ON THE TWO SAMPLE PROBLEM: A HEURISTIC METHOD
FOR CONSTRUCTING TESTS!

By V. P. GopaMBE
Science College, Nagpur, India

1. Introduction. The two-sample problem arises as follows. We are given two
independent samples from populations A and B respectively and are required
to investigate whether the population A could be considered as identical with
B. In the usual terminology of hypothesis testing: Given two independent sam-
ples 1, -+, Zm a0d Ty, *** , Tm+n from populations with unknown cumula-
tive distribution functions F and @ respectively, the problem is to test the com-
posite hypothesis :

H oZF =@
against the alternatives
H:F # G,

F and @ being completely or partially unspecified.

In the following lines we shall discuss a method (subsequently called the V-
method), for testing H, against H; , when F and G are partially specified (the
exact meaning of this will be clear later). A test for the situation where F and
G are completely unspecified is also put forward.

2. Notation. Suppose F(z) and G(z) to be two cumulative distribution
functions on the real axis, —© < z < o, such that their frequency functions
exist everywhere. Let #;, -+, Z»m and Tp41, ***, Tmyn denote independent
samples from F and G respectively. Now the combined sample from F and G
can be represented as a point

(2.1) x=(xl,"'7xmyxm+1)"')xm(-n)

in the m + » dimensional Euclidean space X of all such points. It follows from
the existence of the frequency functions that the probability measure of the set
of points x in & defined by z; = =; for ¢ > j is zero. Next we define on X a
vector-valued function ~,

22) (%) = (M(x), -+, 7i(X), *+* , Yman(X)),

where v,(x) is the total number of the components of x less than or equal to
z; . Thus v;(x) is the rank of z; in the combined sample x = (z1, - -, Tmin)-
Further we arrange the last n components of x, that is €m41, -+ , Zmin , accord-
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ing to their magnitudesas — o < 3 < -+ < y» < «© to define another vector-
valued function a,

(23) a(X) = (al(x)a Tty ‘_li(x); Tt a,,+1(x)),

where a;(x) is the total number of the first m components of x lying between
y:-1 and y; , Yo denoting — « and ¥y, denoting +  for convenience. In addi-
tion we define

(2'4) b(X) = (bl(x)) Ty bi(x); ) bm+1(X)),
where b;(x) denotes the number of individuals out of Zmy1, ***, Zmin lying
between the ¢ — 1st and sth ordered individuals from z;, - -+, Zm ; bi(x) and

bms1(x) being defined analogously to a,(x) and @.4:(x) in (2.3). Now it is im-
portant to note that, given a(x) in (2.3), b(x) in (2.4) is uniquely determined
and conversely.

For simplicity we write v for y(x), a for a(x), etc. Now P(y | F, G) denotes
the probability of obtaining x such that y(x) = ¥ given F and @. Similarly,
we have P(a | F. @), etc.

3. The most powerful rank test. Following the above notation it is easy to
see that

P(y|F,F) =1/(m + n)!.

Hence the most powerful rank test of the hypothesis Ho:F = G, against the
simple alternative H,, that the c.d.f.’s are specifically F and G respectively,
has the critical region

(3.2) v:P(y | F, G) > const.

Since hereafter there is no possibility of confusion, we shall write P(y) for
P(y|F, G), P(a) for P(a|F, G), etc. Now from the definition of

a= (a1, , Gns1)
in Section 2 it follows that
(3.3) P(a) = m!n! P(y),

which of course is also true under the null hypothesis. Thus the most powerful
test (3.2) is associated with the critical region

(3.4) a:P(a) > const.
Suppose further that we have a function 6 such that

(3:5) G(z) = 8(F(x))"

2 Here one should avoid the mistake of assuming that F is a uniform distribution on
o, 1).

[t
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for every z and
(3.6) 0 (F) = (38/3F)6(F)

exists for every F,0 < F < 1.
TaEOoREM 3. We have

(37)  P(a) = m! "’/ /"“ HO'(p1+ .+ [] dp:
H a; ! =

=1

where Ppyp = 1 — p1 — -+ — p, and the domain of integration D is

D={p17"';p":0§pi§I’Epiélv t=1---,n}

The theorem can be easily derived from a result of Hoeffding’s [1], top of p. 88.
It is important to note that, in the above formulae, P(a) depends on F and G
only through 6, or rather 6, and so does the corresponding test (3.4) for testing
against the alternative G = 0(F). It is, however, seldom possible to evaluate
the integral on the right side of (3.7). For this and other reasons we shall in
the next section put forward another rank test which depends on 6’ alone.

4. The V-test. Consider the following degenerate case of testing a simple
hypothesis H, against a simple alternative H,. (Note that these are not the
same as the hypotheses in Section 1.)

H,y: Bothsamplesz;, -+ ,Zmand y;, - - - , ¥ are drawn from a common
specified c¢.d.f. F.
H;: The sample x; , - - - , Tm is drawn from F, while the sample 3, - - -,

¥» is drawn from another specified c.d.f. G.

The most powerful test (not the most powerful rank test) in this case is inde-
pendent of the sample from F and in fact is given by the critical region

(4.1) Y1, »Yn fly) - f(yn)

where g and f are the frequency functions of G and F respectively. Again, if,
asin (3.5), we have G(z) = 0(F(x)) forall z and if ¢'(F) existsforQ < F £ 1,
then the critical region (4.1) can be expressed as

> const.,

(4.2) F(y), -, F(yn):g(?’(l—"(yi)) > const.
For instance, when F and G are normal distributions with unit variance, the

mean of F being 0 and that of G being §, it can be seen from equation (6.4) of
Section 6 that (4.2) can be written as

F(y), - ,F(yn):gw‘l(ﬁ’(yi)) > const.,



1094 V. P. GODAMBE

where ¢ is the functional inverse of the normal integral as defined in (6.1).
Since, however, F itself is the standard normal ¢.d f., the above critical region is
identical with

Yi, o ,yn:El:yi> const.

This is the usual optimum test for the normal mean when the variance is known.

Now the critical region (4.2) clearly depends on F in addition to ¢’. However,
an approximation to (4.2) which dependson ¢’ alone can be worked out as fol-
lows. For a given second sample (41, -+, ¥») the quantities

4 - Fa

031
(4.3) F(y:) — pon

can simultaneously be made arbitrarily small for 7 = 1, - -- , n, with as large a
probability as we please, by increasing sufficiently the size of the first sample.
Hence

(44) ar, - ,a,: ] 0

=1

(M) > const.
m

is the suggested approximation to (4.2). Note that (4.4) is a non-parametric
test, depending only on the order relationships within the sample.

Now for testing the null hypothesis Hy:G@ = F against the alternative H,:G =
6(F), we propose the V-statistic

— Tofltau+ - +a
(4.5) V(a)—III()( o )

or a suitable monotonic increasing function of the right side of (4.5), the cor-
responding V-test being defined by the critical region

(4.6) a:V(a) > const.

This will also be referred to as the V-method of obtaining tests. The motivation
for the V-method is made clear in the preceding paragraph. In fact, (4.6) is
obtained from (4.4), with a small modification to prevent the V-statistic from
assuming infinitely large values.

About the intuitive appeal of the V-method, it may be said that some tests
derived by its application, with a slight difference, have already been proposed
by different authors on more or less intuitive grounds. This will be verified in
some of the subsequent sections, where V-tests are compared with some of the
known tests, including the one given by the statistic (3.7).

Further it would appear from the above discussion that, though the V-method
is put forward as a sure method of obtaining tests for simple alternatives, it
can in some cases yield tests even for composite alternatives. This can be checked
from the illustrations to follow.
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5. Lehmann’s alternatives. In this case it is assumed that

(5.1) G = 6(F) = F*,
where k£ > 1. From (5.1) we have
(5.2) 0 (F) = kF* ™.

Hence from (4.6) the V-test for the present situation is given by the critical
region

(5.3) a:V(a) > const.,
where the V-statistic is defined by

(5.4) V(@) =10 + @ + - + a),

It is interesting to see that the V-test does not depend upon k for & > 1. The
test for k < 1 can be obtained similarly.

I. R. Savage [3] has studied very extensively the alternatives in (5.1). He
also has tabulated the probabilities P(a) in (3.7), when §(F) = F*, for differ-
ent values of k& and different sample sizes.

In Table 1 we give the 5 a’s corresponding to the largest values of V(a) in
(56.4). Now it so happens that the same a’s are the ones having the largest prob-
abilities P(a) in (3.7), for all values of k¥ > 1 considered by Savage [3]. For
these values of &, the ordering of the P(a)’s mentioned above is also the same.
Hence in Table 1 the P(a)’s are reproduced from Savage’s table for just one
set of the values of k. From them we can construct the most powerful tests,
defined by the critical regions a:P(a) > const., as in (3.4), up to the signifi-
cance level of 25 per cent. Each of these tests, as can be seen from Table 1, will
be equal in power to the corresponding V-test. Further from Savage’s table in
[3] it appears that the performance of the V-test for sample sizes other than
those considered in Table 1 is equally good.

The statistic that Savage [3] has proposed for the present problem is, in our
notation,

s e e e Y o]
(55) T@ = L et FaatiFG=D

the corresponding critical region being

(5.6) a:T(a) < const.

The 5 smallest values of T'(a) are reproduced in Table 1. It is difficult to see
any connection between (5.4) and (5.6). Now Savage [3] has proved that for
the cases m = 2, n = 3 and m = 2, n = 4, dealt with in Table 1, the simple
ordering of the probabilities P(a) in (3.7) when 6(F) = F* does not depend on
k for k > 1, and is given by the statistic 7'(a) in (5.5).
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TABLE 1
P(a) V(a) T(a)
for G = F* as in as in
k = 3.7769 (5.4) (5.5)
m= 2 n =3
.4394 8 1.4333
.1840 4 1.9333
.1242 2 2.2667
.0963 1 2.5167
.0487 0 2.9333
m= 2 n =4
P(a) V(a) T(a)
for G = F* as in as in
k = 3.6173 (5.4) (5.5)
.3743 16 2.1000
.1621 8 2.6000
.1106 4 2.9333
.0862 2 3.1833
.0716 1 3.3833
m=3 n
P(a) V(a) T(a)
for G = F* as in as in
k = 3.0546 (5.4) (5.5)
@3,0,0,0) .2549 27 1.1500
2,1,0,0) .1513 18 1.4833
2,0,1,0) .1130 12 1.7333
2,0,0,1) .0922 8 1.9333
1,2,0,0) .0746 9 1.9833

Next we consider the alternative
(5.7) G = 6(F) = \F* + (1 — \)F, 0<A<Ll
As proved by Lehmann [2], the well-known Wilcoxon test is optimum against
the alternative hypothesis (5.7) for very small values of \. It is interesting to
see that the V-statistic (4.5) for the present situation is again Wilcoxon’s
statistic. For from (5.7) we have

(5.8) O(F) =2NF + (1 — ).
Now for very small values of A, (5.8) can be written as
(5.9) o (F) = &7
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Hence the V-statistic is

Sl gt oo

(5.10) V(a) = Z_; ) ,
the corresponding V-test being defined by the critical region
(5.11) a:V(a) > const.

This is the usual one-sided Wilcoxon test.

6. Normal alternatives. Let F and G be the following distributions:
(61) Fz) = @07 [ exp (—3) dh = y(2)
and

6) = @ [ exp (—3+0)) b
(62) -
= (2n)? f_w exp (f%hz) dh = y(x + 8).

Now though for convenience of notation it has been assumed above that both F
and G have variances equal to 1, the following arguments are valid for any
unknown common variance ¢°. Write

(6.3) G(x) = 0(F(x)).
Then it is seen from (6.1) and (6.2) that

() = (26Y / (PFY = exp (—5* —
(6.4) oF) = <8x)/ (8w> exp (=" — 2 7)

= exp (—&" — 28y (F)).

Next since ¢'(F) in (6.4) depends on § it follows from (3.7) that the most
powerful rank order test of Ho against H; may in general depend on 3, though it
has been proved to be independent of & for all sufficiently small values of é.
In fact, it is then Hoeffding’s C: criterion [1]. Furthermore, some empirical
sampling investigations by Teichroew [4] suggest that the most powerful rank
order test may exist uniquely for all § > 0. The situation for § < 0 is similar.
However, no theoretical result is available in that direction.

It is interesting to see that in the present case the V-test obtained from (6.4)
above does not depend upon é. It follows from (6.4) and (4.6) that the V-test
is defined by the critical region

(6.5) a:V(a) > const.,
where the V-statistic is defined by
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In the following illustrations the relative frequencies are reproduced from
Teichroew’s experiments [4] for some specified 5. However, the ordering of the
a’s by their relative frequencies is more or less the same for the other values of
4 considered by Teichroew. It can be seen from Table 2 that the ordering of
a by V(a) in (6.6) is nearly the same as that by the relative frequencies. The
performance of V(a) is as good for the other sample sizes of Teichroew [4] as
for those considered in Table 2. It must, however, be said that for all thest illus-

TABLE 2
m'= 3 n=2
a V(a) as in (6.6) o = 0.75°Relative X(a)asin (6.7) Hoeffding’s
Frequency C
3,0,0) —1.68 2.25 —1.40 —1.66
2,1,0) —-1.09 3.45 —0.97 —-1.16
1,2,0) —0.59 4.45 —0.54 —0.66
2,0,1) —0.50 5.45 —0.45. —0.50
1,1,1) —0.00 7.40 —0.00 —0.00
(0, 3, 0) 0.00 8.10 0.00 0.00
1,0,2) 0.50 11.15 0.45 0.50
0,2,1) 0.59 12.00 0.54 0.66
0,1,2) 1.09 18.45 0.97 1.16
0,0, 3) 1.68 27.30 1.40 1.66

trative cases Hoeffding’s Ci-test [1] or van der Waerden’s X-test [5] has com-

parably good performance.
Now van der Waerden’s X-statistic, in our notation is defined as follows.

_ wgafat o taitd
67) X(a) = Qp( ot )

When m is large enough compared to n, X(a) is nearly equal to V(a) in (6.6).
For the case considered in Table 2, we see that even for m = 3 and n = 2,
the critical regions given by the two statistics are identical. It may also be of
interest to note that the X-test has been shown to be asymptotically equivalent
to the C-test.

Next we consider two normal populations with the same mean but different

variances,

F(z) = @rod)™ [ exp (—3H/aD) dh
(6.8) ofos
= (2r)~* [ exp (—3h*) dh = y(z/01)

3 These are Monte Carlo results; see [4].
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and

G(z) = (2mo})? f_ ’ exp (—3h/s3) dh
(6.9) /°°
= @0 [ exp (=3 db = w(a/o).

Consider the problem of testing Hoio? = o2 against o < ol
If we put G(z) = 0(F(z)) from (6.8) and (6.9) we have

0'(F) = (?)/(gg) = exp 2(2°/d} — 27/03)
(6.10) = exp (WE))" — 3(al/ad) (FHE)))

=exp 3(1 — ) (y'(F))*
where o3/0; = k°. Hence, to test o < o3, the critical region of the V-test would
be, from (6.10) and (4.6),
(6.11) a:V(a) > const.

Here the V-statistic is given by
_ (1t e+ +a)Y
(6.12) V(a) = ; (¢ ( e )) .

Unfortunately we do not have the necessary Monte Carlo frequencies to judge
empirically for small samples the performance of V(a) in (6.12). Later on, we
shall have an interesting comparison of V(a) in (6.12) with some other statis-
tics. Furthermore a different application of the V-method, suggested by the
theorem in the next section, gives another test for the same problem of testing
the variance ratio of two normal populations with the same mean. This test is
discussed at the end of the next section.

7. A theorem about the V-statistic. Consider a case where G = 9(F) and

FIF) _
for all F, which implies that

d aG/dx >
(7.2) 'd; m = U.

Now (7.2) is precisely the monotone likelihood ratio condition of Savage [3].
Thus it follows from Theorem 6.1 of Savage [3] that if

a= (... N PIRERRN TR ...)
(7.3)

a = (041, ,a,—1,-4),
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the other components of a and a’ being identical and ¢ < j, then

(7.4) . P(a) = P(a).
Further, from (4.5) and (7.1) we have
(7.5) V(a') =z V(a).

Now the V-statistic has been defined for a simple alternative G = 6(F), and
as such we can order simply the vectors a, according to the values V(a). Simi-
larly the vectors a can be ordered simply according to the values of P(a) in
(8.7). Let S be a set of vectors which could be arranged in such a way that for
any pair of successive vectors, a, and a1 say, a; is related to az1 as a to a’
in (7.3) for some ¢, j(¢ < j), where ¢, j can vary with k. Then from (7.3), (7.4)
and (7.5) we have

TaeoreM 7.* For any function 0 satisfying (7.1), a szmple ordering of S, accord-
ing to P(a) is identical with a simple ordering given by V(a).

There is a similar theorem if instead of (7.1) we have

2
o) _ .
T =

Now as already noted by Savage [3], for both Lehmann’s alternative in (5.1)
and the normal alternative in (6.1)—(6.2), the monotone likelihood ratio con-
dition (7.1) is fulfilled. This can also be checked from (5.2) and (6.4). Hence
Theorem 7 above is applicable in both cases.

On the other hand, for the alternative in (6.8)—(6.9), the condition (7.1) is
not fulfilled. This can be seen from (6.10). We therefore substitute

(7.6) 3 =

(This transformation is due to the referee.) Now the c.d.f.’s of 2z, viz. F(z)
and G(z), corresponding to (6.8) and (6.9), are

.7) F&) = 07 e an
and
(7.8) G(z) = (n)} fo " i an,

Now putting G = 6(F), we have
¢’(F) = const. exp [(1 — oi/03)2/01]
(7.9)
= const. exp [(1 — o1/03)V2I'(F, —%)]

¢ The author is indebted to the referee for an important clarification in this theorem.
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where I™" is the inverse of I in (7.14). It is clear from (7.7), (7.8) and (7.9)
that the monotone likelihood ratio condition of (7.1) is now satisfied. Next
referring to the notation of Section 2, it can be seen that a point

X = (@1, " Tmin)

in & is transformed by the substitution (7.6),i.e., 32 = z;,s =1, -+ ,m + n,
into a point

(7.10) z= (zl y " zm+n)

in Z, say. Further, exactly analogous to a = (a1(x), +*+, @a4a(x)) in (2.3),
we can define on Z a vector-valued function

(7.11) c(z) = (e(z), -+, Capa(2)).

Now from (4.5), (7.9), and (7.11) the V-test for testing the null hypothesis
against the alternative in (7.7)-(7.8).is defined by the critical region

(7.12) c:V(c) > const.

where the V-statistic is given by
”+II—1(61+ +c+1 _ 1)
b

I'" as before being the inverse of

“\/F
¢ 1 dh.

(7.14) I, =) = @7 |
(The values of (7.14) for different u’s are tabulated in Tables of the Incomplete
T-Function, Cambridge University Press, 1946.)

Two suggestions for comparing the statistics (7.13) and (6.12) are as follows:
(i) It will be remembered from (6.8) and (6.9) that for convenience of notation
we assumed the common mean of the two populations to be zero. Actually,
if u is the common mean, the transformation (7.6) would be 3(z — w)’ =z
which means the vector ¢ in (7.11) depends on u. That is, contrary to the test
(6.11), the test (7.12) cannot be worked out unless p is known. (ii) Theorem 7
above is valid for (7.13) while it is not valid for (6.12).

Now Theorem 7 implies some justification for using any of the V-statistics,
such as (5.4) or (6.6), where 9 satisfies (7.1), for testing against a wider alter-
native hypothesis G = 6(F), which does not specify anything about 6, excepting
that it satisfies the monotone likelihood ratio condition (7.1).

In the next section we develop a test of the null hypothesis Ho:F = G against
the general alternative Hq:F #= G.

8. ¢-test. Substituting in (3.7)
n+1l

(8.1) ¢(a/p) = H"“ H(pz)"’



1102 ‘ V. P. GODAMBE

we have
(82) P(a) = f f¢(a/p)n!H0’(p1 + -+ p) I dp:.

D 1 1
Now in (8.1), a;/m is the maximum likelihood estimate of p;, ¢ =1, ---, n.
Therefore if

m| n+1

(83) ¢(a) = Tlan (ai/m)™,
it follows that
(8.4) o(a) = ¢(a/p).

Thus from (8.1), (8.2) and (8.4) we have

(8.5) P(a) < ¢(a) f . fn!I:IB'(pl + - 4 pi) I:Idpi.

Now using the transformation p; + -+ +p;=¢;, 1 =1, ---, n we have
©6) [ [0+ +p)[ldpi= [ -+ [T ¢ [ das,
where

D' = {ql) 0= =L gasq,t=1,--- :n})
¢o denoting 0. Integrating the right hand side of (8.6) term by term and noting
that 0(0) = 0 and 6(1) = 1, we have
(8.7) f e fIII o' (g:) I;qui = 1/n!.
Hence from (8.5), (8.6) and (8.7) it follows that
(8.8) P(a) = ¢(a).
Next we recollect the definition of

(8°9) b= (bl y " bm+l)
in (2.4) of Section 2. It has also been noted that a defines b uniquely and con-
versely. Therefore we have

(8.10) P(a) = P(b).
Further it follows from (8.3) and (8 8) that if
(8.11) ¢(b) = Hm+1 : 'H (bi/n)%,
then

(8.12) P(b) = ¢(b).
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We can write (8.8), (8.10) and (8.12) together as

(8.13) P(a) = P(b) < min (¢(a), ¢(b)).
Now define the ¢-statistic as the minimum of ¢(a) and ¢(b) i.e.,
(8.14) ¢ = min (¢(a), (b)) = ¢(a, b).

Then the ¢-test for testing Ho:F = G against Hy:F = @ is defined by the cri-
tical region

(8.15) ¢ > const.

The motivation for this test lies in the inequality (8.13) and the fact that in a
degenerate case when there exist two numbers » and v, v > u, such that F(u) =
1 and G(v) = 0, then :

(8.16) P(a) =P(b) =¢ = 1

with probability equal to unity.
Wolfowitz [6] proposed a test statistic equivalent to

(8.17) W = ¢(a)-¢(b)

for testing Ho:F = @ against F 5 G. In the numerical illustrations in section
10, the ¢-statistic defined in (8.14) appears to be better than Wolfowitz’ statistic
in (8.17), though possibly quite a few statements made hereafter in case of the
¢-statistic may also hold for W in (8.17). A simple method for computing
¢-statistic could be obtained from one suggested by Wolfowitz [6] for his statistic
W above.

9. Some properties of the ¢-statistic. Let
(9.1) a=(o..’ai’...’aj’...)
(9.2) al=(...’ai_l_]_’...’aj—-]_’...)

be two vectors with their ¢th and jth components (¢ < j) as shown (a;,a; = 1),
other components of a being equal to the corresponding ones of a’. Now from
(8.3) we have

o(a’) - (14 1/a))*™

o(a) (1 + 1/(a; — 1))~

Thus from the monotonicity of function (1 + 1/2)% if in (9.1) and (9.2)

(9.3)

(94) a; 2 aj,
we have
(9.5) #(a’) > ¢(a).

Further, it follows from the above argument and the symmetry of ¢(a) in
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A1,y *°* 5, Qpy1 that if
(9.6) 8" = (- aitag, e, 0,00)

with its 7th and jth components as shown, other components being equal to the
corresponding ones of a in (9.1), then

(9.7) #(a”) > ¢(a)

regardless of the condition (9.4) above. Again as in (8.9) define b and b’ from
aand a’ in (9.1) and (9.2). Then it follows from arguments similar to the above
that

(9.8) o(b") = o(b).

Thus from (9.5) and (9.8) we have for a, b and a’, b’ defined by (9.1) and (9.2) »
above, provided (9.4) holds,

(9.9) o(a’, b’) = ¢(a, b),

¢ being given by (8.14). Similarly from (9.6) and (9.7) we have, regardless
of (9.4),

(9.10) é(a”, b”) = ¢(a, b).
Now suppose F and G are such G(z) = 6(F(z)) and
F(F)
(9.11) o = 0
for all F. Then as said in Section 7, (9.11) implies
d 0G/ox
(9.12) 7z 9T /3 >0

for all z. Now (9.12) is the monotone likelihood condition in terms of Savage
[3]. Thus it follows from Theorem 6.1 of Savage [3] that if the condition (9.12)
or (9.11) above is satisfied,

(9.13) P(a’) = P(a)

for a and a’ in (9.1) and (9.2) assuming 7 < j.

Now since b in (8.9) is uniquely determined by a, we may consider the statistic
¢(a, b) in (8.14) as a function of a alone, ignoring b. Thus we can get a simple
ordering of the vectors a, according to the values of ¢(a, b). Similarly for a
simple alternative G = 8(F) we can have a simple ordering of vectors a, ac-
cording to the statistic P(a) in (3.7). Consider a fized vector

= (o @iy @y, )

having a; = a;, (¢ < j) and let a’ be the vector obtained from a by replacing
the ¢th and jth coordinates of a by a; + k and a; — k respectively. For the same
¢ and 7, allowing k to take values 1,2, - - - , a; , we get a set of vectors a’ which
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we denote by S’. Then we have from (9.1), (9.2), (94), (9.9), (9.11) and
(9.13)

TrEOREM 9. For any function 0 satisfying (9.11), a simple ordering of S’ by
the statistic P(a’) in (3.7) is identical with a simple ordering given by ¢(a’, b’) in

(8.14).
We shall have a similar theorem, if instead of (9.11) we have
(9.14) &GQ/oF* < 0.

Theorem 9 above also establishes a relation between the ¢-statistic in (8.14)
and the V-statistic defined in (4.5) for which Theorem 7 was true.

10. Numerical illustration. In Table 3 we have given values of different
statistics, for comparison. As already noted in Section 5, the ranking of the

TABLE 3
m = 3 n =2
1 2 3 4 5 6 7 8 9 10
F, G Normal
G = Fllk .
= X-stat. ¢-stat. | W-stat. |S)
a kP(a)7i§676)3 (;7) 2 equal var, 5 =| equal var. | equal means (85-11) (8?1;) n;:;':?v
: 0.75 Rel. freq. > a1 <o
(Monte Carlo)| V-stat. (6.6) |V-stat. (6.12)

@3, 0,0) .0038 |—1.40 |—1.66 2.25 —1.68 1.41 1.00 | 1.00 | 1.00
2,1,0) .0054¢ |—0.97 |[—1.16 3.45 —1.09 0.77 0.44 | 0.22 | 0.66
(1,2,0) .0093 |—0.54 |—0.66 4.45 —0.59 0.77 0.44 | 0.22 | 0.50
2,0,1) .0073 [—0.43 |—0.50 5.45 —0.50 0.12 0.44 | 0.44 | 0.66
(1,1,1) .0128 [—0.00 |—0.00 7.40 —0.00 0.12 0.22 | 0.11 | 0.33
(0, 3, 0) .0667 0.00 | 0.00 8.10 0.00 1.41 0.50 | 0.50 | 0.50
1,0,2) .0214 0.43 | 0.50 11.15 0.50 0.12 0.44 | 0.44 | 0.66
©,2,1) .0919 0.54 | 0.66 12.00 0.59 0.77 0.44 | 0.22 | 0.50
©,1,2) .1537 0.97 1.16 18.45 1.09 0.77 0.44 | 0.22 | 0.66
, 0, 3) .6277 1.40 | 1.66 27.30 1.68 1.41 1.00 | 1.00 | 1.00

vectors a according to the probabilities P(a) in column 2 remains the same for
all values of & > 1 in Savage’s Table [3]. Column 5 gives the relative frequencies
in Teichroew’s experiments [4]. Again the ranking of a’s according to the relative
frequencies, for all values of 6 considered in [4], remains nearly the same.

The ranking of vectors a in column 1, by the V-statistic (for testing the vari-
ance ratio) in column 7 agrees better with the ranking by the ¢ statistic in
column 8 than with the rankings by the statistics in columns 9 and 10 respec-
tively. It should be noted that the statistics X, C;, and .V in columns 3, 4 and
6 respectively are meant to test one-sided alternatives. We can however con-
struct, intuitively, two sided tests based on them, having the corresponding
critical regions | X | > const., | C; | > const. and | V | > const. Now in Table
3, the ranking of the vectors a in column 1 by any of the statistics | X |, | C: ]|,
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and | V | agrees better with the ranking by the ¢ statistic in column 8 than with
the rankings by the statistics in columns 9 or 10 respectively. Of course more
empirical investigation is necessary to arrive at practically usable conclusions.

11. Some possibilities for the asymptotic behavior of the V and ¢-statistics.
This section consists of a few conjectures or guesses. From (4.5) we have,

_ 5 fl+ o+ -0+ a
(11.1) log V = zl:logo ( e )

Now fixing the second sample y1, « - - , ¥ , let the size m of the first sample go
to . Then in view of (4.3), for both null and alternative hypotheses, with

probability 1,
(11.2) logV = 21: log 6'(F(y:)).

Now the asymptotic normality of log V in (11.1) as n — o could possibly be
derived from the fact that the F(y)’s in (11.2) are distributed identically and
independently on both the null and alternative hypotheses. On the null hy-
pothesis the F(y)’s are distributed rectangularly, 0 < F < 1. On the alternative
hypothesis, the frequency function of F(y) is ¢'(F),0 = F =< 1. This also sug-
gests that the mean values of the asymptotic distribution of log ¥ in (11.1)
might be

(11.3) n fo " (log 0'(F)) dF,

(11.4) n fo " (log 0 (F))0'(F) dF

on the null and alternative hypotheses respectively. Similarly the variances, on
the null and alternative hypotheses, could possibly be expressed as follows.

(11.5) n {fol (log ¢'(F))* dF — [fol log ¢'(F) dF:Iz}

(116) n { [ " (log 0'(F))¢'(F) dF — [ [ " (log 0'(F))0'(F) dF:r}.

The above integrals could be evaluated by means of numerical integration.

Next it seems from (4.3) that when m — o, n being fixed, the power of the
V-test is equal to that of the corresponding optimum parametric test. In particu-
larly van der Waerden’s X-test (6.7), which is equivalent to the corresponding
V-test (6.6) as m — «, has been proved in [5] to be asymptotically as powerful
as the ¢-test.

The asymptotic distribution of the ¢-statistic in (8.14) is difficult to guess.
However ¢(a) in (8.3) seems to be relatively easy to handle. From (8.3) we

have
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n+41 n+1

(11.7) loge¢(a) = logm! — mlogm + 2 a;loga; — D loga; .
1 1

Now suppose a = (@1, -+, @i, -+, Gny1) in (11.7) is such that all the a/’s
are large enough so that Stirling’s approximation can be applied to a; !, ¢ =
1, .-+, n + 1. Then from (11.7) we have

n41
(11.8) log¢(a) = const. — 3> loga;.
1

Further (except for degenerate alternatives) all the a; will be large enough for
Stirling’s approximation, with as large a probability as we may wish, if, fixing
the second sample y;, -+« , ¥, we increase the size m of the first sample suffi-
ciently. The asymptotic normality of the expressions in (11.7) and (11.8),
ignoring constants, follows from a theorem due to Wolfowitz [6], under the
condition m = n 4 1. Otherwise the asymptotic normality of (11.8) is obtain-
able from arguments similar to those in the preceding paragraph.
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