THE RANDOM WALK BETWEEN A REFLECTING AND AN
ABSORBING BARRIER

By B. WEESAKUL

The University of Western Australia

1. Introduction. In this paper, the classical problem of random walk restricted
between two barriers at 0 and b is discussed. A particle, starting from the initial
position % on the z-axis (0 < w = b an integer) at ¢ = 0, moves one unit to
the left or right of its position at times ¢ = 1, 2, - - - . The probabilities for the
moves are respectively ¢ and p(¢ + p = 1), the moves being independent. We
assume that the barrier at 0 is absorbing and the one at b reflecting so that (i)
when the particle reaches the barrier at 0, it is absorbed and the process termi-
nates (ii) when at any integral time r(r = b — w), the particle is at the barrier
at b, there is a probability p that it remains there at the next instant (7 4+ 1)
and a probability ¢ that it moves one unit to the left.

Random walk problems have been extensively studied (see Feller [1]), and
their application to the theory of Brownian movement has been discussed by
Kac [2] among others. With the assumption that there is one reflecting barrier
at 0 and the other at «, Kac was able to derive an explicit expression for

P(n,m|s),

the probability that the particle starting from position n is at m after time s has
elapsed. Other cases where both barriers are absorbing and where both barriers
are reflecting have also been discussed by Feller [1]. We are concerned in this
paper with the case where one barrier is absorbing and the other reflecting; we
shall derive the expression for the generating function of the probabilities of
absorption.

2. Generating function for the probabilities of absorption. Let g(¢ | w) be the
probability that the particle reaches the barrier at O for the first time (thus
being absorbed) at time ¢ starting from the initial position u at ¢ = 0. The
probability g(¢ | w) satisfies the difference equation:

g(t|u) =gt —1|u—1)g+g(t —1|u+ 1)p,
(w=12+-,b—1;t=1,2 ---)

(1)

where ¢g(0]0) = 1 and‘ g(t|u) = Ofort < u. For u = b, we have
g(t|b) = g(t —1|b—1)g + g(t — 1|b)p.

Let P(u) be the 1 X b row vector (0---0gO0p0 ---0) with ¢ being the
(u — 1)th component, and let G(¢ — 1) be the b X 1 column vector of elements
gt —11]%), (¢ =1,2,---,b). Then equation (1) may be written in the matrix
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766 B. WEESAKUL

form as
(2) 9(t|w) = P(u)G(t — 1).
A further application of the difference equation (1) immediately leads to
(3) g(t|u) = P(u) QG(t — 2),
where @ is the b X b matrix defined by

0 p 0-cvvevnens 0

q 0 P Q-cvcvvee 0

Q = {0 q 0 Preecees 0 ,
() 0....... 0 g »

and where, as before, G(t — 2) is the column vector of elements g(t — 2| 1),
(¢=1,2,---,b). By successive applications of (1), it follows that

(4) g(t|w) = P(w)Q*G(1).

Let o(6|u) = D im0 60'g(t]|u) be the generating function for the probabilities
of absorption. We have from (4) that ‘

e(0]u) = 02‘;0 P(u)(0Q)'G(1)

= 6'P(u)(I — 6Q)7G(1)

provided 6 lies in such a range that max [|6p|, |6¢|] = 1.

We note that G(1), being the column vector of elements g(1 | ), has the first
component g, all other elements being zero. It follows that the right hand side
of (5) may be written as the ratio of two determinants, namely

(5)

Qeeveeccrrsncncnns 0 q 0 P Qeeevens 0
_0q 1 ._.0p 0 .........................
qﬂz 0 —0q 1 _0p .........................
Qevveccrecccescnnsannnnns —aq 1 _Op
Qevvevcrecerencrosasannns 0 _.0q 1 — 0p
6 0 =
(6) o(6]w) 1 —6p Qcvorrronnnenonnnnnannns 0
—0g 1 —0p Qeevvvvnnnreececnnnns 0
0 _-aq leeeoos
[ | D I —0q ]_ _Op
Qi vvrvennenennenens 0 —6g 1—6p
__¢|D|
[I—6Q]

The determinant |D| in the numerator is the same as |I — 0Q| except that the
first row is replaced by P(u). We first evaluate the determinant |I — 6Q| in
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the denominator. Consider an n X n determinant A, of the form similar to
|[I — 6Q| except that the (n, n)th element is 1. Then for this determinant the
following recurrence relation holds:

(7) Ay = Apy — Opghns, (n=23--,)

where A; = 1 and 4, is defined to be 1 for convenience. Writing

(=)-G o)) - ().

it follows from (7) immediately that

® (i) =)

The two characteristic roots A\;, A; of the matrix S are found to have distinet
values

M= L4 (1 —46pg)Y), M =301 — (1 — 46pg).
Writing S in the spectral form
_ MO0
s =5} A2) B
1

A\ _ oM 0 (1
(i) =25 )= ()

so that A, = (A — M)A — A7 ™. Hence we have finally
I — 6Q| = Ay — 6pAs—
(= M) TN = T — ap(M = M)
To evaluate the determinant |D| in the numerator, we first add to its first row
the wuth row multiplied by 67, thus reducing it to (0 --- 670 --- 0) where
6" is in the uth position. Expanding the determinant by the first row, we obtain
ID| = 67(—1)"7(—09)" "[As—u — 8pAp—oi]
= 0u—2qu—l(xl _ Az)—l[x:—u+l _ )‘z—u+l _ op(x:—u _ k:—u)].
Hence from equations (9) and (10), we have
% ufy b—u+1 b~u+1 b—u b—u
(11) o(6|u) = l%a’l l;Ql [~ T D\lwﬂ __ %+1+_—0p0(p)‘(;‘1_ )\;’—)])‘2 !
From equation (11) we may draw the following conclusions:
e bt b gbey) _1

. _dlp
6)) [e(0 | w)lp = [ — @ — p(p® — @P)]

with B = G“ i‘z) and B~ = (\ — M)“(

(8) that

1 _>‘>‘2> , it follows from
1

9)

(10)
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This is in agreement with the fact that eventual absorption is certain.
(ii) Rewriting
0" N — BpAT*) — (/M) — opA™)]
[N — 6p) — (A\a/M)*(N2 — 6p)] ’

e(6|u) =

since Ay > Ag,
(12) limpsew (0 | w) = 6"¢"N\T" = (N/0p)".
The above expression is the generating function for the probabilities of absorp-
tion when no reflecting barrier is present, and is identical to the result obtained
by Feller [1].

(iii) The expected duration of time before absorption takes place may be
obtained from

E(T) = [0(e(0 | w))/6)p—

and is found to be
b1

(13) E(T) = %+ [1— (¢/p)] if p =g

Y4
q9—p ¢@-—p’
When p = ¢ = %, limg,; [0(e(0 | %)) /36] is evaluated using L’Hospital’s rule,
and in this case
(14) E(T) = u 4+ u(2b — w).

3. Explicit expression for the probabilities of absorption. The form of equa-
tion (6) indicates that ¢(6 | w) is simply a ratio of two polynomials in 6. Denote
this by

(15) o8| u) = %‘;))

Both the numerator and the denominator have degree b. If the roots of v(e),
01,0, -+, 0 are distinct, equation (15) may be expanded into partial fractions
b

_ Py
(16} e(0]u) = 2 5"
where p, are constants that can be determined by

T BV @)/38)s,

We first find the roots of the denominator, making use of the variable a defined
by

(cosa)™ = 2(pg)*6.

Then A1z = (2cosa) '[cos a =+ isina] = (2cos o) et

, and in terms of the
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new variable, ¢(6 | 4) may be written
1. i
_ welg'sin (b —u+ Da—1p s1n(b—u)a:|
1) plo]w) = (/[ LG vt e m Bn = e,

The denominator of (18) is found to have b distinet roots e, (v = 1,2, ---, b),
which lie in the subintervals

(bv:rl)(vbt11)7r> (V=1727"')b)-
The roots of V(6) are then
(19) 0, = (2(pQ)% cos av)_l7 (r=1,2,---,0).

From equation (17), we obtain
» = —(q/p)"* 18 s (b = u+ Day = plsin (b = w)a]
3 — byt 9o
(20) [(b 4+ 1)¢* cos (b + 1)a, — bp® cos ba,] (60>a=a,
= —(g/p)"" l¢*sin (b — v + Do, — p'sin (b — u)a,] sin a,
= T\/P 2(pg)t[(b + 1)g* cos (b + 1)a, — bp? cos ) cos? @,

It remains now to expand each term in equation (16) into a geometric series.
The coefficient, g(¢ | w), of 8° is found to be

b

g(t|u) = X 2%,

v=1

this together with equations (19) and (20) yield finally
b
g(t|u) = =2 ¢ 3 cos™ a,
y=1
l¢*sin (b — u + o, — p'sin (b — u)a] sin o,
[(® 4+ 1)g cos (b + 1)a, — bp? cos ba,] ’
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