blocks: {(i + 2, 7), (i + 2°%,7), G+ 22,5 + 1), G+ 27,5 + 1),
(4,7 +2), 8=0,1,2, twice,
(G + 2% 7), G+ 27 5), (6 + 2°*°, 1), G+ 27, 7),
(’L,] + 1)}’ B = 0’ 1, 2:
(G+ 277, G+27"7), G+2"7), 6Gi+1), 67+ 2)},
¥ = 0,1, taken 5 times.
(7.13) Ifv = 1(mod 4), then v ¢ B(5, 5), provided that v & By(5, 5) for v =
4u + 1, u e K(5,{0, 1, 2, 3, 4}).
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For v = 5 the proposition is trivial, for v = 9, 13 and 17 see (7.12.3), (7.12.5)
and (7.12.7) respectively and for v = 21 apply (7.4) withk = 5, R = {0, 1,2, 3, 4},
A= 5. '\
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