APPROXIMATIONS TO THE MOMENTS OF THE SAMPLE MEDIAN

By M. M. SippiQul

Boulder Laboratories, National Bureau of Standards

0. Summary. In this paper a numerical study of Chu and Hotelling’s [1]
method of approximating to the moments of the sample median will be made.
With an introductory outline of their method in Section 2, we will proceed to
apply it to various distributions, and will evaluate the degree of accuracy that
can be conveniently obtained by means of it in each particular case. The nu-
merical results will be presented in tabular form.

1. Introduction. Chu and Hotelling [1] developed a method of approxima-
tion, using a Taylor’s series expansion of the inverse function of the cumulative
distribution function, for the moments of the sample median of a certain type
of parent distribution. However, they did not attempt to give numerical ex-
amples, except for the normal distribution, to illustrate the rapidity of con-
vergence of their series. The example which they worked out does not seem to
be completely satisfying—an upper bound to the proportional error being
6.9 X 107° for samples of sizes = 101, and 6.8 X 10~° for samples of sizes = 501,
using the first two terms of their series to approximate the variance of the
median. It seems desirable, therefore, to study the rapidity of convergence of
their series by calculating the approximate variances of the medians of small
samples from various special populations, using the first four or five terms. We
will, in fact, use partial sums up to and including the term of relative order
N~* N being the sample size.

To compare the approximate with the exact values, it is necessary to select
distributions for which the exact moments, at least the first two, of the sample
median for small values of N are available. Within this restricted class an attempt
is made to select populations which provide some contrast and variety with
respect to the range of the variate, the symmetry of the probability density
function (pdf), and the “spread” of the probability mass, which three properties
seem theoretically relevant to the behavior of the series. A measure of the last-
mentioned property was taken to be the kurtosis, v, = standardized fourth
moment —3. The selected populations are the following and are ordered with
respect to the range, symmetry and the value of v, . ’

(1) U-shaped (incomplete beta) : finite range; symmetric; v = —1.5.

(2) Rectangular: finite range; symmetric; vy, = —1.2.

(3) Parabolic: finite range; symmetric; v = —0.86.

(4) Normal: infinite range; symmetric; y: = 0.

(5) Double exponential: infinite range; symmetric; v. = 3.

(6) Cauchy: infinite range; symmetric; moments do not exist.

(7) Exponential: semi-infinite range; skew; v = 6.
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Broadly speaking, the characteristic which is most favorable to the rapidity
of convergence, is the finiteness of the range of the variate. In this case the
median has finite range, and the series (4) below for m(z) is convergent in the
closed interval —1 < z < 1. If the range of the variate is infinite, m(2) is un-
bounded in [—1, 1] and the series (4) does not converge for at least one z = —1,
1. Symmetry of the pdf and a low value of v, are also expected to be favorable.
Thus it is expected that the first three populations are most favorable, the last
two the least, and the remaining two fall in the middle.

We first note that, in all cases studied, the numerical results indicate that,
for a fixed partial sum, the relative error = | (exact-approx.) /exact | decreases
monotonically with increasing N. We also note that for the rectangular popula-
tion the series terminates at the first term, giving the exact value of the moment.
For other populations the actual calculations, using the partial sum up to and
including the term of relative order N * in each case, generally support our
expectations. Thus for the relative error to be less than or equal to 0.01, the
value of N must be at least as large as 1, 3, 7, 17, and 9, for the U-shaped, para-
bolic, normal, Cauchy and exponential distributions, respectively. The exact
values of the variance of the median for N > 5 are not available for the double
exponential distribution; however, comparisons for N = 5 support our general
conclusions.

2. Chu and Hotelling’s method. For ready reference Chu and Hotelling’s
method will be outlined here with slight modifications and some changes of
notation. This outline is not intended to be a proof of the method, for which
one must refer to the original article.

Let X be a random variable with the cumulative distribution function F(z),
possessing a pdf f(z), and a unique median which, without any loss of generality
will be taken to be zero. Suppose that m(z), the inverse function of z(m) =
2F(m) — 1,isfor —1 < z < 1 uniquely defined and equal to a convergent series
of powers of z; let '

(1) m(z) = az(l + g;lc,,z”).

Theorems 2 and 3 (pp. 597-599) of Chu and Hotelling imply that, if ¢,/p* —
constant (which may be zero) for some integer k, then the series in (7) below
are convergent for all integers n greater than some no . Further, under the same
conditions, an argument that they used for the special case of the double ex-
ponential distribution (p. 599) .can be generalized to show that the series in (7)
are asymptotic in n.

Now, for the U-shaped, rectangular, double exponential, Cauchy and the
exponential distributions these conditions are easily verified as general expres-
sions for ¢, are available. In fact, for the rectangular distribution the series
terminates at the first term; for the double exponential and exponential
¢, = O(p™"); for the Cauchy ¢, = O(1); and for the U-shaped c, = 0(a’p™ ),
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where a is a constant, so that c,/p" — 0 for every k as p — . General expres-
sions for ¢, are not available for the normal and parabolic distributions. How-
ever, the normal distribution has been treated at length by Chu and Hotelling
and shown to have the desired properties. Only in the case of the parabolic
distribution we fail to verify the (sufficient) condition of their Theorem 3. The
numerical calculations, however, indicate that the series (7) corresponding to
this case are also convergent for n = 1 and asymptotic in n. Let M denote the
sample median of a sample of size N = 2n + 1. Then the pdf of M is

@) g(m) = [(2n + 1)/ () AF(m) "L — F(m)*f(m).
Therefore
(3) Bur = 2D ()Pl — F(m)T(m) dim.

()

Make the transformation
(4) z2(m) = 2F(m) — 1 = 2[ f(z) dz
0
in (3) and insert series (1) for m(z), the inverse function of z(m). Then

EM’

[B (n + 1L, flm’(z)(l — )" dz
(5)
=ai[B(n+ 1,2)*1_[ F(1 4+ 2, 2")"(1 — &) da.

We note that, forr = 0,1,2, --- |
1
[ z2r+1(1 _ z2)7| dz = 0,
1

(6) ) )
'L (1 —H)"de = f g1 —2)"de =B+ 1,r +13).
o

Expanding (1 4+ D ¢,2°)" in a multinomial expansion, integrating term by term
with the help of (6), we obtain, forr = 0, 1, 2, -

_a'Bn + 1,7 + %)

27
BT = B(n+ 1, %)
. 2r + 1 (2r + 1)(2r + 3) :I
gy = @r+ Dar"Bn + L + §)
B(n + 1,3)

. 2r + 3 (2r + 3)(2r + 5) ]
[cl tororrs D T amrrr@mrarn 0t
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Here, by(r), bs(r), - - - , can be determined in terms of 7, ¢; , ¢z, - - - . For example,
ba(r) = r(2r — 1)ci + 2rcs,
bs(r) = 3r(2r — 1)e} + 2reice + c3 .

There is little point in giving algebraic expressions for b’s as it is more convenient
to work them out numerically for each distribution.

Since, under the conditions stated earlier in this section, the series in (7) are
asymptotic in n, if Sg(n) is the sum of the first k terms and Ri(n) is the re-
mainder, we have

Sk(n) 4+ Ri(n)

Im=—=sm
which implies
Rk(n)
lim |- )| g,
o \Ra(n) + Su(n)

Thus the relative error tends to zero as n — « for every fixed k. We therefore
expect the relative error to be broadly decreasing with increasing n. Moreover,
if all the coefficient ¢’s are non-negative, so are the b’s, and for fixed r and k,

Ri(n + 1) £ Ru(n),

the equality holding if and only if the series terminates at the kth term, i.e., if
and only if Ri(n) = 0. Thus, if Rx(n) = 0, the absolute error of approximation
decreases monotonically for every fixed k.

In all the cases studied the coefficient ¢’s are non-negative, excepting the
U-shaped distribution. However, even for that distribution we find that, so far as
our computations go, the absolute error is monotonically decreasing with in-
creasing n.

We observe that, in some cases a unique expansion of m(z) may readily be
available for | z | < 1, e.g., for rectangular, Cauchy, U-shaped and exponential
distributions; otherwise suppose that Maclaurin’s series expansion of z(m)
exists. It is then given by

z(m) = E om’ f(J)

J=1

where f is the jth derivative of f(z) evaluated at zero. Inversion of this series
may give the required expansion of m(z). In some cases a unique expansion of
m(z) for —1 < z < 1 may not be possible, but different expansions may exist for
different parts of the range of z, e.g., for the double exponential distribution. In
such cases (7) will not hold and we will have to evaluate the integral (5) by
splitting the range into as many parts as needed. We further observe that if
f(z) is symmetrical about the median the calculations are much simplified as
¢, =c;= -+ = 0;also EM”*" = 0, whenever it exists, forr = 0,1,2, - - -

Note also the following. Let M; and M; be the medians of samples of the same
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size from two different symmetric populations F; and F.. If m;(2) and ms(z2)
correspond to F; and F, respectively, and if

my(z) = ma(2)

for 0 < z < 1, where strict inequality holds over an interval of non-zero length,
then

EMY < EM7, r=1,2 .

Compare, for example, the Cauchy and the U-shaped distributions. For the
U-shaped distribution (F,), mi(2) = sin (3w2z), and for the Cauchy distribu-
tion (F), ma(z) = tan (37z), and hence EM} < EM3 ,r = 1,2, --- .

3. Notation. For brevity we shall use the following notation:
Az) =z +2)(x+4) - (& + 2k —2)]"
Thus, for example, A;(N 4+ 2) = (N +2) ", 4:(N +4) = [(N +4)(N +6)]7,

4. Applications.
4.1. U-shaped (incomplete beta) distribution. Let

fl@) = (1 — a7,
if 2> < 1; 0, otherwise. We have
m = sin (3mz) = (3m2)[1 — 3N (3m2)" + (B)'(3m2)* — ---];

EM™" =0,
+ (ﬁ + “_2%71(;—1)) @2 + 1)(2r + 3)r'Ao(N + 2r + 2)
- (rser st )

(2 + 1)(2r + 3)(2r + 5)mAs(N + 2r + 2) + ]

In particular

EM® =~ 24674011 A,(N + 2)[1 — 2.4674011 A,(N + 4)
+ 4.0587121 Ao(N + 4) — 5.0072354 A5(N + 4) + 4.9419432 A (N +4)].

This is the only case in which the series for m is of alternating nature; in all
other cases, as we shall see, all the non-zero coefficients of the powers of z are
positive.

The referee has pointed out that EM® is expressible in terms of the Bessel
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function J,4;(x) evaluated at £ = =. Thus, from (5),

EM?

[B(n+ 1, /: sin® (72/2)(1 — 2°)" de

1

(10) =1—Tm+3 2™ [1 cos m2(1 — 25)" dz

=

=3 — 27 (n 4 ) Jap(a).

In Table 1 the approximate var M as calculated from (9) is compared with
the exact var M calculated from (10). var M /var X is also tabulated, where X
is the sample mean. .

TABLE 1
U-shaped distribution, var M, and var M /var X
(var X = 0.5)

N 1 3 5 7 11 17 \ 31 . w
Approx. var M 0.500071|0.348033/0.269020| 0.219838 |0.161413|0.115644(0.069726/0
Exact var M 0.500000(0.348018(0.269015| 0.219837 0
Relative error 0.00014 [0.00004 |0.00002 4.5 X 10~® 0

var M /var X 1 2.0881 (2.6902 | 3.0777 |(3.5511 |3.9319 (4.3230 |(4.9348

4.2. Rectangular distribution. Let f(z) = 1, —3 < z £ }; 0, otherwise. It is
easily seen that m = %z, so that forr =0,1,2, - --
(11) EM™ =0, EM" =4"B(n+1,r+3)/B(n+1,1)

These expressions are exact. In particular EM* = 1(N 4 2)7". In Table 2 var
M and var M /var X are tabulated for selected values of N.

TABLE 2

Rectangular distribution. Exact var M and var M /var X
(var X = 0.08333)

N 1 1 ‘ 3 l 5 7 ’ 1 17 ‘ 31 ‘ "
var M 0.08333 | 0.05000 | 0.03571 | 0.02778 | 0.01923 | 0.01316 | 0.00758 | ©
var M/var X | 1.0000 | 1.8000 | 2.1428 | 2.3333 | 2.5385 | 2.6842 | 2.8182 | 3

4.3. Parabolic distribution. Let f(z) = (3)(1 — 2%, for 2 < 1; 0, otherwise.
We obtain

(12) z = 3m/2 — m*/2,
and therefore
m = (22/3)[1 + 1/3(22/3)* + 1/3(22/3)* + 4/9(22/3)° + --- ].
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It can easily be seen, replacing m by the series (4) in (12) that ¢z = 0, and
cz is a polynomial in @y, ¢z, €1, -+, cu—z, with all the coefficients positive.
Since a, and ¢ are positive, all ¢y, are positive.

We have EM"™ = 0,

= 4’B<n+1,r+%>[ 8
M _<§) Bt iy | T+ DAN +2r +2)

32r  16r(2r — 1)
+ (24 03 = D) (ar + 1)(2r + )N + 2 + 2

1287(2r* 4+ 3r + 10)

+ 19683

(2r 4 1)(2r + 3)(2r + 5)As(N + 2r + 2) + ]

In particular
EM® = 4/9 A\(N + 2)[1 + 8/9 A;(N + 4) + 2.3045267 Ax(N + 4)
+ 10.242341 A3(N + 4) + 65.095768 AN + 4)].

In Table 3 var M as calculated from (13) is compared with the exact value for
selected values of N. The latter values are taken from Rider [4].

(13)

TABLE 3
Parabolic distribution, var M and var M /var X
(var X = 0.2)
N 1 3 5 | 7 | u ESENE
Approx. var M 0.1918 | 0.1054 | 0.0720 | 0.0545 | 0.0366 | 0.0245 | 0.0138 | 0
Exact var M 0.2000 | 0.1065 | 0.0722 | 0.0546 0
Relative error 0.036 | 0.010 | 0.003 | 0.002 0
var M/var X 1 1.597 | 1.805 | 1.911 | 2.035 |2.083 |2.145 | 2.222

4.4. Normal distribution. Let
(@) = (2m) 7, —
Writing f = £(0), and f = f?(0), we have f**” = 0,7 =0,1,2, ---,
F=en7  fP=—5 =3, §°=-15 19 =105

Hence

I\
8
IIA
8

3 3 5 7 9
T m 3m 15m 105m
(‘z‘) i TEE TH T TR

The inversion of this series gives

3 2 3 4
_(x T o2, Tr . 127n 5 43697 5 :I
m—(é) z[1+T2—z +@z+ 30 z+16x9!z+ .

The referee has pointed out that from equation (4.11), Table 1, and the recur-
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rence relation below Table 1 of J. G. Saw’s article [7, p. 215], it is obvious that

all the non-zero coefficients of the powers of z are positive.
" We find

EM2r+l =0

EMY <1r>TB(n+1,r+§) |:1+r(2r+1)1r

2/ Bn+13) 6

5 AN + 2r + 2)

n <7r + T_(Er__—l_))(zr + 1)(2r + 3)r*Ao(N + 2r + 2)

240 144
254r  Tr(2r —1) , 2(r — Dr(2r — 1)
+ ( 8! + 2880 + 5184 )

(2 4+ 1)(2r +3)(2r + 5)r°As(N + 2r +2) + -~

In particular
EM* =~ 1.5707963 A(N + 2)[1 + 1.5707963 A,(N + 4)
(14) + 5.3460357 Ax(N + 4) + 28.422420 A3(N + 4)
+ 206.43625 AN + 4)],
EM* =~ 7.4022033 A»(N + 2)[1 + 5.2358977 A,(N + 6)
(15) + 34.543615 A5(N + 6) + 288.09999 A;(N + 6)
+ 2936.2077 A«(N + 6)].

In Table 4 var M and EM* as calculated from (14) and (15) are compared with
the exact values for selected values of N. The exact values of var M are taken
from Teichroew [8], and of EM* from Hojo [3]. The exact values of var M /var

X are also tabulated.

TABLE 4
Normal distribution, var M, EM*4, and var M /var X
(var X = 1, EX* = 3)

N 1 3 5 7 11 17 31 ©
Approv. var M | 0.84649 | 0.43140 | 0.28304 | 0.20928 | 0.13697| 0.09002| 0.04996| 0
Exact var M 1.00000 | 0.44867 | 0.28683 | 0.21045 | 0.13716| 0.09005 0
Relative error | 0.1535 | 0.0385 | 0.0132 | 0.0056 | 0.0014 | 0.0003 0
Approx. EM* 0.2239 | 0.1281 0
Exact EM* 0.2495 | 0.1341 0
Relative error 0.103 0.045 0
var M /var X 1 1.3460 | 1.4342 | 1.4731 1.5088 | 1.5308 | 1.5488 | 1.5708

4.5. Double exponential (Laplace) distribution. Let f(x) = " —w <
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z X o.Wefind
z(m) = =€, ifm 2 0;
et — 1, ifm < 0.
Obviously EMZr—H = (), r = 0’ 1, 2’ cee and
1
EM™ = 2(B(n + 1,1 ]—lf [—In(1 — 2)P"(1 — 2)" dz
0
2r
= [B(n + L%)]“f (Z ! *’) (1—2)ztde
J=1
:=Mn+Lr+%W}+rMn+Lr+1)
B(n+1,3) Bn+ 1,7+ 3)
2r | r(2r — 1)> Bn+1,r+3) ]
+<§+ i JBantirFh T

In particular, writing
Co =220 +3)[(n+2)!(n+ 17,
We have
EM® = A,(2n + 3)[1 + C» + 275 A1(2n + 5) + 15/9 C.A:(n + 3)
+11.416667 A2(2n + 5) + 4.2 C.da(n + 3) + 68.0625 A5(2n + 5)
+14.495238 C,A5(n + 3) + 534.675 Ay(2n + 5)).

(16)

Since C, ~ 21r_*n_*, the series in the square brackets proceeds asymptotically
with terms of order 1, n* n™* n™}, --. ; hence the necessity of taking nine
terms to reach the term of relative order n~*. For N = 1, 3, and 5, i.e., forn = 0,
1, and 2, the exact values of var M are available from Sarhan [6]. In Table 5 var M
as calculated from (16) is tabulated for selected values of N and the initial three

values are compared with the exact values. var M /var X is also given.

TABLE 5
Double exponential distribution. var M and var M /var X
(var X = 2)

N 1 3 5 7 9 17 o
Approx. var M 1.28564 | 0.56476 | 0.33499 | 0.23062 | 0.17314 | 0.08325 | 0
Exact var M 2 0.63889 | 0.35118 0
Relative error 0.3572 0.1160 0.0461 0
var M /var X 1 0.95833 | 0.87795 | =0.81 =0.78 =~0.71 0.5

4.6. Cauchy distribution. Let f(z) = = '(1 + 27", —o £ 2 £ ». It is
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easily found that

_ T2 w2 1/xz\? 2 (rz\* 17 (x2\* 62 [(72\® :|
m=tang —'2‘[1+§<'2‘> +T5('z‘> +§1—5('5> tas\z) T

From the known expansion of tan z, we know that all the non-zero coefficients
of the powers of z are positive. If n = 2r + 1, EM”*' = 0; and whenn = 2r,

2r rz)' Bn41,r+ 1) [ r(2r + 1o’

+ (L 4@ -1 1))(21' + 1)(2r + 3)r"As(N + 2r +2)

60 144
17r r(2r — 1) (r —1)r2r — l))
+ (10080 720 + 2592

_I_.
(2 + 1)(2r + 8)(2r + 5)7’Au(N + 2 + 2) + ]

In particular, for N = 5,
EM*® = 2.4674011 A, (N + 2)[1 + 4.9348022 A,(N + 4)
(17) + 34.499053 A2(N + 4) + 310.44860 A3(N + 4)
+ 3414.8826 A4(N + 4)].

The coefficient of the next term in the square brackets is 44393.397.

In Table 6 the approximate value of var M as calculated from (17) is com-
pared with the exact value for selected values of N. The latter is given by Rider
[5] for N = 5(2)31.

TABLE 6
Cauchy distribution, var M
N 5 7 11 17 31 o
Approx. var M 0.82148 0.52864 0.29645 0.17435 0.08789 0
Exact var M 1.22125 0.61208 0.30680 0.17562 0.08794 0
Relative error 0.3273 0.1363 0.0337 0.0072 0.0006 0

4.7. Exponential distribution. We take the exponential distribution in the form
f(z) = 3¢ ", for — In 2 < 2 £ «; 0, otherwise, so that the population median
is zero. It is easily found that

m=—In(1—2) =z2(1+2/2+2/3+2/44+---),
and all the coefficients of the powers of z are positive;

a1 _ (2r+1)Bn+ 1,7+ 3)
B = 3B T 1,9
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1 2r  r(2r—1)
'[1+<§+—3—+———12 )(21"+3)A1(N+27‘+4)+ il:

o = BOELIAD [ (2 @2 Doy 4 a4 21+ 2)

B(n +1,%) 4
2r  11r(2r—1)  r(r—1)(2r — 1)
+ (5 t 3 + 6
n r(r — 1)(21'9—6 1)(2r — 3)) 2r + 1)(2r + 3)4s(N + 2r + 2) + ] .

In particular
EM =~ 1/2 A\(N + 2)[1 + 1.5 Ai(N 4+ 4) + 5 4(N + 4)
+ 26.25 As(N + 4) + 189 Au(N + 4)],
(18) EM’ = A,(N + 2)[1 + 2.75 A(N + 4) + 11.416667 A:(N + 4)
+ 68.0625 A3(N + 4) + 534.675 Ay(N + 4)].

The values of EM and var M = EM* — (EM)® as calculated from (18) are
compared with their exact values for selected values of N in Table 7. The latter
are taken from Gupta [2].

TABLE 7
Exponential distribution. EM, var M, and var M /var X
(EX=1—-In2,var X = 1)

N 1 3 5 7 9 )
Approx. EM 0.2635 0.1353 0.0891 0.0660 0.0524 0
Exact EM 0.3069 0.1402 0.0902 0.0664 0.0525 0
Relative error 0.141 0.035 0.012 0.006 0.002 0
Approx. var M 0.6795 0.3275 0.2066 0.1486 0.1154 0
Exact var M 1.0000 0.3611 0.2136 0.1507 0.1162 0
Relative error 0.321 0.093 0.033 0.014 0.007 0
var M/var X 1 1.083 1.068 1.055 1.045 1

6. Acknowledgment. Thanks are due to the referee for many valuable sug-
gestions, especially for providing the exact expression for the variance of the
sample median for U-shaped population, and for drawing the author’s attention
to J. G. Saw’s paper.
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