ENUMERATION OF LINEAR GRAPHS FOR MAPPINGS OF FINITE SETS

By JoHN RIiorpAN

Bell Telephone Laboratories, Inc.

1. Introduction. A finite set of #» elements may be mapped onto itself in n*
ways, since each element may be mapped independently on any element. Each
mapping is a permutation with unlimited repetition. A linear graph is found for
a mapping by drawing a sling if < is mapped on 7, a line from ¢ to j if 7 is mapped
on j. Hence each linear graph consists of one or more components (connected
parts) and each component has a single cycle (closed path) of length £k =
1,2, ---, if a sling is regarded as of length 1, and a pair of points connected by
two lines a cycle of length 2. Also, all points of the graph are labeled and directed-
ness of the lines has significance for the enumeration only in that, for &k > 2,
the lines in cycle may be directed in two ways. Note that slings and multiple
lines between pairs of points usually are banned in graph enumerations.

The study of such mappings may be given a probability setting by assigning
a probability for each mapping. In the simplest case, the probability is the same
for all, and the mappings are said to be random. Random mappings have been
considered in 1953 by N. Metropolis and S. Ulam [7] who raised the question of
the expected number of components, answered in 1954 by Martin D. Kruskal
[6]. H. Rubin and R. Sitgreaves in 1954 considered other random variables asso-
ciated with the mappings, including the number of lines in cycles. Both Jay E.
Folkert [2] and Bernard Harris [4] have considered the enumeration by number
of components, both with and without slings. Finally Leo Katz [5] has enu-
merated the connected graphs with slings, while Alfréd Rényi [8] has given the
corresponding result for the classical case where slings and multiple lines are
banned.

In the present paper new and simpler results are obtained for the enumera-
tions both by number of components and by number of lines in cycle of the
unrestricted and various restricted graphs.

2. The number of components in unrestricted graphs. The graphs in question
are those corresponding to the complete set (n") of mappings described above.
Let T.x be the number of such graphs with »n distinct (labeled) points and &
components. Let Cx be the number of such connected graphs with & labeled
points. Then if the enumerator by number of parts is

T.(z) = 2 Tua®, To(z) =1,
k=1
and if
o ¥
Cly) = El C”n! ’
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ENUMERATION OF LINEAR GRAPHS 179

the basic equation for the enumeration is
(1) T(z,y) = 2 Ta(z) £ = exp [2C(y)).

Equation (1) is a familiar form and is derived easily by an argument for a
similar situation given by E. N. Gilbert [3], which in present terms is as follows.
In the graphs with n 4 1 labeled points and k¥ components, the point labeled
n + 1 belongs in a component with j points, j = 0, 1, - - while the remaining
n — j labeled points belong to a graph with ¥ — 1 components. Hence

(2) Tn+1.k = Z (n> Cj+l Tn—-j,k—l .
=0 \J
Forming the enumerator T, () leads to
(3) Tn+1($) =T z':) (7;) Cj+1 Tn_j(x).
j=
Then

T (z,y) _ ~+ y"
—ay— = nz_o Tn+l(x) m

- 2200 1)

may be integrated with respect to y to give (1).
Since T»(1) = »n", and T(1, y) = exp C(y), equation (1) effectively deter-
mines C(y) and hence T'(z, y). Indeed, writing T, = T.(1), the equation
T(l,y) =expyT = expC(y), T =T,

is the equation relating ordinary moments and cumulants. Hence by equation
(51) of Chapter 2 of [9],

(4) Co = Yu(fTs, -+, fTa),  f'=fi = (=) (k — 1)!

with Y, a multivariable Bell polynomial. Also, since (1) may be rewritten
T(z,y) = (expyT)’, T"=T.,

it follows from [9; problem 24 of Chapter 2] that

(5) Ta(@) = YalgTy, -+, 9Tw), ¢#=gp=2(x—1) - (z—k+1)

an equation given (effectively) both by Folkert and by Harris.

Simpler results appear when C(y) is formulated independently. Note first that
the number of connected graphs with a single sling and no other cycles is equal
to the number of rooted trees with labeled points, since the sling effectively
identifies the root. Thus if C(y,k) is the enumerator for graphs with a single
cycle of k, C(y, 1) = R(y) = Q_a—1n"y™/n!, the enumerator for rooted trees.
Next C(y, 2) = R*(y)/2, since there is a rooted tree at each of the two points
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on the cycle, and these two points may be interchanged. Finally C(y, k) =
R*(y) /k by a similar argument. The corresponding result when the directedness
of the lines in cyecle is ignored is R*(y) /2k, k = 3, 4, - - - , (cf., equation (16) of
T. L. Austin et al. [1]) ; the difference flows from the different orders, k¥ and 2k,
respectively, of the associated cyclic and dihedral groups. Thus finally

Cly) =Cy 1) +C(2) + - +Ck + -
(6) = R(y) + R(y)/2+ -+ + B*()/k + - -
= log (1 — R(y))™"

Now notice that if u = R(y), ue * = y [9; equation (45) of Chapter 6], and
the Lagrange formula gives

_ = n—1r py ny _'.l/_n —_— i
) jw) = £0) + 2 D7 L, D=~
(the prime denotes a derivative). Also, using the Leibniz formula for differentia-

tion of a product,

(8) D" f"(u)e™|umo = :E:o (n ; 1) 2" i
where
(©) ) = 3 fk =epu, M =h
Then by (8), (7) and (8)
n—1 n — 1 ik n—1 nk
(10) C,.=§o( . )n k!=(n—1)!k_070-i

the result found by Leo Katz [5].
Now return to equation (1). Using (6), it becomes

(11) T(z,y) = (1 — R(y)™".
Since
(1 —u)™ = expuc(z),
c*(z) =ci(z) =2(x+1) - (z+n—1),

where ¢,(z) is the enumerator of permutations (without repetition) by number
of cycles, it follows from (7), (8) and (9) that

n—1

(12 n@) =5 ("5 ) o),

Then, if ca(z) = D caj¢’ (the numbers c,; are the signless Stirling numbers of
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the first kind)

n—1
— 1\
Twi =D, ( k )n rert,; -
i)

Note that T, = C, follows from cx11, = k! and (10). Note also that T,(1) =
n" and (12) produce the identity

n—1

=y (” . 1) "Rk 4 1)1,
few=0
which is one of the forms associated with Abel’s generalization of the binomial
formula.
The generating function for the probability distribution of the number of
components of random mappings is

(13) P,(z) = 0 "T,(x) = :Z__:: (n ; 1) " ().

The corresponding binomial moment generating function is

19 B@ =P+ =5 ("7 ) a4 2.

But ¢a(1 + z) = 7 '¢a4a(z). Hence, the jth binomial moment, B,;, is given by
(15) B,; = ZE_: ( -k— 1) T a0

In particular the mean is

a—1

CE Y g1 gy
B,.l—g_:o( . )n (k+1).[1+2+ +3 1]
n _ n—1 _1 . n An'
=2 8 (PP e = A
J=al kemj—1 j=1 ]
Then since 4,, = nln" " and

A,,j = An,j+l + (:,; : }) n_jj!,

it follows by mathematical induction that 4,; = n!/(n — j)! 2’ and

n

!
Bnl — Z n:

= (n — j)!nij
in agreement with Martin D. Kruskal [6].

3. The number of lines in cycles in unrestricted graphs. The enumeration by
number of lines in cycle requires only slight modification. First the enumerator
of connected graphs by number of lines in cycle (variable z) and by number of
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labeled points (variable y) is
C(z,y) = 22 Ca(z)y"/n!
(16) = zR(y) + -+ + 2"R*(y)/k + -+~
= log (1 — zR(y)) ™.
Hence, following the derivation of (10),
(17) @) = 5 "z 1) S T

Let gnx be the number of graphs with » labeled points and % lines in cycle, and
write g.(z) for its generating function. Then, by the argument used for (1), with

o(z) =1,

(18) 2(z,y) = 2 ga(2)y"/n! = exp C(z, y)
and, using (16),

(18a) a(z,y) = (1 — zR(y)) ™"

It follows at once that ¢o = 1 and

n—1

19) w@) =5 (") e D a1

in agreement with Bernard Harris [4]. The binomial moment generating function
of the corresponding probability distribution is

(200 B.z) = 3 (Z - }) A1 + 2)*
and
(200) By =3 (3 1) (8wt

It may also be noted that comparison of (17) and (19) or the relation
9(z,y) =1+ z(d/dz)C(z, y)
leads to (the prime denotes a derivative)
gn(x) = xC;(x), n=12---,
Further
(8/02)q(z, y) = expyg'(x) = R(y)(1 — 2R(y))™",  (¢'(2))" = ¢a(a),
and since

(1 — R(y))yR'(y) = R(y), expyq’(1) = yR'(y) (1 — R(y))™ = yC'(y);
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or
gn(1) = n"Bu = nC,,
a result appearing in Bernard Harris [4].

4. Restricted graphs. The enumerations above are readily adapted to restric-
tions expressed in terms of cycle lengths. The simplest of these is that slings be
barred, but it is just as easy to bar cycles of length 7.

Considering the enumeration by number of components, write T,(x, r) for
the enumerator with no cycles of r, C(y, r) for the corresponding enumerator of
connected graphs. Then by (6)

C(y,r) = log (1 — R(y))™" — R'(y)/r,

which corresponds to

(21) Ca(r) = Cn — (n _ }) n"rl.

r
Next
T(z,y,7) = 22 Ta(z, 1)y"/n! = exp [zC(y, )],
= (1 — R(y)) " exp [—2R"(y) /],
which corresponds to To(r) = 1 and

n—1

— 1\ -
(22) Tou(x,r) = ; (n . )n A (z, 1),
where
e™ (1 —w)™ = expu d(z, r), d*(x,r) = du(a, 7).
The polynomial d.(x,r) of course is the enumerator by number of cycles of
permutations without cycles of length r. Its recurrence relation has been given
in problem 16 of Chapter 4 of [9], and in present notation, reads
doia(z, 1) = (0 + 2)dn(z, 1) — (0)rZdn_ria(z, 1) + (n)2dnr(z,7),
where (n), = n(n — 1) --- (n — r + 1). The binomial moments for the corre-
sponding probability distribution have the generating function
ba(z, 7) = da(1 + 2z, 7)/da(1, 7).

Hence the corresponding generating function for graphs is given by

n—1

T.(1,r)B,(z,r) = zo: <n ; 1) 2 A (1 + 2, 7),

(23) "
=2 <Z _ i) w7 (1, )b, ),
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or

(230) T, Butr) = 32 (3 2 1) ™ datt, o)

It is worth noting that
d.(1 +2z,7) = (d(1,r) + d(=, 7))", d'(z,r) = d,(,r),

= z:: <Z> dui(1, 1) di(z, 7).

Forr =1, To(1,1) = (n — 1)" and d.(1, 1) = D, , the subfactorial of
n(D, = A"0!), which with (22) leads to the interesting identity

n—1
(n - 1)70 = Z (n k 1) nn_l_ka+ly n = 1’ 2’ e
0
Another identity may be obtained as follows. First
T(x’ Y, 1) = e—zR(y)T(x’ y);
then
eV =1 — 2> (n — z)" y"/nl
Nn==l
Hence
To(z, 1) = To(z) — z D (Z) Toi(z) (B — z)*7,
1
For z = 1 this corresponds to the identity
n"=(n—1"+ zl: (Z') (n — k)" ™k — 1) (0° = 1).

For the enumeration by number of lines in cycles, first
C(z,y,7) = log (1 — 2R(y))™ — 2'R'(y)/r,

and
(24) Co(z,r) = Co(z) — (:? : }) i

Then
exp C(x, y, 1),
(1 — zR(y)) ™ exp [—2"R"(y) /],

q(z,y, 1)

8o that qo(z, r) = 1 and

n—1

(25) g(z,r) = Xo: (n ; 1) 2" dya (1, )2
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It is clear that the procedure followed reduces enumerations for any restricted
graphs with restrictions specified by cycle lengths to the enumeration of the
corresponding restricted permutations.
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