ON A COINCIDENCE PROBLEM CONCERNING PARTICLE COUNTERS
By Lajos TakAcs'

Columbia University

1. Introduction. A general model of particle counting will be considered.
Suppose that particles arrive at a counting device at the instants 1, 72, -+,
Tn, * -+, where the inter-arrival times 7, — 7, (n = 1,2, -+ ; 70 = 0) are
identically distributed, independent, positive random variables with distribution
function P{r, — 7,1 < a} = F(z),n = 1,2, --- . Suppose that each particle,
independently of the others, on its arrival gives rise to an impulse either with
probability p(0 < p < 1) if at this instant there is at least one impulse present
or with probability 1 if there is no impulse present. Let ¢ = 1 — p. Denote by
xx» the duration of the impulse (if any) starting at 7. . It is supposed that {xa}
is a sequence of identically distributed, independent, positive random variables
with distribution function

1—¢e*™ if 220,
(1) H(z) ‘{0 if z<0,

and independent of {7,} and the events of realizations of the impulses.

Denote by #7(t) the number of impulses present at the instant ¢. Always
7(0) = 0. We shall say that the system is in state E; , k = 0, 1,2, - -+, at the
instant ¢ if 9(t) = k. Write P{n(¢{) = k} = Pi(t). Furthermore, denote by P
the number of transitions E;, — Ei1 (k + 1 -fold coincidences, k = 0, 1,2, - -+)
occurring in the time interval (0, t]. Write E{»{®} = My(t).

The stochastic behavior of the process {n(t); 0 = ¢t < «} is characterized by
two parameters, p and g, and the distribution function F(x). Throughout this
paper u will always be fixed and only p and F(z) will vary. For the sake of
brevity we shall say that the process {n(t);0 = ¢ < =} is of type [F(x), p].

In what follows we shall give a method to determine the distributions of the
random variables n(¢) and »® for finite ¢ and the corresponding asymptotic
distributions as t — . The above mentioned problems for process of type [F(z), 1]
were solved earlier by the author [13], [14]. The present model of particle counting
in the particular case of Poisson input was introduced by G. E. Albert and L.
Nelson [1] and generalizations have been given by the author [10], [12], R. Pyke
[7], and W. L. Smith [9].

2. The structure of the process, {n(f)}. The stochastic behavior of the process
of type [F(x), 1] is already known [14]. Now we shall show that the investigation
of the process of type [F(z), p] can be reduced to that of the process of type
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740 LAJOS TAKACS

[F(z), 1]. For this purpose let us associate a new process with the process of type
[F(x), p] by supposing that each particle independently of the others gives rise to
an impulse with probability p, but otherwise every assumption remains un-
changed. This new process can clearly be considered as a process of type [F(z), 1],
where

@ Pa) = 3. 0" (@)

and F,(z) denotes the nth iterated convolution of the distribution function
F(z) with itself. It is easy to see that the only difference between the processes
of type [F(z), p] and [F(z), 1] is that the latter contains an additional interval
spent in state E, immediately before every transition Ey — E; , where the lengths
of these intervals are identically distributed, independent random variables with
distribution function

®) A2) = P2 a'Fala)

and these random variables are independent of any other random varidbles in
question. Here Fo(z) = 1if x = 0 and Fo(z) = 0if 2 < 0. Thus, knowing the
stochastic behavior of the process of type [F(z), 1] we can determine that of the
process of type [F'(x), p).

It is to be remarked that the process of type [F(x), p] is Markovian only in
particular cases (e.g., F(z) = 1 — ¢ forz = 0; F(z) = 220 (1 —p)p’
where0 < p < 1;F(z) = 1ifz = aand F(z) = 0if 2 < a), but the instants
m,n = 1,2, ---  always form the regeneration points of the process. Accord-
ingly for fixed k, k = 0, 1,2, - - -, the instants of the successive transitions E; —
E,,; form a recurrent (or renewal) process, i.e., the time differences between
successive transitions E, — Ej,, are identically distributed, independent, posi-
tive random variables. Let us denote by Ri(x) their common distribution func-
tion. Furthermore it is clear that the time differences between successive transi-
tions E,_y > E,and E, - E,n, k = 0, 1,2, --- , are also independent random
variables. Denote by Gi(z), k = 0,1, 2, - - -, their distribution function. (We say
that & transition E_; — E, takes place at time ¢ = 0.)

3. Notation. We mention in advance that for the process of type [F(z), 1] we
shall use the same symbols as for the process of type [F(x), p] but with the cir-

cumflex added. ,
Throughout this paper we shall use the following symbols:

a = fowwdF(w),
o = ‘/:“ (z — a)’ dF ().

s = [ " R (), %(s) = 0,
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ni(s) = foa e dGi(x), R(s) 20,
wi(s) = fo " dRi(z), RN(s) = 0,
w(s) = [ i), %(s) > 0,
n(s) = [ P R(s) > 0.
Furthermore
a=ngJ

where ¢; = ¢(ju),7 =0,1,2, --- ,and Cp = 1.
Finally, we introduce a new random variable 5. = n(7. — 0) which is equal
to the number of the impulses present at the arrival of the nth particle.

4. The determination of the distribution of 7(t). First we shall prove the follow-
ing

Lemma 1. (R. Pyke). If Mo(t) is the expectation of the number of transitions
Ey — E, occurring in the time interval (0,t] for the process of type [F(z), p), then

P _ #(s)
(4) wis) = [ aM(®) = 200
where
_L1—a8) @[Sy p (e +w) \]T
5) ols) = — P [Z:o( P) I=Io<1 —¢(8+iu)>:| '

Proor. This lemma in two particular cases, when either p = 1 or F(z) =
1 — ¢ if z = 0, has been proved earlier by the author [10], [11], [12]. A proof
for the general case has been given by R. Pyke [7]. Now we shall give another

proof.
By using renewal theory we obtain
(6) Mo(8) = Go(t) + Go(t)*Ro(t) + Go(t) *Ro(t) *xRo(t) + -

and here Go(z) = F(z).Forming the Laplace-Stieltjes transform of (6), we get
(4). It remains only to determine ¥,(s). For this purpose consider the associated
process [F(z), 1]. Then we have

© —st _ q§(8)
(7) [ e amn = =2~ oL

where, by (2),

(8) é(s) =
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and, in this case,
@ ) = [ ertai = 5 (- [T (R R

Formula (9) follows by [14] where we showed that, if M (¢) denotes the expecta-
tion of the number of transitions Ey — E; occurring in the time interval (0, ¢] for
a process of type [F(z), 1], then

® —st _ > 1Y . ¢(3 + l[l)
(10) fo eram(t) = 2 (-1 1] (*’—1 S m))‘
If we replace ¢(s) by ¢(s) in (10), we obtain (9). Comparing (7), (8) and (9)
we obtain
sy g P(s) [~ v T < pa(s + iu) )]“
(0 ) =1 = 2 S o T (255

On the other hand taking.into consideration what we mentioned in Section 2 we
have

Ro(z) = Q(z) * Ro(),
where Q(x) is defined by (3). Thus

(12) '2/0(8) = l//o(s)-

_r
1 — go(s)
By (11) and (12) we get ¥o(s). This completes the proof of the lemma.

REeMARK 1. The proof of (10) is simple. For a process of type [F(z), 1] we have

L4 M —y) —M@)] if y+2=4,
1 if y=t<y—+ sz
0 if y>t

E” [n=yx=2=

and by the theorem of total expectation we get

M(t) = F(t) + ft M@t — )1 — V] dF(y)
(13) ’ ,
- j(; MERF(t — 2)e " u dz.

Forming the Laplace-Stieltjes transform of (13) with
W(s) = [ e am),
0

we get the functional equation

#(s)

u(s) = l_:?i;(isj 1 — u(s + #)],
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whose solution is
(14 s = 3 (- [T (FRe ),

Now we shall prove
TueorREM 1. The distribution {Pr(t)} is determined uniquely by the following
Laplace transforms

- _ 2 (-0 <2> s -szru:l:]c; (1 i(fb(i_ -?)iu))
(15) fo PL(t) dt _ St
-0 S o T (25E)

=1

ifk=1,2 -, and

N I & 7 A ICE )
2 (=D H(1—¢(8+iu)>

(16) fw e~*'Py(t) dt = ;‘ =t __8 + ru 0 ‘
’ Ty ( o(s + i)
Lo R o (P25 )

where the empty product means 1.

Proor. Consider the process of type [F(z), p] and denote by Ci(t), k =
1,2, -+, the probability that the system is in state E, after a time ¢ measured
from a point of transition E; — E; and during this time interval of length ¢
there are no other transitions E, — E; . Clearly this probability is the same for
the process of type [F'(z), 1]. Thus by the theorem of total probability we obtain

(17) Pu(t) = ft Co(t — u) dMo(w), k=12 -,
0

and similarly

(18) Pu0) = [ Cli— ) di(u, E=1,2 -,

if we take into consideration that the event that the system is in state E) at
the instant ¢ can occur in several mutually exclusive ways: the last transition
E, — E; in the time interval (0, {] is the 1st, 2nd, - - - , nth, - -+, and this transi-
tion takes place at the instant 4(0 < u =< 1).

Forming the Laplace-Stieltjes transforms of (17) and (18), we get

(19) ri(s) = (o) [ " et a0
and

(20) #(5) = (o) [ " dcy().
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Comparing (19) and (20) we obtain

(21) mi(s) = #i(s) Eﬂ(s—), k=12,
ﬁo(s)
and thus
- 4 pa(s) | L (o pls)
=) mol®) = Rl 2 s <1 ﬁo(s))
also holds because
S n(s) = L) = Us

In [14] we have determined m;(s) for the process of type [F(x), 1]. If we
replace ¢(s) by $(s) there, then we obtain #;(s), namely

o Ny T P T (s 4w ) —
(23) Wk(s) = é( 1) (k)8+7#z1=10<1 —'¢(S+741.) ) k 0;1,2; .

On the other hand po(s) is defined by (4) and (5) and fis(s) by (9) and thus
—1
#0(8) _ [1 _ Q[l #(s)] ﬁo(s)]

fo(s) 0]
[ B e BGEERE)]

(24)

The formulas (21), (22), (23) and (24) prove the theorem.
ReMARk 2. Using a well known Tauberian theorem we get that

t

(25) Pt = ﬁmtl Pu(u) du, k=012,

t—>00 0
exists and
(26) Pi = lim,. smi(s).

If @ < « then {P}} is a probability distribution for which
> r Cr
P2 (=p) 5

(27) Py =1- —

r=0

ap [1 - q i (—p)’CT]
and

(28) P > (-7 (2 _ }) Crs

kau [1 —q 2}0 (—p)’Cr]

, k=12 .
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We shall show later that if « < « and F(z) is not a lattice distribution then
lim:,P:(t) exists and then obviously lim,..Pi() = P¢,k =0,1,2, ---.

5. The determination of the distribution of »‘¥. Knowing the distribution
functions Go(z), Gi(z), -~ -, Gi(z) and Ri(z), the distribution of »¥ can be
determined easily. We have
(29) PP > n} = Go(t) * Gy(8) * - - - % Go(t) * Ri(t) # -+ - % Ri(2)

where the right hand side contains the nth iterated convolution of B, (¢).
Define

(30) o= [ @ dRi2)
0
and
(31) = [ (&= )R,
0
If i < o, then we have
*) t z
(32) limP{V’ T = } = (2r)7} [ e dy
t>o00 —_’}‘ 00
(ai t/pr)

as is well known in renewal theory. (Cf., W. Feller [4], W. L. Smith [8], and the

author [11].)
Thus the problem is reduced to the determination of the distribution functions

Go(z), Gi(z), -+, Gr(z) and Ry(x). We shall prove
TuaeoreMm 2. We have

(33) 7o) = | " (@) = 2

m; 1‘=0,1,2,"‘,

and

o) = [ ano
(34) {1 - qZ (—p) H (%»

where Do(s) = 1 and

o - RO (5252)

(35) =0 i=0 (s + i)
_alt = g(o)) § 5 (1= 60 + )
T A ( ) Z% (-=1)" IT, ( pa(s ¥ in) >}

fr=12 -
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We shall prove Theorem 2 in two parts. First we shall determine D.(s),
r=0,1,2, ---,and then ¢,(s),r = 0, 1,2, - - - . But we should like to remark
here that the mean p;, and the variance o} of Ri(z) can be calculated by (34) if
we take into consideration that

2 2
(36) ve(s) =1 —pps + & '; PE 2 4o (s)
as s — 0. Since
k41 X k41
Dena(s) = p + sa 2 (’“ + 1) Cit _ 502 (’“ N 1) E (-1)" & +oo),
j=1 J p? p =0 J
= Nk [T . p¢(8 + iﬂ) ) p - r—k (7') r ‘72 - 0‘2
,;k( b (k)g(1—¢(s+w) srzk( DTN POt P g

- 1y [T - p > _1\rk r ¢,(74‘)
2 (=D (k)”C'J’a?;k( 1 () VO, 3, s T o

7=1
and

d(s 4w \ _ NNy
I—QZ( P);(m)-l—QZ( p)'C,

L o5
% 902 st g o

as s — 0, therefore

@ [1 -q g (—p)’Cr]

(37) =t "
p2 (=17 (k) p'C.
r=k
and
2 k+ 1\ Cjs aq’°+‘(k+1)"—‘ ,C,_l
o =20 }3,‘?( i )p,_l pal g )&

, ¢’ (3u)
K Z (=p)'C: Z < 3G — oGn)]
1—¢ ;-o (—p)TCr
D3 o= (f) pe.
1—g Z (-p)'C,
2p r—k T —_gl—(z”—)_—
Z( 1) () C: ;:b(w)[l — o1\
1—gq ;0 ("'p) C:

__pz 1 -

(38)

_|_
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6. The determination of D,(s). In this section we shall suppose more generally
than formerly that each particle independently of the others on its arrival gives
rise to an impulse with probability p. if » impulses are present. Writeg, = 1 — p. .
The process of type [F(z), p] corresponds to the particular case when po = 1 and
pr=p,r=12-.--.

As before denote by Gi(z), k = 0, 1, 2, -- -, the distribution function of the
distance between two consecutive transitions E;,_; — E; and E; — Expa . (We
say that a transition E_; — E, takes place at time ¢ = 0.) Define

Dy(s)
Dia(s)

where Dy(s) = 1. Thus we must determine D,(s),r = 1,2, -+ .
We note that if we write D.(s) in the following form

(40) D) = (1) #0uto)

7=0

(39) n(s) = fo" e dGy(x) =

where A’Dy(s) is the jth difference of D,(s) atr = 0, i.e.,
. I i
(41) NDy(s) = 2 (=D (ﬁ) Di(s)

then D,(s) is uniquely determined by.its differences.

Now we shall prove

TueoreM 3. Starting from Do(s) = A’Do(s) = 1, the functions D,(s), r =
0,1,2, ---, and the differences A’Dy(s),j = 0, 1,2, -- -, can be obtasned succes-
swely by the recurrence formulas

> =0~ (1) i)

(42) 7=0 )
= gls 43 T (-1 (;’) (s Dsss(s) + ¢; Dy(s)]
and
i R CE IR Y AP
(43) A'Dy(s) = g ) ; (z> ¢;id ' Dy(s)

respectively. Here

(44) Cii = J—Xf (=1) (j : z) Di—r-

v=0

Proor. By the theorem of total probability we can write that
G.(z) = fz Zr: (r) €M1 — ™) p; Gz — y) % -+ % Gz — ¥)
(45) 7 o =0 \J T "
+¢; Gile —y) * -+« G.(x — y)] dF (y),

ifr=0,1,2, ---, where the empty convolution is taken to be 1. To prove (45)
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let us consider the instant of a transition E,; — E,, and measure time from this
instant. Then G,(x) is the probability that the next transition E, — E,,; occurs
in the time interval (0, z]. This event may oceur in the following mutually exclu-
sive ways: the first particle in the time interval (0, z] arrives at the instant
y¥(0 < y = z) and it finds state E;,j = 0, 1, - - - , r, the probability of which is

T\ —swy —py\T—J
1) e 1 —e
<.7;> ( )

further in the time interval (y, z] a transition E, — E,.; occurs, the probability
of which is

PiGin(x —y) * - xG(x — y) + ¢iGi(x — y) * -+ xG.(z — y).

Introduce the notation

(46) g:i(s) = <]’) fo " (1 — oy (x)

and form the Laplace-Stieltjes transform of (45); then

(47) 7) = 2 0s6) [ 21 IT 266) 40 [T w0 |

(r=0,1,2, ---) where the empty product is 1. Now using (39) we find

(48) DA(s) = 32 i) pDina(s) + aDi(s)],

r=0,1,2, ---. This is already a recurrence formula for the determination of

D,(s),r =0,1,2, ---, but the coefficients can be simplified further.
If we form

) J ) ;
(49) a0 = 3 (=D () Dits)
where D;(s) is replaced by (48) and take into consideration that
(50) % =07 (D) ) = (=07 (§) 006 + )

then we obtain
G &DUe) = o in) 3 (=17 (]) e Disls) + 0. Do)

Now comparing (49) and (51) we obtain (42).
On the other hand by (51) it follows

ND(s) = 605 + wADi(s) + 8o + ) 3 (=107 (7) e ADICs)

whence

i _ (s +gu)
AD()(S) = m A [pO ADO(S)]:
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where

A [po AD(s)] = i(‘i) Cji ATDy(s)

7=l

and

. = P— g
Cjs = AJ—lpi = Z (—1),' <J ) Di—v -
=0 14

This proves (43).
Tut Proor oF (35). In the case of a process of type [F(z), p] we have po = 1
and p, = p,r = 1,2, --- . In this particular case (43) reduces to the following

difference equation

; 1 — ¢(s)]
(52)  A™Dy(s __(sij_”) A’D, —1)’ _q[________ =0,
j=0,1,2 ---. A simple calculation shows that the solution of the difference

equation (52) is

w0y = {p 11 (I—‘L(S—J”L))

(53) o\ o(s + in)
_qll — ¢ § (1 — ¢(s + iu)
T pe(s) z};'l( zHl( pé(s + i) )}
(Cf., Ch. Jordan [6]) and finally
r 7' j
(54) o) = % (7) 4Dt

which completes the proof of (35).
REMARK 3. If spec1ﬁcally we consider the process of type [F(z), 1] when

=1,r=0,1,2, , then (35) has the following simple form
AD (s _MAJD i=0,1,2 -
(o) = LB M wip ), :
whence

i (1 — (s + iw)
ADi(s) - (585)

and

in agreement with our previous result [14].

7. The determination of ¥,(s). First we shall prove the following
THEOREM 4. If M(t) denotes the expectation of the number of transitions Ej, —
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Ej.11 occurring in the time interval (0, ] at the process of type [F(x), p] then we have

1y (7Y 1T (_pels + i)
(56)  m(s) = fow e dM(t) = ';"( K (7“)1=IO<1 — (s +Miu)>

= Py [ po(s +aw) )
L-az (=1 H(1—¢(s+iu>>

Proor. Evidently the difference of the number of transitions E; — Ej., and
Ej41 — Ej occurring in the time interval (0, t] is 0 or 1 according to whether at
the instant ¢ the system is in one of the states Ey, E;, -+ -, E; or in one of the
states Exy1, Erys, - -+ respectively. Accordingly if we denote by Npii(t) the
expectation of the number of transitions Ej.4; — E;, occurring in the time interval
(0, t] then we have

0

(57) M) = New(t) = 2 Py(2), k=0,1,2--.

i1

On the other hand
t
Niua(t) = (B + Dp _( Prii(u) du.
For, if we consider the process {5(¢)} only at those instants when there is a state

E 1 then the transitions Ej; — Ei form a Poisson process with density (£ + 1)u.
Hence

t 0
(58) M) = (b+ Du [ Pen(u) du+ 3 Pi(o).
) F=F+1
Forming the Laplace-Stieltjes transform of (58) we obtain
(59) pe(s) = (b + Dpmga(s) + s ;ﬂr,«(s), k=012 ---
J=

Similarly if we consider the process of type [F(z), 1] then we have

(60) ar(s) = (k 4+ Duen(s) + sjl;i #;(8), k=012, -

k1

Now comparing (59) and (60) and using the relation (21) we get

(61) o =%ﬁk<s>, E=0,1,2 ..

In [14] we have showed that

fiy S+ (T p¢(s+iu)) _
(62) ae) = 3 -0 (I (28RN, ko,
and we have seen earlier that

(63) mo(s) _ [1 —¢> (-1 II (M)T.

fio(s) =0 =1 \l — ¢(s — i)
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Thus (61), (62) and (63) prove (56).
REMARK 4. By a well known Tauberian theorem it follows that

(64) Jim M)

t>c0 t

and thus by (56) we obtain

(65) im 200 2 . (D,pro'.
al:l - qr‘zo (—p) Cr]

This result can be obtained also by former results of this paper. Thus by (58)
we obtain

= lim sﬂk(s)
8->0

t
66)  lm M';_(‘) — lim @tﬁ‘_‘ [ Pou(w) du = (k + 1) uPhos
0

t>o0 t->0
where Py , k = 1,2, -, is defined by (28). Further we can conclude by re-
newal theory that
(67) fim Me® _ L
t>o0 t Pk

where p;, is defined by (37). For, the time differences between consecutive transi-
tions By — Ej41 are identically distributed, independent random variables with

expectation py .
Tue Proor oF (34). By using renewal theory we have

(68) Mi(t) = Go(t) *Gu(2) * - -+ * Gu(2)
*[I(t) + Re(t) + Ru(t) * Bu(t) + ---]

where I(t) = 1if¢ = 0and I(t) = 0if ¢t < 0. Forming the Laplace transform of
(68) we obtain

_ 'Yo(s)"ll(s) 'Yk(s) _ 1
(69) W) = TH0® . D@ = ol
whence
(70) ¥e(8) = 1 — [Depa(8)me(s)]™

where u(s) is defined by (56) and Dy41(s) by (35). This proves (34).

8. The limiting distribution of (f). We shall prove

THEOREM 5. If a < » and F(x) is not a lattice distribution then the limiting
distribution lime .o Px(t) = Py, k = 0, 1,2, -, exists and is defined by (27)
and (28).

Proor. At Remark 2 we showed that if « < « then

t
(71) limtl Pu(u) du = P}, k=0,1,2--.
0

t>w
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Now if we show that limg.. P(t) exists then by (71) we get that lim,,.P.(t) =
Pi . To prove the existence we need the following auxiliary theorem: If F(z) is
not a lattice distribution then

(72) lim M(t + h) — M,(¢)
t->00 h

exists for every & > 0 and is independent of A. This statement follows from a
theorem of D. Blackwell [2], since if F(z) is not a lattice distribution then the
distribution of the distance between successive transitions E, — Ej4; is also a
non-lattice distribution. If (72) exists then it clearly agrees with (66), i.e., if
a < o and F(z) is not a lattice distribution then for every h > 0

(73) fim MR =MD _ gy pr p—o01g .,

t>c0 h

where P{, k = 1,2, - - -, is defined by (28).
Now by the theorem of total probability we can write that

0 B0 = 3 [ ()0 - )0 - 2= ) atysw,

k= 1,2, --- , where the distribution function F(z) is defined by (2). To prove
(74) let us note that the event that the system is in state E, at the instant ¢ can
occur in several mutually exclusive ways: the last transition in the time interval
(0,t]is E;1n—E;,j =k, k41, --- ;thisis thenth (n = 1,2,---) among the
transitions E; 3 — E; ; this transition takes place at the instant (0 < u < t);
and in the time interval (u, {] no new impulses are starting, but ; — k impulses
terminate.
The funection

(L — )L = F(a)]

is of bounded variation in the interval (0, « ) and so it follows from (73) that
the limit of (74) exists and we have

(75) %1_2: Pk(t) = #;Z::k P:‘j (]‘Z) ‘/0“” e_kux(l - e"l‘x)j—k[l — F(x)] dx,

k=1,2, --- . Thelimit may be formed term by term, the series being uniformly
convergent. Finally, lim,., Po(t) also exists, because

Po(t) =1 — gp,,a).

This completes the proof of the theorem.

9. The limiting distribution of 7, . We shall prove
THEOREM 6. The limiting distribution lim, . P{n, = k} = P, ,k=0,1,2, -+,
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always exists and

(76) P, = Z'_; (=1)* (2) B,

where B, is the rth binomial moment of { Px}. We have By = 1 and
L - q 2 (-1

Specifically

pY> (=1)PC,
(78) Py = — = .
1—gq go (=1)p'C,

Proor. Define
wjk(x) =p (.7 “]; 1> e—kux(l _ e—u:c)j+l—k +gq (}.Z) e—km:(l _ e—m:):'—k

ifj=1,2,3, +,and
moo(x) = 1 — 7, ra(z) = ", ma(z) =0 if k> 1

It is easy to see that the sequence of random variables {9.}, n = 1,2, -+,
forms a Markov chain with transition probabilities P{n.t1 = k| 7. = 7} = pi
where

(79) Pix = fow mi(x) dF (z).

The Markov chain {#,} is evidently irreducible and aperiodic. By a theorem of
F. G. Foster [5] we can prove that the states are also ergodic. Consequently the
limiting distribution lim,.. P{n, = k} = Py, k = 0, 1, 2, --- , exists and is
independent of the initial distribution. The limiting distribution { P} is uniquely
determined by the following system of linear equations

(80) P = ‘;lp,.,,P,-, k=0,1,2 -,
5

and

(81) > P=1
k=0

(Cf., W. Feller [3]). In (80) P_, = 0.
To solve this system of linear equations let us introduce the generating func-
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tion
(82) Ue) = 3 P
By (80) we obtain

U(z) = pfw (1 —e™ 4 227" U1l — ™ + 2¢*) dF (z)
(83) ' .
— qPy(1 — 21 + ¢ fo U — 6™ + 27 dF (z).

Now let us introduce the binomial moments

(84) B,=k2(f>Pk, r=01,2 -,
of the distribution { P;}. If B, exists, then by (82) we have

1 (d"U(2) _
(85) B, = 1 (7)2_1» r=12,-

By (81), Bo = 1. Forming the rth derivative of (83) at 2 = 1 we obtain
B = p¢1(B1 + Bo) + pPop1 + qBi

if » = 1 and

(86) B: = pé«(B; + B,.) + q¢.B,

ifr=2,3, --- . Hence

(87) B, = p'C,(1 + (¢Po/p)), r=12 -,

where P, is still to be determined. The probability distribution {P;} is uniquely
determined by its binomial moments, namely by (82) and (85)

_ 1 de(Z) _ = r—k [T

(88) Py = o\~ ),_o = ;k (-1) <k> B,.
Since

(89) P, = Eo (-1)'B, =1+ (1 + % Po) g (-p)C,,
consequently

p g (_p)rcr

1- q 1;0 (_p)rCr

(90) Po =
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and by (87)
B, = ?_ZC' .
L—gq2, (=p)C
=
The theorem is proved by (88) and (91).
REMARK 5. By (67) and the theory of Markov chains we can conclude

Mk(t)_ Po/a lf k=0,
= WwPi/a if k=1,2,---"

(91)

(92) lim

t—>c0 t

Further we have seen earlier that

(93) limz-v"—*tl@ — (b 4+ 1)uPln, h=0,1,2 -,
t->00

where P is defined by (28). Obviously 0 £ M;(t) — Ni(t) < 1 for every

t = 0 and thus (92) and (93) agree. Accordingly a simple relationship exists

between the distributions {P;} and {Pj}, namely

pt = PP it k=23,
kou

pf:fi’
op

and
Pi=1- > P}.
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