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1. Introduction and summary. The problem of classification in the case of a
finite number of known distributions has been considered many times in the
statistical literature, and the theory is well-developed for such problems. Some
authors have considered the problem of classification in the case where some of
the information about the alternative distributions has been obtained from
samples. Papers concerned with this latter problem usually either present
large-sample results, or else propose procedures whose use in the small-sample
case is justified on intuitive or heuristic grounds (see, e.g., [4], [5], [6]).

In this paper, a certain classification problem is considered in which some of
the information about the alternative multivariate normal distributions has
been obtained from samples. The admissibility of two ‘“natural” decision pro-
cedures is deduced. Charles Stein has shown in [7] that “natural” procedures are
not necessarily admissible when one is dealing with multivariate normal distribu-
tions.

The problem is defined in Section two. In Section three, several heuristic
methods of solution are considered. Each of these methods yields one or the
other of two decision procedures which are called the minimum distance rule,
and the restricted maximum likelihood rule, respectively. In Section four, a
method for obtaining admissible translation-invariant Bayes procedures is
presented. This method consists in a reparametrization, and the use of an a
priort distribution of the new parameters which has a certain product measure
form. In Section five, normal a priori distributions are employed to obtain a
particular class of translation-invariant Bayes procedures. The results of Section
five are used in Section six to show that both the minimum distance rule and the
restricted maximum likelihood rule are admissible translation-invariant Bayes
procedures.

2. The problem. The p-dimensional row vector Y, is normally distributed with
unknown mean m, , and known non-singular covariance matrix B, ,n =1, - - -,
k. The p-dimensional row vector Y, is normally distributed with unknown mean
m, and known non-singular covariance matrix B. The vectors Yy, Yy, -+, Yi
are distributed independently of one another. One observation y, on Y, is
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available,n = 0, 1, - -- , k. It is known that m = m; for some j. The problem
is to decide for which j m = m; . It is assumed that, if more than one m, = m,
then there is precisely one j which designates the correct decision. A simple loss
function, zero when a correct decision is made and one when an incorrect de-
cision is made, is to be used.

In this paper, j is used both to denote the correct decision in a given case, and
as an index for the correct decisions in all possible cases. The symbol ¢ is used
both to denote the decision made, and as an index for all of the decisions which
it is possible to make. The symbol 7 is used as an index for all other purposes.
Random variables are denoted by capital letters, and observations on random
variables are denoted by the corresponding lower case letters.

The problem considered includes, among others, the following situation:
There are k p-variate normal populations with a known common covariance
matrix C, and unknown means. A random sample of r, individuals known to
come from the nth population is available, n = 1, ---, k. Each individual is
measured independently by a method of measurement which is unbiased, and
whose errors are normally distributed with a known covariance matrix G. A
random sample of r individuals known to come from one of the populations is
to be classified. These individuals are measured independently by a method of
measurement which is unbiased, and whose errors are normally distributed
with a known covariance matrix H. In this case, one may take yo, 41, -+, ¥
to be the observed sample means, and then B, = (C + @) /ra,n =1, --: , k,
and B = (C + H)/r. One special case of this situation occurs when there are
no errors in measurement, and a second special case of this situation occurs when
the normal populations are degenerate, and errors in measurement are the only
random variables.

3. Heuristic solutions. Several heuristic solutions of the classification problem
are presented in this section. These solutions illustrate methods of heuristic solu-
tion which might be used in more general problems. For the present problem,
each of these methods yields one or the other of two decision procedures which
are called the minimum distance rule, and the restricted maximum Ukelthood
rule, respectively. These procedures are defined below. Some of the heuristic
derivations require certain straight-forward computations which are omitted.

(a) The mensmum distance rule

(i) Since the covariance matrix of the distribution of ¥, — Y, is B, + B,
a “natural” measure of the squared distance of the observation y, from the ob-
servation ¥, i8 (¥n — %0) (Ba + B) ™ (yn — w0)’, n = 1, - -+, k. The minimum
distance rule makes the ¢th decision for that ¢ which gives the minimum squared
distance.

(ii) Consider the kp-fold row vector

(1) X=(Y1—Yo, -, Y=Yy,
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and let
(2) 2 = Cov (X).

A “natural” measure of the squared distance of a vector u from a vector v in
kp-dimensional space is (v — v)Z7'(u — v)’. Let Q; be the (k — 1)p-dimen-
sional linear manifold in which E[X] lies when E[Y; — Y] = (O, - - - , 0),
J =1, -+, k. The rule which makes the ith decision for that 7 which minimizes
the squared distance of the observation z from ©; is the minimum distance rule.

(iii) If each of the hypotheses that E[Yo = E[Y.],n = 1, ---, k is tested
separately, without regard to alternatives (by a chi-square test), and the hy-
pothesis with the highest observed significance level is accepted, then the de-
cision rule is the minimum distance rule. This is an application of one of the
intuitive general approaches suggested by C. R. Rao in [6].

(iv) Similarly, if each of the hypotheses that E[X]eQ,, n = 1, ---, k, is
tested separately, without regard to alternatives (by a chi-square test), and
the hypothesis with the highest observed significance level is accepted, then the
decision rule is the minimum distance rule.

(v) If the likelihood function for the observation (yo, 41, --- , ¥) is maxi-
mized over the space of parameter points (j, m;, - -+, m:), where j indicates
that m = m;, and the decision is made according to the value of j at the maxi-
mizing parameter point, then the decision rule is the minimum distance rule.
This is the usual application of the maximum likelihood technique; viz., find
the values of the parameters which maximize the likelihood function of the
entire sample. Hence, the minimum distance rule might also be called the maxi-
mum likelihood rule. ,

(vi) If the likelihood function for the observation z is maximized over the
space of parameter points (m; — m, - -+, m; — m), wherem; — m = (0, --- ,0)
for some j, and the decision is made according to the value of j at the maximizing
parameter point, then the decision rule is the minimum distance rule. Thus, the
minimum distance rule is also the maximum likelihood rule for a reduced problem
which is concerned with only the random variable X, and not with the indi-
vidual random variables Yo, Yy, ---, Y5.

(b) The restricted maximum likelihood rule

(i) In the classification problem, it is known that for some 7, the distribution
of Y; — Y, has the density function

exp [—3(y; — y0)(B; + B)'(y; — %))
(2m)¥*|B; + B}

The restricted mazimum likelihood rule makes the decision according to the
value of j which maximizes this function.

(ii) A second heuristic derivation of the restricted maximum likelihood rule is
based upon another intuitive general approach suggested by C. R. Rao in [6].
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This approach consists in setting up the k alternative fiducial distributions of
Y, on the basis of the observations on Y;, ---, Y. The maximum likelihood
rule for deciding among these k parameter-free distributions is the restricted
maximum likelihood rule.

(iii) A third heuristic method of deriving the restricted maximum likelihood
rule consists in deriving a weak Bayes procedure relative to equal a prior: prob-
abilities and an independent uniform a prior: measure on the parameter space of
(my, - -, mg).

(iv) Similarly, in the reduced problem which is concerned only with the
random variable X, the restricted maximum likelihood rule may be derived as
a weak Bayes procedure relative to equal a prior: probabilities and a uniform
conditional a priori measure, given j, on the parameter space of (m; — m, - - -,
Mmijqg — M, Mjyp1 — M, -, M — m)yj = 1) o ,k‘

4. Bayes procedures. If all Bayes procedures relative to a given a prior:
distribution have the same risk function, then each is admissible (see, e.g., [8],
p. 101). There is no difficulty, in principle, in using this fact to find any number
of admissible classification procedures. However, one would like a classification
procedure to have other desirable properties in addition to that of admissibility.
For example, one would like a classification procedure which is invariant under
that subgroup of the group of affine transformations for which the classification
problem is invariant. This requires that the classification procedure be at least
translation-invariant.

In this section, a method for obtaining admissible translation-invariant Bayes
procedures is presented. This method consists in a reparametrization, and the
use of an a prior: distribution of the new parameters which has a certain product
measure form.

Consider the (k + 1)p-fold row vector

(3) Y=(Y°,Y17“'7Yk))

and let Y be the sample space of Y. Any Bayes procedure for the present classifi-
cation problem is a decision rule of the following form: #(y), - -, &(y) are k
statistics, and, except for a set of y’s of Lebesgue measure zero, the 7th decision
is made when ¢;(y) = max, {{.(y)}; ties may be resolved arbitrarily. The possi-
bility of obtaining translation-invariant Bayes procedures, even though no
translation-invariant a priors distribution exists, rests upon the fact that trans-
lation-invariance of the decision rule does not require that the statistics
t(y), -+, t(y) be translation-invariant. Each translation-invariant Bayes
procedure presented in this paper is derived relative to an a prior: distribution
which is such that #4(y), - --, t&(y) are all multiplied by the same positive
number ¢(y, w) wheny = (yo, 41, - - -, ¥x) is replaced by (yo + w, 1 +w, - -+,
u + w).

In the derivation of translation-invariant Bayes procedures, it is convenient
to employ a non-singular linear transformation which transforms ¥ into (¥, X),
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say, where ¥ is distributed independently of X. For this purpose, let

(B Bf' ... < B
—I I 0 0
. 0 - .
A = ,
. - 0
—I 0 ... 0’1

where I is the p X p identity matrix, and O is the p X p zero matrix. Then
AY' = (¥, X)’, where

k
(4) ' ¥ = B'Yo+ X Bi'Y..
Nl
(¥, X) is normally distributed with mean (#%, m; — m, --- , my — m), and
covariance matrix
k
B+ 3 B o)
n=l
0 z
where
k
(5) ' = B™'m' + 3 Bi'm,.
Nl
The vector ¥ is distributed independently of X.
The transformation from the parameter (j, M, my — m, ---, mpy — m) to
the parameter (j, m;, - -- , m;) is given by
k —1 k
m; = |:B‘l + > B;‘] [m' — > B (mg — m)':l
ne=l Nl
My = (My — m) + m;, n=1,---,k.

With the use of this transformation, one can specify an a priori distribution
of the original parameter (j, m;, - - - , mi) by specifying an a prior: distribution
of (4, it, my — m, ---, mpy — m), and it is convenient to specify a prior: distri-
butions of (j, my, -+, m) in this way.

To simplify the notation, delete ;7 and the zero component m; — m from
(3, M, my — m, --- , mp — m), and denote the result by

(6) (my”i)y .7= 17"'7k'
Let V; be the kp-dimensional parameter space of the vector (i, u;),5 =1, --- , k.

For an a priort distribution, h, of (#i, u;), let £; be the a priori probability
that the jth decision is correct, and given 7, let P(- | ) be the probability measure
for the a prior: distribution of the vector (i, u;),j =1, --- , k.
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Let the simple loss function be denoted by
w(i, 1) ={‘f izl himLe

Let fy(y | M, u;) be the density function, with respect to Lebesgue measure,
of the distribution of ¥ for the parameter value (#, g;).

Any decision rule § may be defined by k functions ¢;(y; 8),7 = 1, ---, K,
such that 0 < ¢i(y;8) < 1,ye%Y,7 =1, --- , k,and such that D+ 0i(y;8) =1
y €Y. In applying the decision rule §, the 7th decision is made with probability
¢i(y; 8) when y is observed, 7 = 1, - - -, k.

The risk function (i, u; ; 8) gives the expected loss at each parameter point
(7, n;) when the decision rule & is employed.

) i, u38) = [ 3703006, oy |, ) dy.

A Bayes procedure relative to the a prior: distribution A is a decision rule which
minimizes

(8) r(6h) = 38 [ v, u38) dP(, s ).

j=1

Using (7) and (8), one obtains (9) after a brief computation.
k
(9) r(&h) =1~ f [Z i(y; 8) {&f fe(y | i, u;) dP (i, I‘ilj)}] dy.
Y Li=1 \ 2]

It follows immediately from (9) that the decision rule é is a Bayes procedure
relative to the a prior: distribution k of (7, u;) if, and only if, except on a set of
y’s of Lebesgue measure zero, ¢;(y; ) = 0 whenever

10 & [ 1xCu1 5 ) 4P, ) < max{s [ 7oy 1, 1) 4B, )}
£ J \£}
Since ¥ and X are distributed independently, one may write

(11) Fe(y | @, u;) = Jfe(F | M)fx(z | 1)),

where J is the Jacobian of the transformation from Y to (¥, X), and f3 (¥ | )
is the density function, with respect to Lebesgue measure, of the marginal
distribution of ¥, and fx(x | u;) is the density function, with respect to Lebesgue
measure, of the marginal distribution of X.

Consider an a prior: distribution of (7, u;) such that # is distributed inde-
pendently of j and the vectors u; . For such an a priort distribution, the prob-
ability measure P(- |j) is a product measure. Let Px(-) be the probability
measure for the a prior: distribution of #, and let @ be the p-dimensional pa-
rameter space of #ii. Let Py;(-) be the probability measure for the a priori
distribution of the vector u;, and let @; be the (k — 1)p-dimensional parameter
space of the vector p;,j = 1, ---, k. Then P(- |j) is the product probability
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measure defined by the probability measures P5(-) and Pa;(-):
(12) P('IJ)=P§()XPMJ(')7 j=17“')k'
Using (11) and (12), one may write the statistics which occur in (10) as

& _/;_fr(?/ | 77, ) P (W, ;)
(13) ’
= [ [ ssta1m) apaci |[& [ selo ) apuyton) |-

The first factor on the right-hand side of (13) does not depend upon j, and is
positive. Therefore, if the a priori distribution & of (i, u;) is such that #i is
distributed independently of j and the vectors u;, then the decision rule é is a
Bayes procedure relative to 4 if, and only if, except on a set of y’s of Lebesgue
measure zero, ¢;(y; §) = 0 whenever

(19 & [ fuolu) aPuu) <max{ts [ selolm) dPaslu)}

Q; J Qe;
It will be convenient to have symbols for the statistics which occur in (14). Let
(15) ti(y | h) = E.-L_fx(:clm) AP (), is Lok

Clearly, the Bayes procedure is translation-invariant if the rule on the excep=
tional set of y’s of Lebesgue measure zero and the rule for resolving ties depend
upon y only through z. '

It is evident that two decision rules for the present problem have the same risk
function if they differ only on a set of ¥’s of Lebesgue measure zero. Hence, if the
set of y’s which yield ties for maximum among the statistics (15) has Lebesgue
measure zero, then all Bayes procedures relative to the a prior: distribution h
have the same risk function, and each is admissible. The set of y’s which yield
ties for maximum among the statistics (15) will have Lebesgue measure zero,
except for certain rather special a priori distributions ( it is easy to find a priore
distributions for which some, or all, of the statistics are identically equal).

6. Normal a priori distributions. In this section, Bayes procedures will be
derived relative to a prior: distributions under which each p; vector has a normal
distribution. The results of this section will be used in Section six to prove the
admissibility of the minimum distance and restricted maximum likelihood rules.

A normal a prior: distribution of the vector u; is specified by Elu;] = v;,
say, and Cov (u;) = A;, say. The classification problem is invariant under a
change of sign of the random vector Y. It is desirable that a decision rule be
invariant under this same transformation. For a Bayes procedure of this section
to have this invariance property, it is necessary that v; be the (k¥ — 1)p-dimen-
sional zero vector, j = 1, -+, k. In what follows, each v; will be taken to be
the zero vector.
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Let 4 = E[X]. Given that the jth decision is correct, and that the vector u;
is normally distributed with mean zero and covariance matrix A;, the condi-
tional a prior: distribution of u is normal with mean zero and covariance matrix
A7, say. The matrix A} consists of the appropriately-positioned submatrix A;,
and zeros elsewhere.

Some temporary notation will be introduced for the purpose of computing
the statistic £;(y | ). For simplicity, the dependence upon ¢ will be suppressed
in this notation. Let r be the rank of AY , and let S be the r-dimensional linear
manifold within which u lies with probability one under the conditional a prior:
distribution of g, given 7. There exists an orthogonal I' such that for all x & S,
Ty’ is of the form (7, 0, -+, 0)’, where n has r coordinates. The conditional
a priort distribution of T'u’ is normal with mean zero, and

; , 0
Cov(Ty') = TAITY = <g 0)’

say, where U is r X r, and the other submatrices are zero matrices.
Let TX’ = (Z,, Z,)', where Z, has r coordinates. I'’X’ is normally distributed
with mean I'y/, and

Cov (TX') = Cov (Z1,2,) = T2I" = (Vll Vu) )
V2l V22

Let w' = 21 — ViVazs . Then (15) may be rewritten as

. _ [, Jexp[—32 Vi 2]
Ll lh) = [*{ @ryier |V22|9}

exp[—3(w — 7)) (Vi — Vi Via V) (w — )T\ [exp [— 10U ']
{'/;( @m¥|Vu — Vi Vit Vb )( @m¥| U} )dr]}].

where L is r-dimensional Euclidean space (see, e.g., [1], p. 29). The integral in
the second factor of (16) is the convolution integral of two normal density func-
tions. The well-known additive property of independent normally distributed
random vectors permits the result of this integration to be written down im-
mediately as g

NIM:?&WF%JQQ{mm%Mm+U—mmynﬁm
Y YL (2m) ke | V|t Cm¥|Vu+ U — Vi Vi Valt

-1
E-‘ exp I:—%(Zl ) zz)(VuV_: U II;::) (Zl ) 32),:|

Va+ U Vel
V21 V22

_ tiexp [—32(2 + A7) 2]
- (21,-)i(kp)|z + Aﬂi ’

(16)

17) =
(2r)i(kp)

i=1 -,k

Except for a set of y’s of Lebesgue measure zero, the 7th decision is made for
that ¢ for which ¢;(y | h) is maximum; ties may be resolved arbitrarily. This is
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the general form of Bayes procedures relative to zero-mean normal a prior:
distributions of the u;’s.

6. Special choice of normal a priori distributions. The form of the statistics
appearing in (17) is such that a Bayes procedure based upon these statistics
does not, in general, have any intuitive appeal. In this section, it is shown that
if the covariance matrices which occur in the a priors distribution have a certain
form, then the Bayes procedures become intuitively meaningful. Furthermore,
the minimum distance and restricted maximum likelihood rules are exhibited as
Bayes procedures, and their admissibility is deduced.

The following Lemmas are used in this section:

LemmMa 1. If the submairiz A in the partitioned matriz vs nonsingular, then

A B

= p|=I411D —B'47B|.

For a proof see, e.g., [1], p. 344.
LemMA 2. If, in the partitioned matriz, the submairiz A is nonsingular and the
submatriz D is N X N, then

A B _
B D+ D —BATB)|

Lemma 2 follows easily from Lemma 1.
LemMA 3. If the partitioned mairiz i8 nonsingular, then all of the inverses de-

-1
noted below exist, and (g, B) = (E F), where

A B
B’ D|°

N+ 1)¥

D F' G

E=A"4+ A"B[D — BA7'B|"'B'A™
F = — A7'B[D — B'A7'B]!

G = [D — BA7'B]™.

For a proof see, e.g., [9].
LemMma 4. If the partitioned matriz (g, g) 18 nonsingular, and N #= —1,

then all of the inverses denoted below exist, and

A B “_1<A B“_I_)\("‘O
" D+XD—-BA"B))] ~A+1\B D A+1\0 0
where the 0’s denote zero matrices.
The nonsingularity of the matrix on the left-hand side, for A % —1, follows
from Lemma 2. The representation of the inverse follows easily from Lemma 3.
Let X, be the random vector obtained from X = (Y1 — Yo, -+, Yi — Yo)
by deleting ¥, — Yo, and let
2111; E121;)

Cov (Y» — Yo, Xa) = (221 Zoen) ’
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Consider an a priori distribution under which the a priori probabilities are
&, -, &, and the a prior: distribution of the vector u; is normal with mean
zero and covariance matrix

Aj = M2 — ZnZ0i2e], A 20),j=1,- k.

The covariance matrix A; is A\; times the covariance matrix of the conditional
distribution of X;, given Y; — Yo,j = 1, ---, k. It follows from (17) and
Lemmas 2 and 4 that for such a choice of the a prior: distribution h, the sta-
tistics £;(y | h) are

ti(y | b)

1 A - ) "y
(18) _ ¢ exp [ {)\ | (yi — yo)(Bi + B) (y: — yo)’ + )\' + i — 3 }]
(20" + D*? 2]

i=1,---,k

Except for a set of y’s of Lebesgue measure zero, the 7th decision is made for
that ¢ for which ¢;(y | ) is maximum; ties may be resolved arbitrarily.

The Bayes procedure may be put into a somewhat simpler form by deleting
the factor which is common for all ¢;(y | h), taking logarithms, and multiplying
by —2 to obtain

si(y|h) = —2log & + (kK — L)plog (A 4+ 1)

1

-1
)‘i+1x2 z',

)\i -1 ’
(19) + v (yi — yo)(B: + B) '(ys — %)’ +

i=1, -,k

Except for a set of y’s of Lebesgue measure zero, the 7th decision is made for
that ¢ for which s;(y | A) is minimum; ties may be resolved arbitrarily.
If all of the A/’s arertaken equal to A, say, then the statistics (19) are essentially

(20)  —2logéi + + —7 W —w)(Bi + B) (s — ), i=1-,k
If all of the £’s are taken equal in (20), then the Bayes procedures are based
upon the statistics (yi — %o) (B + B) (s — %), ¢ = 1, -+, k. Since the
set of y’s which yield ties for minimum among these statistics has Lebesgue
measure zero, it follows that all versions of the minimum distance rule are ad-
missible.
The restricted maximum likelihood rule is obtained by taking
—M/2(\+1)
&= |B+B| i=ly"':k:
Z IB + B l—)/2()+l)
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since in this case the statistics (20) are essentially
log |B: + B| + (s — 40) (Bi + B) (i — yo), i =1, -+« , k.

Since the set of y’s which yield ties for minimum among these statistics has
Lebesgue measure zero, it follows that all versions of the restricted maximum
likelihood rule are admissible.
The principal results of this section are summarized in the following theorem:
THEOREM. The minimum distance and resiricted mazimum likelthood rules are
admissible classification procedures.

7. Conclusion. A method has been presented for obtaining admissible trans-
lation-invariant Bayes procedures in a certain classification problem, and the
admissibility of two “natural’’ decision rules has been deduced. It is known, [7],
that “natural” procedures are not necessarily admissible in the case of high
dimensional normal distributions.

The questions of what advantages, if any, the two “natural” decision rules
have over other Bayes procedures, and how they compare with each other in
performance, have not been considered in this paper. These are two of the ques-
tions which are studied in some detail in references [2] and [3].
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